JPH10204622A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH10204622A
JPH10204622A JP9015928A JP1592897A JPH10204622A JP H10204622 A JPH10204622 A JP H10204622A JP 9015928 A JP9015928 A JP 9015928A JP 1592897 A JP1592897 A JP 1592897A JP H10204622 A JPH10204622 A JP H10204622A
Authority
JP
Japan
Prior art keywords
raw material
thin film
vacuum
film forming
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9015928A
Other languages
Japanese (ja)
Inventor
Masami Mori
匡見 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP9015928A priority Critical patent/JPH10204622A/en
Publication of JPH10204622A publication Critical patent/JPH10204622A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum film forming device in which a raw material can effectively be utilized with efficiency, furthermore, the exchange of the raw material is made possible without exposing the whole body of a vacuum tank to the air and free from deterioration in the characteristic of thin film to be formed. SOLUTION: In a thin film forming device having a vacuum tank 1 infixed with a substrate S on which thin film is to be formed and an evaporating source 3, it has a connecting means connecting the evaporating source and the vacuum tank in freely attachably and detachably and maintaining the vacuum condition in the vacuum tank, and, the evaporating source has a heating means heating a raw material and a regulating and recovering means 3a regulating the fluidizing direction of a gaseous starting material V evaporated by heating and recovering the vapor-deposited material in the positions other than the regulated direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜を形成するため
の装置に関し、詳しくは、抵抗加熱により有機EL素子
用の有機原料物質を蒸発させ、これを基板上の成膜領域
に堆積させることで薄膜を形成する抵抗加熱蒸着法を用
いた薄膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for forming a thin film, and more particularly, to an apparatus for evaporating an organic raw material for an organic EL element by resistance heating and depositing the same in a film formation region on a substrate. The present invention relates to a thin film forming apparatus using a resistance heating evaporation method for forming a thin film.

【0002】[0002]

【従来の技術】薄膜形成を行う基本技術の1つとして、
真空蒸着法が知られている。この真空蒸着法は、真空槽
内で蒸発源と成膜用基板を適当に組み合わせて、薄膜を
形成するものである。蒸発源を作る手段も様々考えられ
ており、比較的電気抵抗の高い金属容器(金属ボード)
に電流を流し、その発熱により原料を蒸発させるいわゆ
る抵抗加熱蒸着法。原料に直接電子ビームやレーザービ
ームを照射し、そのエネルギーで原料を蒸発させるいわ
ゆる電子ビーム・レーザービーム蒸着法等が知られてい
る。中でも抵抗加熱を用いた成膜方法(抵抗加熱蒸着
法)は、成膜装置の構成が簡便であり、低価格で良質の
薄膜形成を実現できることから広く普及している。
2. Description of the Related Art As one of basic techniques for forming a thin film,
A vacuum deposition method is known. In this vacuum deposition method, an evaporation source and a film-forming substrate are appropriately combined in a vacuum chamber to form a thin film. Various means for making the evaporation source are considered, and a metal container (metal board) with relatively high electrical resistance
A so-called resistance heating vapor deposition method in which an electric current is applied to the material and the heat is generated to evaporate the raw material. There is known a so-called electron beam / laser beam evaporation method in which a raw material is directly irradiated with an electron beam or a laser beam, and the raw material is evaporated using the energy. Above all, a film formation method using resistance heating (resistance heating evaporation method) is widely used because the structure of the film formation apparatus is simple and a high quality thin film can be formed at low cost.

【0003】抵抗加熱蒸着法は、融点の高いタングステ
ン、タンタル、モリブデン等の金属材料を薄板状に加工
して、電気抵抗を高くした金属板から原料容器(金属ボ
ード)を作製し、その両端から直流電流を流し、その発
熱を用いて原料を蒸発させ、蒸発ガスを供給している。
図3はこのような抵抗加熱蒸着装置の構成を示した概略
構成図で、真空槽内1に基板Sと、この基板Sと対向し
て金属ボード4bを配置し、この金属ボード4bにより
形成された原料容器4aの上部には小さな穴が設けられ
ていて、この穴から加熱により原料ガスVが発散する。
発散したガスの一部が基板S上に堆積し、薄膜が形成さ
れる。蒸発原料として使用できるものは、蒸気圧の比較
的高いものであれば何でも良いが、原料容器と容易に化
学反応するものは避ける必要がある。
In the resistance heating evaporation method, a metal material such as tungsten, tantalum, molybdenum or the like having a high melting point is processed into a thin plate, and a raw material container (metal board) is formed from a metal plate having a high electric resistance. A direct current is passed, and the heat is used to evaporate the raw material to supply an evaporative gas.
FIG. 3 is a schematic configuration diagram showing the configuration of such a resistance heating vapor deposition apparatus. A substrate S and a metal board 4b facing the substrate S are arranged in a vacuum chamber 1 and formed by the metal board 4b. A small hole is provided in the upper part of the raw material container 4a, from which the raw material gas V is radiated by heating.
Part of the diverged gas is deposited on the substrate S, and a thin film is formed. Any material that can be used as the evaporation material may be used as long as it has a relatively high vapor pressure, but it is necessary to avoid materials that easily react with the material container.

【0004】このような抵抗加熱装置の場合、上述のよ
うに発散した原料ガスの一部が基板上に堆積するのみ
で、残りのガスは真空槽中に蓄積(堆積)される。従っ
て、薄膜を形成するのは原料のほんの一部であり、大部
分は真空槽中に放出されるのみで、利用されないまま廃
棄される。これは、原料が有効利用できないばかりか、
真空槽内に蓄積した原料ガスが薄膜形成の際、不純物と
して膜中に混入し、膜を汚染する要因ともなっている。
In such a resistance heating apparatus, only a part of the source gas diverged as described above is deposited on the substrate, and the remaining gas is accumulated (deposited) in the vacuum chamber. Thus, only a small portion of the raw material forms a thin film, most of which is only released into the vacuum chamber and discarded unused. This is because not only can raw materials not be used effectively,
When a thin film is formed, the source gas accumulated in the vacuum chamber is mixed as an impurity into the film, which is a factor contaminating the film.

