JPH10204512A - Operation of vertical scrap melting furnace - Google Patents

Operation of vertical scrap melting furnace

Info

Publication number
JPH10204512A
JPH10204512A JP893697A JP893697A JPH10204512A JP H10204512 A JPH10204512 A JP H10204512A JP 893697 A JP893697 A JP 893697A JP 893697 A JP893697 A JP 893697A JP H10204512 A JPH10204512 A JP H10204512A
Authority
JP
Japan
Prior art keywords
blasting
tuyere
scrap
furnace
secondary combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP893697A
Other languages
Japanese (ja)
Inventor
Hiromasa Iijima
寛昌 飯嶋
Yukio Takahashi
幸雄 高橋
Hideji Takeuchi
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP893697A priority Critical patent/JPH10204512A/en
Publication of JPH10204512A publication Critical patent/JPH10204512A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently use the energy in carbonaceous material, to reduce the unit requirement of the carbonaceous material needed to melt scrap and to prevent such trouble as hanging, etc., by using a vertical furnace providing plural blasting tuyeres and specifying the blasting quantity per one blasting tuyere, the blasting quantity from an upper part blasting tuyeres and distance in the furnace height direction to each steps of the blasting tuyeres. SOLUTION: Scrap 2 as charging raw material and coke 3 as carbonaceous material are charged into the shaft part 1 of a melting furnace. The air is blasted from the lower part blasting tuyeres 4, and the blasting quantity from the upper part blasting tuyeres 5 is controlled so as to execute secondary combustion. Preheat of the scrap 2 is executed with this secondary combustion. The charging raw material is continuously charged and molten iron 8 is discharged into a ladle 9. At this time, the blasting quantity per one the blasting tuyere is made to in the range of 60-400Nm<3> /h and the blasting quantity from the upper part blasting tuyere 5 is regulated to in the range of V2 /(V1 +V2 )=0.15-0.21. Wherein, V1 is the blasting tuyere flow rate at the lowermost part and V2 is the upper part blasting tuyere flow rate. Further, the distance in the height direction of the furnace body to each step of the blasting tuyeres are made to in the range of 0.3-0.9m.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、竪型スクラップ溶
解炉の操業方法に関し、スクラップと炭材を原材料とし
て溶銑を製造するに際し、スクラップ充填層内で効率よ
く2次燃焼を行い、スクラップを効果的に予熱する操業
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a vertical scrap melting furnace, and in performing hot metal production using scrap and carbon materials as raw materials, secondary combustion is efficiently performed in a scrap packed bed to reduce scrap. It relates to an operation method of preheating.

【0002】[0002]

【従来の技術】従来、製鋼用の鉄源として、高炉で鉄鉱
石を溶融還元して得た溶銑、あるいはこれを冷却、凝固
させた冷銑、あるいは鉄鋼材料の加工や建築物や機械製
品等の老廃化により発生するスクラップ等がある。これ
らの鉄源を使用する際に、溶銑や冷銑の場合は、鉄鉱石
を溶融還元するのに多くのエネルギーが必要であり、か
つ原料である鉄鉱石等の事前処理と高炉や転炉のような
大規模な設備が必要である。これに対して、スクラップ
の使用は、鉄鉱石と比較して還元に要する熱分だけエネ
ルギー使用量を削減することができ、また原料の事前処
理を簡略化することができるので、大規模な設備を必要
としないといった利点がある。
2. Description of the Related Art Conventionally, as an iron source for steelmaking, hot metal obtained by smelting and reducing iron ore in a blast furnace, or cold iron that has been cooled and solidified, or processing of steel materials, buildings and machine products, etc. Scrap generated due to aging of the steel. When using these iron sources, in the case of hot or cold pig iron, a large amount of energy is required for smelting and reducing iron ore, and pretreatment of the raw material such as iron ore and blast furnace and converter Such large-scale equipment is required. On the other hand, the use of scrap can reduce the amount of energy used by the heat required for reduction as compared with iron ore, and can simplify the pre-processing of raw materials. There is an advantage that it is not necessary.

【0003】竪型スクラップ溶解炉は、熱源としてコー
クス等の安価な炭材を使用することができることと、竪
型炉の特性上排ガス温度を低くすることが可能であるた
め、熱効率を向上させることができ、エネルギー使用
量、コストの両方の利点が得られる。例えば、従来のキ
ュポラ操業では、エネルギー効率を上げコークス原単位
を減少させる方法として熱風操業、分割送風操業が行わ
れている。
[0003] A vertical scrap melting furnace can use inexpensive carbonaceous materials such as coke as a heat source and, because of the characteristics of the vertical furnace, can lower the exhaust gas temperature, thereby improving thermal efficiency. The advantages of both energy consumption and cost can be obtained. For example, in a conventional cupola operation, a hot air operation and a divided air blowing operation are performed as a method of increasing energy efficiency and reducing coke intensity.