【0005】原料の有効利用の点に関しては、原料価格
が比較的安価な場合には大きな問題とはならないが、グ
ラム当たりの単価が数万円以上もする材料を使用する場
合には重大な問題である。特に近年盛んに研究、開発さ
れている有機EL素子にはこのような高価な材料が多用
されており、製品の製造コストの低減を図る上で、原材
料の有効利用が重要な課題となっている。さらに、この
ような有機EL素子を製造する場合、融点が低いので、
従来の成膜装置では、均一な膜形成ができない場合があ
り、このような不均一な膜は発光ムラや素子の寿命を低
下させる要因となっていた。
[0005] In terms of the effective use of raw materials, this is not a serious problem when the raw material prices are relatively inexpensive, but is a serious problem when using materials whose unit price per gram is more than tens of thousands of yen. It is. In particular, such expensive materials are frequently used in organic EL devices which have been actively researched and developed in recent years, and effective use of raw materials has become an important issue in reducing production costs of products. . Furthermore, when manufacturing such an organic EL element, the melting point is low,
In a conventional film forming apparatus, it may not be possible to form a uniform film, and such a non-uniform film may cause uneven light emission or shorten the life of the element.

【0006】また、原材料を有効利用できないというこ
ことは、原料補給のサイクルを短くし、たびたび真空槽
を大気雰囲気中に解放することになる。このことは、生
産効率、実験効率の点から好ましくないばかりか、水分
の吸着を嫌う真空槽の性質上、大きな問題である。原料
容器の初期充填量を多くすればある程度の改善が望める
が、原料容器を大きくすると、原料の蒸発課程におい
て、一定温度での蒸発状態を維持するために多くの電流
を必要とする。しかし、市販されている電源の容量には
限界があり、自ずと原料容器の大きさも制限されること
となる。
Further, the fact that the raw materials cannot be used effectively means that the cycle of replenishing the raw materials is shortened, and the vacuum chamber is frequently released to the atmosphere. This is not only unfavorable in terms of production efficiency and experimental efficiency, but is also a serious problem due to the nature of the vacuum chamber which dislikes adsorption of moisture. A certain improvement can be expected by increasing the initial filling amount of the raw material container. However, if the raw material container is made large, a large amount of current is required to maintain the evaporation state at a constant temperature in the raw material evaporation process. However, the capacity of a commercially available power source is limited, and the size of the raw material container is naturally limited.

【0007】また、真空槽内に原料容器があるため、原
料補給の際に真空槽内を必ず大気雰囲気中に曝す必要が
ある。しかし、一度大気雰囲気中に曝された真空槽は、
水分の吸着が著しく、良好な真空状態に回復するために
は長時間の真空状態を必要としていた。
Further, since the raw material container is provided in the vacuum chamber, it is necessary to always expose the inside of the vacuum chamber to the atmosphere when replenishing the raw material. However, once the vacuum chamber was exposed to the atmosphere,
Adsorption of water is remarkable, and a long-term vacuum state is required to recover to a good vacuum state.

【0008】[0008]

【発明が解決しようとする課題】この発明の目的は、原
材料を効率よく有効利用できると共に、真空槽全体を大
気中に曝すことなく原料の交換が可能で、しかも形成さ
れた薄膜の特性を劣化させることのない真空成膜装置を
実現することである。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently and effectively use raw materials, to exchange raw materials without exposing the entire vacuum chamber to the atmosphere, and to degrade the characteristics of the formed thin film. It is an object of the present invention to realize a vacuum film forming apparatus that does not cause the vacuum deposition.

【0009】[0009]

【課題を解決するための手段】上記の目的は、以下の
(1)〜(3)の構成により実現される。 (1) 薄膜が形成される基板を内在した真空槽と、蒸
発源とを有する薄膜形成装置において、前記蒸発源と真
空槽とを着脱自在に接続し、かつ真空槽内の真空状態を
維持する接続手段を有し、前記蒸発源は原料を加熱する
加熱手段と、加熱により蒸発した原料ガスの流動方向を
基板方向に規制し、かつ規制された方向以外の蒸着物を
回収する規制回収手段とを有する薄膜形成装置。 (2) 前記蒸発源は独立に排気可能な排気ポートを有
する上記(1)の薄膜形成装置。 (3) 有機EL素子の成膜に使用される上記(1)ま
たは(2)の薄膜形成装置。
The above object is achieved by the following constitutions (1) to (3). (1) In a thin film forming apparatus having an evaporation source and a vacuum tank having a substrate on which a thin film is formed, the evaporation source and the vacuum tank are detachably connected, and a vacuum state in the vacuum tank is maintained. Having a connection means, the evaporation source is a heating means for heating the raw material, a regulation collection means for regulating the flow direction of the source gas evaporated by heating toward the substrate, and for collecting the deposits other than the regulated direction; A thin film forming apparatus comprising: (2) The thin film forming apparatus according to (1), wherein the evaporation source has an exhaust port capable of independently exhausting. (3) The thin film forming apparatus according to (1) or (2), which is used for forming an organic EL element.

【0010】[0010]

【発明の実施の形態】本発明の真空成膜装置は、薄膜が
形成される基板を内蔵することのできる真空槽と、蒸発
源とを有する薄膜形成装置において、前記蒸発源と真空
槽とを着脱自在に接続する接続手段を有し、前記蒸発源
は原料を加熱する加熱手段と、加熱により蒸発した原料
ガスの流動方向を基板方向に規制する規制手段と、この
規制手段により規制された方向以外の蒸着物を回収する
回収手段とを有する。
BEST MODE FOR CARRYING OUT THE INVENTION A vacuum film forming apparatus according to the present invention is a thin film forming apparatus having a vacuum chamber capable of incorporating a substrate on which a thin film is formed, and an evaporation source. Connecting means for detachably connecting, the evaporation source being a heating means for heating the raw material, a regulating means for regulating the flow direction of the raw material gas evaporated by heating toward the substrate, and a direction regulated by the regulating means And a collecting means for collecting other deposits.

【0011】このように、蒸発源と真空槽とを分離し着
脱自在とすることで、真空槽全体を大気雰囲気中に曝す
ことなく原料の補給・交換が可能となる。また、原料ガ
ス、つまり蒸着原料の流動方向を規制する規制手段を有
しているので、蒸着原料は指向性を有し、基板の成膜領
域に効率よく原料を蒸着させることができる。さらに、
規制手段により規制された方向以外に飛散した蒸着原料
は、回収手段により回収されるため、高価な原料は回収
された使用済み原料を精製することにより、繰り返し使
用でき、原材料を有効に活用することができる。また、
有機EL素子の有機層を成膜した場合、均一な膜形成が
可能となり、発光ムラを防止でき、素子の長寿命化を図
ることができる。
As described above, the separation and detachment of the evaporation source and the vacuum tank make it possible to supply and exchange raw materials without exposing the entire vacuum tank to the atmosphere. In addition, since there is a regulating means for regulating the flow direction of the raw material gas, that is, the vapor deposition raw material, the vapor deposition raw material has directivity, and the raw material can be efficiently vapor-deposited on the film formation region of the substrate. further,
Vapor deposition materials scattered in directions other than those regulated by the regulation means are collected by the collection means, so that expensive materials can be used repeatedly by purifying the used materials that have been collected, and the raw materials can be used effectively. Can be. Also,
When the organic layer of the organic EL element is formed, a uniform film can be formed, light emission unevenness can be prevented, and the life of the element can be extended.

【0012】次に、図に基づいて本発明の真空成膜装置
を具体的に説明する。
Next, the vacuum film forming apparatus of the present invention will be specifically described with reference to the drawings.

【0013】図1は本発明の真空成膜装置の構成を示し
た概略構成図である。図において、真空槽1内には基板
Sが配置され、成膜領域となっている。また、真空槽1
にはフランジ2が備えられていて、このフランジ2を介
して蒸発源3が着脱自在に取り付けられる。フランジ2
には電磁弁等の遮断手段を内蔵していて、蒸発源3を取
り外した場合に、真空槽1内の真空状態を維持できるよ
うになっている。
FIG. 1 is a schematic configuration diagram showing the configuration of a vacuum film forming apparatus according to the present invention. In the figure, a substrate S is disposed in a vacuum chamber 1 and forms a film formation region. In addition, vacuum chamber 1
Is provided with a flange 2, through which the evaporation source 3 is detachably attached. Flange 2
Has a built-in shut-off means such as a solenoid valve, and can maintain a vacuum state in the vacuum chamber 1 when the evaporation source 3 is removed.

【0014】蒸発源3は原料ガスの流動方向を基板方向
に規制し、規制された方向以外の蒸着物を回収する規制
回収手段3aと、原料を加熱する加熱手段を有する原料
容器3bとを備える。この原料容器3bと前記規制回収
手段3aとは分離可能なようになっていて、原料の補充
・交換や飛散した蒸着原料の回収を効率よく行えるよう
になっている。前記規制回収手段3aは蒸発した原料ガ
スの方向を規制するための規制板やノズル、コリメータ
ー等を備えていて、原料ガスが図の破線矢印Vで示され
るように蒸着領域に向かって効率よく飛散するようにな
っている。次に、蒸発源3のより詳細な構成について説
明する。図2は蒸発源3のより具体的な構成例を示した
概略構成図である。
The evaporation source 3 is provided with a regulating and collecting means 3a for regulating the flow direction of the raw material gas toward the substrate and collecting the deposits in directions other than the restricted direction, and a raw material container 3b having a heating means for heating the raw material. . The raw material container 3b and the regulation collecting means 3a are separable, so that the replenishment / replacement of the raw material and the collection of the scattered vaporized raw material can be efficiently performed. The regulating and collecting means 3a includes a regulating plate, a nozzle, a collimator, and the like for regulating the direction of the vaporized raw material gas, and the raw material gas is efficiently directed toward the vapor deposition region as shown by a dashed arrow V in the figure. It is splattered. Next, a more detailed configuration of the evaporation source 3 will be described. FIG. 2 is a schematic configuration diagram showing a more specific configuration example of the evaporation source 3.

【0015】図において、蒸発源3は、規制回収部3a
と、フランジなどの分離部3cと、原料容器3bとを有
し、前記規制回収部3aは、補助シャッター34と、コ
リメーター33と、ノズル32と、方向規制板31と、
排気ポート35および排気弁36を備える。また、原料
容器3bは、原料収容ケース42と、発熱体41および
この発熱体の電極43とを備える。
[0015] In the figure, the evaporation source 3 includes a regulated recovery section 3a.
And a separation section 3c such as a flange, and a raw material container 3b. The regulation and recovery section 3a includes an auxiliary shutter 34, a collimator 33, a nozzle 32, a direction regulating plate 31,
An exhaust port 35 and an exhaust valve 36 are provided. Further, the raw material container 3b includes a raw material storage case 42, a heating element 41, and electrodes 43 of the heating element.

【0016】フランジ2は好ましくは本体側に設けら
れ、蒸発源3と真空槽1とを接続する。また、その内部
には前述のように真空状態が保持可能な電磁弁等の遮蔽
手段が内蔵されていて、蒸発源3が取り外された場合に
は、この遮蔽手段が動作して(閉じて)真空槽1の真空
状態が維持される。
The flange 2 is preferably provided on the main body side, and connects the evaporation source 3 and the vacuum chamber 1. Further, as described above, a shielding means such as an electromagnetic valve capable of maintaining a vacuum state is incorporated therein, and when the evaporation source 3 is removed, the shielding means operates (closes). The vacuum state of the vacuum chamber 1 is maintained.

【0017】前記規制回収部3aの方向規制板31は、
原料容器3b側に開口した円錐状を成し、その頂点側は
小口径の円筒の管に導入され、さらにノズル32に接続
されるようになっている。このノズル32の口径は排出
側で、5〜10mm程度の口径となっていることが好まし
い。
The direction regulating plate 31 of the regulation collecting section 3a is
It has a conical shape opened to the raw material container 3b side, and its apex side is introduced into a small-diameter cylindrical tube, and further connected to the nozzle 32. The diameter of the nozzle 32 is preferably about 5 to 10 mm on the discharge side.