【0004】熱風操業とは送風温度を上げるために、外
部に熱交換器を設置する操業方法であり、分割送風操業
とは、下部送風羽口で生じたCOガスをシャフト部上部
に設けたもう一つの送風羽口から送り込む空気によって
CO2 まで燃焼させ、その熱を利用してスクラップを予
熱し、エネルギー効率を上げる操業方法である。しかし
ながら、熱風送風によるスクラップ溶解炉の操業方法で
は、送風を加熱する熱源としてキュポラ排ガスの持ち去
る熱量を利用するために種々の熱交換器あるいは別の燃
料で送風を予熱するための外熱式予熱装置を設置しなけ
ればならず、設備が多大になるという問題があった。ま
た、熱交換器自体の熱伝達効率の制約により、排ガス顕
熱の形で系外に捨てられる熱エネルギーも多く、また低
カロリー潜熱の有効利用も困難であった。
[0004] The hot blast operation is an operation method in which a heat exchanger is installed outside to increase the blast temperature, and the split blast operation is a method in which CO gas generated at a lower blast tuyere is provided at an upper portion of a shaft portion. This is an operation method in which CO 2 is burned by air sent from one blow tuyere and the heat is used to preheat scrap to increase energy efficiency. However, in a method of operating a scrap melting furnace using hot air blowing, an external heat preheating device for preheating air with various heat exchangers or other fuels in order to use the calorie carried away by the cupola exhaust gas as a heat source for heating the air. Must be installed, and there is a problem that the equipment becomes enormous. In addition, due to the heat transfer efficiency of the heat exchanger itself, much heat energy was discarded outside the system in the form of sensible heat of exhaust gas, and it was difficult to effectively use low-calorie latent heat.

【0005】分割送風によるスクラップ溶解炉の操業方
法では、上部送風羽口からの送風によりCO+(1/
2)O2 →CO2 の発熱反応が起こり、局所的な加熱に
より部分溶融する可能性があり、排ガスの通気性が阻害
され、かつスクラップの融着による棚吊り現象が生じ易
くなり、操業が不安定となる危険性がある。
In a method of operating a scrap melting furnace by divided blowing, CO + (1/1) is blown by blowing air from an upper blowing tuyere.
2) An exothermic reaction of O 2 → CO 2 occurs, and there is a possibility of partial melting due to local heating, which impairs the ventilation of exhaust gas, and easily causes a shelving phenomenon due to the fusion of scrap, thereby increasing the operation. There is a risk of instability.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前述の問題
点を解決し、竪型スクラップ溶解炉の操業において、多
大の設備を用いることなく、炭材のエネルギーを最大限
有効に使い切り、スクラップ溶解に必要な炭材原単位を
大幅に低減し、かつ棚吊り等のトラブルが生じない竪型
スクラップ溶解炉の操業方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and in the operation of a vertical scrap melting furnace, the energy of the carbonaceous material can be used as efficiently as possible without using much equipment. It is an object of the present invention to provide a method of operating a vertical scrap melting furnace which significantly reduces the carbon unit consumption required for melting and does not cause troubles such as hanging a shelf.

【0007】[0007]

【課題を解決するための手段】竪型スクラップ溶解炉の
操業方法について、熱源(炭材)の使用量削減の検討を
した結果、下部送風羽口で生成したCOガスを発熱反応
であるCO+(1/2)O2 →CO2 によりCO2 に燃
焼させ、炉内で炭材のエネルギーを十分に使い切る技術
を開発することが重要である。すなわち、図1に示すよ
うに、炉壁高さ方向に設けた上部送風羽口を活用して2
次燃焼が行なわれるようにすることとしたものである。
As for the operation method of the vertical scrap melting furnace, as a result of studying the reduction of the amount of heat source (carbon material) used, the CO gas generated in the lower tuyere was exothermic CO + ( 1/2) O 2 → the CO 2 is combusted to CO 2, it is important to develop a technology to use up the energy of the carbonaceous material well in a furnace. That is, as shown in FIG. 1, the upper tuyere provided in the furnace wall height direction is
The next combustion is to be performed.