【0018】ノズル32先端の近傍には、必要により、
好ましくコリメータ33が設けられる。このコリメータ
33は原料ガスをコリメートするもので、その口径は好
ましくはノズルの口径の0.5倍〜1.0倍程度が好ま
しい。コリメータ33あるいはノズル32と、フランジ
2との間には好ましく補助シャッター34が設けられて
いる。この補助シャッター34は、ノズル32の先端か
ら放出された原料ガスにより、フランジ2に内蔵されて
いる電磁弁などの遮断手段が汚染されるのを防止する。
すなわち、前記遮蔽手段が閉じているときには、この補
助シャッター34も閉じ、遮蔽手段が開いているときに
は、この補助シャッター34も開くようにすれば、ノズ
ル32から放出される原料ガスが直接閉じた遮蔽手段
(電磁弁)に接触することが無く、前記遮蔽手段が原料
ガスにより汚染されることがない。この補助シャッター
34は、原料ガスが直接遮断手段に接触することを防止
できれば良く、その構造は遮蔽手段として好ましく用い
られる電磁弁などよりも簡便なものでよい。
In the vicinity of the tip of the nozzle 32, if necessary,
Preferably, a collimator 33 is provided. The collimator 33 collimates the source gas, and its diameter is preferably about 0.5 to 1.0 times the diameter of the nozzle. An auxiliary shutter 34 is preferably provided between the collimator 33 or the nozzle 32 and the flange 2. The auxiliary shutter 34 prevents contamination of shutoff means such as a solenoid valve built in the flange 2 by the raw material gas discharged from the tip of the nozzle 32.
That is, when the shielding means is closed, the auxiliary shutter 34 is also closed, and when the shielding means is open, the auxiliary shutter 34 is also opened. There is no contact with the means (electromagnetic valve), and the shielding means is not contaminated by the source gas. The auxiliary shutter 34 only needs to be able to prevent the raw material gas from directly contacting the shut-off means, and may have a simpler structure than an electromagnetic valve or the like which is preferably used as the shield means.

【0019】規制回収部3aには好ましく排気ポート3
5および排気弁36が設けられている。蒸発源3の着脱
の際、あるいは必要に応じて蒸着中に、この排気ポート
35および排気弁36を介して、排気を行うことによ
り、真空槽1内の真空状態がさらに好ましく維持するこ
とができる。
The control port 3a is preferably an exhaust port 3.
5 and an exhaust valve 36 are provided. By evacuating through the exhaust port 35 and the exhaust valve 36 during the attachment / detachment of the evaporation source 3 or during the vapor deposition as necessary, the vacuum state in the vacuum chamber 1 can be more preferably maintained. .

【0020】フランジ3cは、規制回収部3aと原料容
器3bとを接続するもので、どちら側の構造体に設けら
れていてもよく、使用後に両者を分離して、規制板31
の内側などに付着した飛散蒸着原料を回収可能なように
するもので、好ましくはネジやバイヨネット機構などに
より固定される。
The flange 3c connects the regulation collecting section 3a and the raw material container 3b, and may be provided on either side of the structure.
It enables the scattered vapor deposition material attached to the inside of the device to be collected, and is preferably fixed by a screw or a bayonet mechanism.

【0021】原料収容ケース42はAl2 3 、C、B
N、BeO、SiO2 等のセラミックス、Mo,Ta,
W,Fe,Cu,Ti等の金属、ステンレス鋼等の合金
等の中から原料と容易に反応し難いものを選択して使用
する。この原料収容ケース42の大きさは、真空成膜装
置全体の規模や、使用する材料、成膜する構造体の大き
さ、膜厚等により異なるが、通常3〜100ml、好まし
くは、10〜50ml程度である。加熱手段である発熱体
41は、電流を供給することにより、150℃以上、好
ましくは、300℃以上に発熱し、温度制御が可能なも
のであれば良く、例えば、タングステン線、タンタル
線、モリブデン線、ニクロム線、セラミックヒーター、
ニッケル−クロム系、鉄−クロム−アルミニウム系合金
等を用いたものが挙げられるが、安定な温度制御が可能
な点を考慮すると、熱容量が20KJ以上、好ましくは、
100KJ以上のものが好ましく、このようなヒーターと
して、真空中加熱部品として公知のシースヒーターをブ
ロック状に大きくしたものが好ましい(以下ブロックヒ
ーターという)。すなわち、酸化マグネシア、アルミナ
等の無機絶縁材中に上記発熱体が封入され、更にその外
側をSUS304、SUS316、SUS310Sイン
コネル系合金等のシース部材で覆ったものを原料収容ケ
ース42、あるいは原料容器3bの形状に合わせて形成
したものが好ましい。このようなブロックヒーターは、
使用する原料や、原料収容ケース42等により、シース
部材を省略してもよく、また原料収容ケース42と一体
化してもよい。
The raw material storage case 42 is made of Al 2 O 3 , C, B
Ceramics such as N, BeO, SiO 2 , Mo, Ta,
A material that does not easily react with the raw material is selected from metals such as W, Fe, Cu, and Ti, and alloys such as stainless steel. The size of the raw material storage case 42 varies depending on the scale of the entire vacuum film forming apparatus, the material to be used, the size of the structure to be formed, the film thickness, etc., but is usually 3 to 100 ml, preferably 10 to 50 ml. It is about. The heating element 41 serving as a heating means generates heat at a temperature of 150 ° C. or higher, preferably 300 ° C. or higher by supplying an electric current, and may be any element that can be controlled in temperature. For example, a tungsten wire, a tantalum wire, a molybdenum wire Wire, nichrome wire, ceramic heater,
Nickel-chromium-based, iron-chromium-aluminum-based alloys and the like are mentioned, but in view of the fact that stable temperature control is possible, the heat capacity is 20 KJ or more, preferably,
A heater of 100 KJ or more is preferable, and as such a heater, a sheath heater known as a heating element in a vacuum, which is enlarged in a block shape, is preferable (hereinafter referred to as a block heater). That is, the heating element is sealed in an inorganic insulating material such as magnesia oxide or alumina, and the outside of the heating element is covered with a sheath member such as SUS304, SUS316, or SUS310S inconel alloy. What is formed according to the shape of is preferable. Such a block heater is
The sheath member may be omitted depending on the raw material used, the raw material storage case 42, and the like, or may be integrated with the raw material storage case 42.