【0008】すなわち、本発明は、炉体高さ方向に2段
以上の送風羽口を具備した竪型炉を用いて、炭材の燃焼
熱により主にスクラップを溶解して溶銑を製造するに当
り、送風羽口1本当りの送風量を60〜400Nm3
hの範囲とし、上部送風羽口からの送風量を下記(1)
式に示す量に規定し、かつ送風羽口各段の炉体高さ方向
距離を0.3〜0.9mの範囲とすることを特徴とする
竪型スクラップ溶解炉の操業方法である。
That is, the present invention relates to a method of manufacturing molten iron mainly by melting scrap by the heat of combustion of carbonaceous material using a vertical furnace having two or more stages of blowing tuyeres in the height direction of the furnace body. , The amount of air per one tuyere is 60 to 400 Nm 3 /
h and the amount of air blown from the upper tuyere is
A method for operating a vertical scrap melting furnace, characterized in that the amount is defined in the formula and the distance in the furnace body height direction of each stage of the blowing tuyere is in the range of 0.3 to 0.9 m.

【0009】 V2 /(V1 +V2 )=0.15〜0.21 …(1) V1 :最下部送風羽口流量(Nm3 /h) V2 :上部送風羽口流量(Nm3 /h) 送風羽口1本当りの送風量は60Nm3 /hを下廻ると
2次燃焼率が低下するから下限を60Nm3 /hとし
た。また、送風羽口1本当りの送風量が400Nm3
hを超えるとスクラップの局部加熱による棚吊り発生と
なるので400Nm3 /h以下とする。
V 2 / (V 1 + V 2 ) = 0.15 to 0.21 (1) V 1 : Lowermost tuyere flow rate (Nm 3 / h) V 2 : Upper blown tuyere flow rate (Nm 3) / h) air volume per one blast tuyere was a lower limit from the Shitamawaru a 60 Nm 3 / h 2 post combustion rate decreases and 60 Nm 3 / h. In addition, the blowing volume per blow tuyere is 400 Nm 3 /
If it exceeds h, the shelf will be suspended due to the local heating of the scrap, so that it is set to 400 Nm 3 / h or less.

【0010】送風羽口各段の炉体高さ方向距離は0.3
m未満では最下段の羽口前で生成したCOを効果的にC
2 に燃焼させる2次燃焼が向上せず、一方0.9mを
超えると2次燃焼率が低下するので0.3〜0.9の範
囲とする。V2 /(V1 +V2 )の値は実炉における試
験の結果、0.15未満でも0.21超でも2次燃焼率
が低下することが判明したのでこの範囲に限定した。
[0010] The distance in the furnace height direction of each stage of the blowing tuyere is 0.3.
m, the CO generated in front of the lowermost tuyere can be effectively reduced to C.
O 2 secondary combustion to burn not improved, the contrast exceeds 0.9m When the secondary combustion rate in the range of 0.3 to 0.9 so reduced. The value of V 2 / (V 1 + V 2 ) was limited to this range because the results of tests in an actual furnace revealed that the secondary combustion rate was reduced when the value was less than 0.15 or more than 0.21.

【0011】[0011]

【発明の実施の形態】竪型スクラップ溶解炉では、一般
的に、竪型炉下部に設置された送風羽口から送られる空
気で、C+O2 →CO2 、C+(1/2)O2 →COの
反応が起こり、未燃のCOガスが炉内を上昇し炉外に排
出される。すなわち、炉外に排出されるガス中のCO分
だけは潜熱分として捨てられることになる。そこで上部
に設置した送風羽口からの空気によりCO+(1/2)
2 →CO2 の発熱反応で2次燃焼率を向上させ、炭材
のもつエネルギーを炉内で十分に使い切ることが溶解エ
ネルギーの低減のためには重要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a vertical scrap melting furnace, generally, air sent from a blowing tuyere installed at the lower part of the vertical furnace is C + O 2 → CO 2 , C + (1/2) O 2 → The reaction of CO occurs, and unburned CO gas rises inside the furnace and is discharged outside the furnace. That is, only the CO component in the gas discharged outside the furnace is discarded as the latent heat component. Therefore, CO + (1/2) by air from the tuyere installed at the top
It is important to reduce the melting energy by improving the secondary combustion rate by the exothermic reaction of O 2 → CO 2 and fully using the energy of the carbon material in the furnace.