【0022】真空槽1は、抵抗加熱蒸着法等で通常使用
される10-2Pa以下の圧力を維持できるものであればよ
く、その容量は特に限定するものではないが、通常20
0l程度である。
The vacuum chamber 1 is not particularly limited as long as it can maintain a pressure of 10 -2 Pa or less, which is usually used in a resistance heating evaporation method or the like, and its capacity is not particularly limited.
It is about 0l.

【0023】本発明の薄膜形成装置を用いて、薄膜を形
成する場合。真空槽1内は好ましくは10-4Pa以下、特
に10-6Pa以下に排気することが好ましい。加熱手段に
より加えられる温度は、好ましく本発明の装置に用いら
れる有機化合物の場合には300℃以下、特に85〜3
00℃の範囲のものに好適である。この場合、金属を用
いた場合には通常200℃以上である。蒸着する物質に
ついては特に制限するものではなく、一般に抵抗加熱蒸
着法で使用されている通常の原料物質であれば使用可能
であるが、特に低温での高精度の温度管理が必要で、比
較的高価な材料を使用する有機EL素子の材料等が好ま
しい。
When a thin film is formed using the thin film forming apparatus of the present invention. The inside of the vacuum chamber 1 is preferably evacuated to 10 −4 Pa or less, particularly preferably 10 −6 Pa or less. The temperature applied by the heating means is preferably 300 ° C. or less, especially 85 to 3 in the case of the organic compound used in the apparatus of the present invention.
Suitable for those in the range of 00 ° C. In this case, when a metal is used, the temperature is usually 200 ° C. or higher. There is no particular limitation on the substance to be deposited, and it is possible to use any ordinary raw material that is generally used in the resistance heating deposition method. A material for an organic EL device using an expensive material is preferable.

【0024】[0024]

【実施例】以下に実施例を示し、本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0025】(実施例1)図1,2に示すような構成の
成膜装置を用い、2×10-5Paの背圧を持った真空雰囲
気で薄膜形成を行った。蒸着原料として高純度のMg金
属粒(純度99.9%)を用いた。原料収容ケース42
に金属粒10粒:重量20gを入れ、蒸発源3の排気ポ
ート35にある電磁弁36を開き、真空槽1と同程度の
圧力となるまで十分に排気し、水分等の不純物を除去し
た。原料容器3bの発熱体41としてタングステン製フ
ィラメント状ヒーターを用いた。この発熱体の抵抗は2
00Ωで、発熱量は50KJであった。前記発熱体41に
電流を徐々に流し、原料温度が250℃となる点で保持
した。このときの電流は2.5 Aであった。
Example 1 A thin film was formed in a vacuum atmosphere having a back pressure of 2 × 10 −5 Pa using a film forming apparatus having the structure shown in FIGS. High-purity Mg metal particles (purity 99.9%) were used as the vapor deposition raw material. Raw material storage case 42
Then, the metal valve was placed in the exhaust port 35 of the evaporation source 3 and exhausted sufficiently until the pressure became about the same as that of the vacuum chamber 1 to remove impurities such as moisture. A tungsten filament heater was used as the heating element 41 of the raw material container 3b. The resistance of this heating element is 2
It was 00 Ω and the calorific value was 50 KJ. A current was gradually passed through the heating element 41, and the temperature was maintained at a point where the raw material temperature reached 250 ° C. The current at this time was 2.5 A.

【0026】そのまま5分程度予備排気した後、前記排
気ポート35の電磁弁36を閉じた。原料室内で原料ソ
ース蒸気圧が徐々に上昇し、安定な状態になってから、
補助シャッター34およびフランジ2の電磁弁を開き、
真空槽内に配置したガラス基板S上にMg薄膜を製膜し
た。得られた薄膜は厚さ200nmの均一なMg薄膜であ
った。その組成を調べたところ純度99.9%のMg
で、薄膜形成後の原料の減少量を調べたところ、0.0
5g減少していた。この値は、従来の装置を用いて同一
薄膜を形成した場合の約1/5であった。
After preliminarily exhausting for about 5 minutes, the solenoid valve 36 of the exhaust port 35 was closed. After the raw material source vapor pressure gradually rises in the raw material chamber and becomes stable,
Open the auxiliary shutter 34 and the solenoid valve of the flange 2,
An Mg thin film was formed on a glass substrate S placed in a vacuum chamber. The obtained thin film was a uniform Mg thin film having a thickness of 200 nm. When its composition was examined, it was found that the purity of Mg was 99.9%.
Then, when the amount of reduction of the raw material after the formation of the thin film was examined,
It was reduced by 5 g. This value was about 1/5 of the case where the same thin film was formed using a conventional apparatus.

【0027】(実施例2)実施例1において、原料に有
機EL素子等に電子輸送性物質として使用されるAlq
3(トリスアルミノキノリノール)5gを用い、加熱温
度を280℃としたほかは実施例1と同様にして薄膜を
形成した。ガラス基板S上に得られた薄膜は200nmの
均一な有機層であった。
(Example 2) In Example 1, Alq used as an electron transporting substance in an organic EL device or the like was used as a raw material.
A thin film was formed in the same manner as in Example 1 except that 5 g of 3 (tris-aluminoquinolinol) was used and the heating temperature was 280 ° C. The thin film obtained on the glass substrate S was a uniform organic layer having a thickness of 200 nm.

【0028】実施例1と同様にして原料の減少量を測定
したところ、0.1gであった。この値は従来の方法の
約1/5であった。
When the amount of reduction of the raw materials was measured in the same manner as in Example 1, it was 0.1 g. This value was about 1/5 of the conventional method.

【0029】(実施例3)実施例1において、原料に有
機EL素子等に正孔輸送物質として使用されるN,N’
−ジフェニル−m−トリル−4,4’−ジアミン−1,
1’−ビフェニル(TPD)5gを用い、加熱温度を2
80℃としたほかは実施例1と同様にして薄膜を形成し
た。ガラス基板S上に得られた薄膜は200nmの均一な
有機層であった。
Example 3 In Example 1, N, N ′ used as a hole transport material in an organic EL device or the like was used as a raw material.
-Diphenyl-m-tolyl-4,4'-diamine-1,
Using 5 g of 1'-biphenyl (TPD) and heating at 2
A thin film was formed in the same manner as in Example 1 except that the temperature was set to 80 ° C. The thin film obtained on the glass substrate S was a uniform organic layer having a thickness of 200 nm.

【0030】実施例1と同様にして原料の減少量を測定
したところ、0.1gであった。この値は従来の方法の
約1/5であった。
When the amount of reduction of the raw materials was measured in the same manner as in Example 1, it was 0.1 g. This value was about 1/5 of the conventional method.

【0031】(実施例4)ガラス基板上に透明電極とし
て厚さ200nmのITO(錫ドープ酸化インジウム)を
スパッタ法にて形成した後、中性洗剤、アセトン、エタ
ノールを用いて超音波洗浄し、次いで煮沸エタノール中
から引き上げて乾燥した。この透明電極表面を、UV/
3 洗浄した後、本発明の真空蒸着装置の基板ホルダー
に固定して、槽内を1×10-4Pa以下まで減圧した。
(Example 4) After forming ITO (tin-doped indium oxide) with a thickness of 200 nm as a transparent electrode on a glass substrate by a sputtering method, ultrasonic cleaning was performed using a neutral detergent, acetone and ethanol. Then, it was taken out of boiling ethanol and dried. This transparent electrode surface is
After washing with O 3, it was fixed to the substrate holder of the vacuum evaporation apparatus of the present invention, and the pressure in the tank was reduced to 1 × 10 −4 Pa or less.

【0032】次いで、減圧状態を保ったまま、N,N’
−ジフェニル−N,N’−m−トリル−4,4’−ジア
ミン−1,1’−ビフェニル(TPD)を実施例3と同
様にして、蒸着速度0.2nm/secで55nmの厚さに蒸着
し、正孔注入輸送層とした。
Next, while maintaining the reduced pressure, N, N '
-Diphenyl-N, N'-m-tolyl-4,4'-diamine-1,1'-biphenyl (TPD) was prepared in the same manner as in Example 3 to a thickness of 55 nm at a deposition rate of 0.2 nm / sec. Evaporation was performed to form a hole injection transport layer.

【0033】さらに、減圧を保ったまま、Alq3:ト
リス(8−キノリノラト)アルミニウムを実施例2と同
様にして、蒸着速度0.2nm/secで50nmの厚さに蒸着
して、電子注入輸送・発光層とした。
Further, while maintaining the reduced pressure, Alq3: tris (8-quinolinolato) aluminum was vapor-deposited at a vapor deposition rate of 0.2 nm / sec to a thickness of 50 nm in the same manner as in Example 2, and electron injection transport, It was a light emitting layer.

【0034】次いで、MgおよびAg金属原料をそれぞ
れ独立に蒸発させ、成膜時のAg濃度:5at%となるよ
うに温度を適当にコントロールし、200nmの膜厚に成
膜し陰電極とした。
Next, the Mg and Ag metal raw materials were independently evaporated, and the temperature was appropriately controlled so that the Ag concentration at the time of film formation was 5 at%.

【0035】得られた有機薄膜発光素子にN2 雰囲気中
で直流電圧を印加し、10mA/cm2の一定電流密度で連続
駆動させた。初期には、9V 、200cd/cm2の緑色(発
光極大波長λmax =520nm)の均一でムラのない発光
が確認できた。輝度の半減時間は3000時間で、その
間の駆動電圧の上昇は1.5V であった。また、ダーク
スポットの出現および成長は全くなかった。さらにその
後も電流リークを起こさず、安定した発光を継続した。
A DC voltage was applied to the obtained organic thin film light emitting device in an N 2 atmosphere, and the device was continuously driven at a constant current density of 10 mA / cm 2 . In the initial stage, a uniform and uniform light emission of 9 V, 200 cd / cm 2 green (emission maximum wavelength λmax = 520 nm) was confirmed. The half-life of the luminance was 3000 hours, during which the drive voltage increased by 1.5V. Also, there was no appearance and growth of dark spots. Further, even after that, current leakage did not occur, and stable light emission was continued.

【0036】(実施例5)実施例4と同様にして得られ
た有機EL素子50サンプルと、従来の蒸着装置を用い
たほかは実施例4と同様にして得られた有機EL素子5
0サンプルとを、実施例4と同様にして発光させ、目視
観察にて発光面の発光ムラ観察し、以下の3段階の基準
で評価した。それぞれの結果を表1、表2に示す。
(Example 5) 50 samples of the organic EL device obtained in the same manner as in Example 4 and the organic EL device 5 obtained in the same manner as in Example 4 except that a conventional vapor deposition apparatus was used.
The sample No. 0 was allowed to emit light in the same manner as in Example 4, and the light emission unevenness of the light emitting surface was observed by visual observation, and evaluated according to the following three criteria. Tables 1 and 2 show the results.

【0037】 ○:発光面全体が均一でムラ無く発光している。 △:発光面の一部に若干明暗差が確認される。 ×:発光面の複数箇所に明らかな明暗差が認められる。:: The entire light emitting surface emits light uniformly and without unevenness. Δ: A slight difference in brightness is observed in a part of the light emitting surface. X: Clear difference in brightness is observed at a plurality of locations on the light emitting surface.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】表1および表2から明らかなように、本発
明の蒸着装置を用いて製造された有機EL素子は、従来
の蒸着装置を用いたものより均一でムラのない発光が得
られることがわかる。
As is evident from Tables 1 and 2, the organic EL device manufactured by using the vapor deposition apparatus of the present invention can provide uniform and uniform light emission as compared with the device using the conventional vapor deposition apparatus. Recognize.

【0041】(実施例6)実施例1において、成膜終了
後、補助シャッター34およびフランジ2の電磁弁を閉
じて蒸発源3内を大気中に曝し、原料を補給した後再び
真空排気した。
(Embodiment 6) In Embodiment 1, after the film formation was completed, the auxiliary shutter 34 and the solenoid valve of the flange 2 were closed, the inside of the evaporation source 3 was exposed to the atmosphere, the raw materials were replenished, and the vacuum was exhausted again.

【0042】蒸発源3内の圧力が10-5Paまで排気され
る時間を測定したところ、15分であった。
The time during which the pressure in the evaporation source 3 was evacuated to 10 -5 Pa was measured, and it was 15 minutes.

【0043】(実施例7)実施例2において、同様な薄
膜試料を30サンプル製膜した後、補助シャッター34
およびフランジ2の電磁弁を閉じて蒸発源3を真空槽1
から取り外し、更にフランジ3cから原料容器3bを外
して規制板31の内側(原料容器側)に付着した使用済
み資料を回収した。得られた使用済み資料の重量を測定
したところ1.95gであった。これは全使用量の65
%であった。
(Embodiment 7) In the embodiment 2, after forming 30 samples of the same thin film sample, the auxiliary shutter 34
And the solenoid valve of the flange 2 is closed, and the evaporation source 3 is
The raw material container 3b was further removed from the flange 3c, and the used material attached to the inside of the regulating plate 31 (the raw material container side) was collected. When the weight of the obtained used material was measured, it was 1.95 g. This is 65% of total usage
%Met.

【0044】(比較例)実施例1において、真空槽1内
に従来用いられている金属ボード(Ta)を用いた抵抗
加熱容器を配置し、実施例1と同様にして蒸着を行っ
た。成膜終了後、真空槽1を大気圧に曝し、原料を補給
した後再び排気した。真空槽1内が1×10-5Paにまで
減圧される時間を測定したところ、4時間であった。
(Comparative Example) In Example 1, a resistance heating vessel using a conventionally used metal board (Ta) was placed in the vacuum chamber 1, and vapor deposition was performed in the same manner as in Example 1. After the film formation, the vacuum chamber 1 was exposed to the atmospheric pressure, and after replenishing the raw materials, the vacuum chamber 1 was evacuated again. It was 4 hours when the time required for reducing the pressure in the vacuum chamber 1 to 1 × 10 −5 Pa was measured.

【0045】[0045]

【発明の効果】以上のように本発明によれば、原材料を
効率よく有効利用できると共に、真空槽全体を大気中に
曝すことなく原料の交換が可能で、しかも形成された薄
膜の特性を劣化させることのない真空成膜装置を実現す
ることが可能である。
As described above, according to the present invention, the raw materials can be used efficiently and effectively, the raw materials can be exchanged without exposing the entire vacuum chamber to the atmosphere, and the characteristics of the formed thin film are deteriorated. It is possible to realize a vacuum film forming apparatus that does not cause the vacuum film formation.

【0046】また、本発明の装置により成膜された有機
物層を有する有機EL素子は、均一でムラのない成膜に
より、発光ムラが無く、均一な発光が得られ、しかも長
寿命な有機EL素子となる。
The organic EL element having the organic layer formed by the apparatus of the present invention can be uniformly and without unevenness, so that uniform emission can be obtained without emission unevenness, and a long-life organic EL element can be obtained. Element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜形成装置の基本構成を示した概略
構成図である。
FIG. 1 is a schematic configuration diagram showing a basic configuration of a thin film forming apparatus of the present invention.

【図2】本発明の蒸発源のより詳しい構成を示した概略
構成図である。
FIG. 2 is a schematic configuration diagram showing a more detailed configuration of the evaporation source of the present invention.

【図3】従来の抵抗加熱薄膜形成装置の構成を示した図
である。
FIG. 3 is a diagram showing a configuration of a conventional resistance heating thin film forming apparatus.

【符号の説明】[Explanation of symbols]

1 真空槽 2 フランジ 3 蒸着源 3a 規制回収部 3b 原料容器 3c フランジ 4a 原料容器 4b 金属ボード S 基板 V 原料ガス 31 規制板 32 ノズル 33 コリメーター 34 補助シャッター 41 発熱体 42 原料収容ケース 43 電極 DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Flange 3 Evaporation source 3a Regulation recovery part 3b Material container 3c Flange 4a Material container 4b Metal board S Substrate V Source gas 31 Regulator plate 32 Nozzle 33 Collimator 34 Auxiliary shutter 41 Heating element 42 Material storage case 43 Electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 薄膜が形成される基板を内在した真空槽
と、蒸発源とを有する薄膜形成装置において、 前記蒸発源と真空槽とを着脱自在に接続し、かつ真空槽
内の真空状態を維持する接続手段を有し、 前記蒸発源は原料を加熱する加熱手段と、加熱により蒸
発した原料ガスの流動方向を基板方向に規制し、かつ規
制された方向以外の蒸着物を回収する規制回収手段とを
有する薄膜形成装置。
1. A thin-film forming apparatus comprising: a vacuum chamber having a substrate on which a thin film is formed; and an evaporation source, wherein the evaporation source and the vacuum chamber are detachably connected, and a vacuum state in the vacuum chamber is maintained. The evaporation source has a heating means for heating the raw material, and a regulated recovery for restricting the flow direction of the raw material gas evaporated by the heating to the substrate direction, and for collecting a deposit other than the restricted direction. And a thin film forming apparatus.
【請求項2】 前記蒸発源は独立に排気可能な排気ポー
トを有する請求項1の薄膜形成装置。
2. The thin film forming apparatus according to claim 1, wherein said evaporation source has an exhaust port capable of independently exhausting.
【請求項3】 有機EL素子の成膜に使用される請求項
1または2の薄膜形成装置。
3. The thin film forming apparatus according to claim 1, which is used for forming an organic EL element.
JP9015928A 1997-01-13 1997-01-13 Thin film forming device Pending JPH10204622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9015928A JPH10204622A (en) 1997-01-13 1997-01-13 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9015928A JPH10204622A (en) 1997-01-13 1997-01-13 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH10204622A true JPH10204622A (en) 1998-08-04

Family

ID=11902444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9015928A Pending JPH10204622A (en) 1997-01-13 1997-01-13 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH10204622A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126865A (en) * 1999-10-22 2001-05-11 Fuji Electric Co Ltd Method of manufacturing organic electroluminescence display panel
JP2002348660A (en) * 2001-05-18 2002-12-04 Katsuhiro Nishiyama Method for manufacturing product of magnesium or magnesium alloy
JP2004027251A (en) * 2002-06-21 2004-01-29 Samsung Nec Mobile Display Co Ltd Heating vessel for organic thin film deposition system
JP2004137583A (en) * 2002-10-21 2004-05-13 Tohoku Pioneer Corp Vacuum deposition device
US6770562B2 (en) 2000-10-26 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
JP2005240067A (en) * 2004-02-24 2005-09-08 Ulvac Japan Ltd Mg-VAPOR DEPOSITION METHOD
JP2006176867A (en) * 2004-12-24 2006-07-06 Utec:Kk Film-forming apparatus and vapor deposition apparatus
JP2007009313A (en) * 2005-07-04 2007-01-18 Seiko Epson Corp Vacuum vapor deposition apparatus, and method for manufacturing electro-optical device
JP2007009312A (en) * 2005-07-04 2007-01-18 Seiko Epson Corp Vacuum vapor deposition apparatus, and method for manufacturing electro-optical device
US7922820B2 (en) 2004-11-05 2011-04-12 Samsung Mobile Display Co., Ltd. Heating crucible and deposition apparatus including the same
WO2011077662A1 (en) * 2009-12-21 2011-06-30 株式会社アルバック Vacuum deposition apparatus and maintenance method therefor
WO2020082496A1 (en) * 2018-10-26 2020-04-30 武汉华星光电半导体显示技术有限公司 Evaporation device and control method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126865A (en) * 1999-10-22 2001-05-11 Fuji Electric Co Ltd Method of manufacturing organic electroluminescence display panel
US6770562B2 (en) 2000-10-26 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
US8563333B2 (en) 2000-10-26 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
US8278135B2 (en) 2000-10-26 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Highly pure film formation method for light emitting device using gas from evaporated electroluminescent source
US7482631B2 (en) 2000-10-26 2009-01-27 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
JP2002348660A (en) * 2001-05-18 2002-12-04 Katsuhiro Nishiyama Method for manufacturing product of magnesium or magnesium alloy
JP4651854B2 (en) * 2001-05-18 2011-03-16 勝廣 西山 Manufacturing method of magnesium and magnesium alloy products
JP2004027251A (en) * 2002-06-21 2004-01-29 Samsung Nec Mobile Display Co Ltd Heating vessel for organic thin film deposition system
JP2004137583A (en) * 2002-10-21 2004-05-13 Tohoku Pioneer Corp Vacuum deposition device
KR101025190B1 (en) * 2002-10-21 2011-03-31 신닛테츠가가쿠 가부시키가이샤 Vacuum evaporator
JP4557568B2 (en) * 2004-02-24 2010-10-06 株式会社アルバック Mg deposition method
JP2005240067A (en) * 2004-02-24 2005-09-08 Ulvac Japan Ltd Mg-VAPOR DEPOSITION METHOD
US7922820B2 (en) 2004-11-05 2011-04-12 Samsung Mobile Display Co., Ltd. Heating crucible and deposition apparatus including the same
JP4557710B2 (en) * 2004-12-24 2010-10-06 株式会社ユーテック Film forming apparatus and vapor deposition apparatus
JP2006176867A (en) * 2004-12-24 2006-07-06 Utec:Kk Film-forming apparatus and vapor deposition apparatus
JP2007009312A (en) * 2005-07-04 2007-01-18 Seiko Epson Corp Vacuum vapor deposition apparatus, and method for manufacturing electro-optical device
JP2007009313A (en) * 2005-07-04 2007-01-18 Seiko Epson Corp Vacuum vapor deposition apparatus, and method for manufacturing electro-optical device
WO2011077662A1 (en) * 2009-12-21 2011-06-30 株式会社アルバック Vacuum deposition apparatus and maintenance method therefor
JP5619028B2 (en) * 2009-12-21 2014-11-05 株式会社アルバック Vacuum deposition apparatus and maintenance method thereof
WO2020082496A1 (en) * 2018-10-26 2020-04-30 武汉华星光电半导体显示技术有限公司 Evaporation device and control method therefor

Similar Documents

Publication Publication Date Title
CN100459219C (en) Cesium dispensers and process for use thereof
JPH10204622A (en) Thin film forming device
US7794630B2 (en) Lithium dispenser for lithium evaporation
US8336489B2 (en) Thermal evaporation apparatus, use and method of depositing a material
JP4373252B2 (en) Plasma generator
TW508972B (en) Method of depositing aluminum-lithium alloy cathode in organic light emitting devices
JP3979800B2 (en) Apparatus and method for forming electrode for lithium secondary battery
CN108085651A (en) A kind of secondary laminated film of resistance to beam bombardment and preparation method thereof
JPS6223418B2 (en)
JP4533964B1 (en) Light emitting device reproduction method and light emitting device reproduction device
JPH11265653A (en) Electrode, and display device having the electrode
Bewig et al. Seeded supersonic alkali cluster beam source with refilling system
JP3573234B2 (en) Substrate having ITO film formed thereon and method of forming ITO film
JPH02106845A (en) Alkali metal vapor emitting device
JP2004076025A (en) Zinc oxide thin film and method for depositing the same
JP2002294436A (en) Method for forming film of silicon oxide nitride
JP2006152395A (en) Vacuum vapor deposition method and vacuum vapor deposition system
JP3736928B2 (en) Organic compound container, organic evaporation source, and vacuum deposition apparatus
JPH07166335A (en) Ion plating device
JP3516821B2 (en) Organic thin film forming method using radical and organic thin film forming apparatus
JP4082628B2 (en) Hollow cathode device for film formation
JPH10110262A (en) Plasma film forming device
JPH06264226A (en) Ion plating device
JP2021181606A (en) Evaporation source device, evaporator, and method for controlling evaporation source device
JPH0790559A (en) Production of optical thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522