【0012】図1は、本発明を好適に実施できる竪型ス
クラップ溶解炉の概略説明図である。装入原料であるス
クラップ2、炭材3としてのコークスを炉頂弁から溶解
炉シャフト部1内に装入する。溶解炉シャフト部1の下
部に設置した送風羽口4から空気を送風し、上部に設置
した送風羽口5により2次燃焼を精度よく行なわせる。
この2次燃焼によりスクラップの予熱を行い、装入原料
を連続的に装入し、溶解して溶銑8を取鍋9に得る。
FIG. 1 is a schematic explanatory view of a vertical scrap melting furnace which can suitably carry out the present invention. A scrap 2 as a charging raw material and coke as a carbonaceous material 3 are charged into the melting furnace shaft portion 1 from a furnace top valve. Air is blown from a blowing tuyere 4 installed at a lower portion of the melting furnace shaft portion 1, and secondary combustion is accurately performed by a blowing tuyere 5 installed at an upper portion.
The preheating of the scrap is performed by the secondary combustion, and the charged raw material is continuously charged and melted to obtain the hot metal 8 in the ladle 9.

【0013】そこで、炭材のもつエネルギーを炉内で十
分に使い切るために、図1に示すように、スクラップ予
熱層部に2次燃焼用の送風羽口5を設置することによ
り、CO+(1/2)O2 →CO2 の2次燃焼反応が生
じ2次燃焼率を向上させることができる。また、2次燃
焼率向上には、下部送風羽口と上部送風羽口間距離に大
きく影響される。この理由としては、2次燃焼によりC
2 になったガスはガス温度が高いとさらに、充填層部
のコークスとCO2 +C→2COなる反応(ソリューシ
ョンロス反応)が起こり2次燃焼率が向上しない。従っ
て、高さ方向での2次燃焼領域すなわち、羽口間距離が
非常に重要である。
Therefore, in order to fully use the energy of the carbon material in the furnace, as shown in FIG. 1, a blowing tuyere 5 for the secondary combustion is installed in the scrap preheating layer, so that CO + (1 / 2) A secondary combustion reaction of O 2 → CO 2 occurs to improve the secondary combustion rate. Further, the improvement in the secondary combustion rate is greatly affected by the distance between the lower and upper blowing tuyeres. The reason for this is that secondary combustion causes C
When the gas temperature of the O 2 gas is high, a reaction (solution loss reaction) of CO 2 + C → 2CO occurs with the coke in the packed bed portion, and the secondary combustion rate does not improve. Therefore, the secondary combustion area in the height direction, that is, the distance between the tuyere is very important.

【0014】本発明はこの点に着目し、下部送風羽口と
上部送風羽口の間の距離を種々変更して実験を行った。
竪型溶解炉として図1に概略を示す形式の3t/hの能
力を有するキュポラを用いて、100tのスクラップを
溶解した。使用したスクラップはサイズが25〜150
mmのシュレッダースクラップであり、炭材としてサイ
ズが30〜75mmの高炉用コークスを使用した。な
お、溶解炉シャフト部1の内径は600mmである。
In view of this point, the present invention has conducted experiments by changing the distance between the lower and upper blast tuyeres.
100 t of scrap was melted using a cupola having a capacity of 3 t / h of a type schematically shown in FIG. 1 as a vertical melting furnace. Used scrap size 25-150
mm shredder scrap, and blast furnace coke having a size of 30 to 75 mm was used as a carbon material. Note that the inner diameter of the melting furnace shaft portion 1 is 600 mm.

【0015】操業条件としては、キュポラへのスクラッ
プとコークスの装入を層状に炉頂弁より投入し、得られ
る溶銑温度が1540±10℃、溶銑中炭素濃度が3.
5±0.5%となるように炉頂からのコークス装入量を
調節した。一方送風量は、最下部送風羽口から1本当り
382Nm3 /hrでV1 =1528Nm3 /hr、上
部装入羽口から1本あたり68Nm3 /hrでV2 =2
72Nm3 /hrの割合で供給した。このとき、(V2
/(V1 +V2 )=0.15である。
The operating conditions are as follows. Scrap and coke are charged into the cupola in layers from the furnace top valve, and the resulting hot metal temperature is 1540 ± 10 ° C. and the carbon concentration in the hot metal is 3.
The amount of coke charged from the furnace top was adjusted to be 5 ± 0.5%. Meanwhile blowing amount, V 2 = 2 in the bottom blowing tuyeres 1 Hontori 382 nm 3 / hr at V 1 = 1528Nm 3 / hr, per one from the upper instrumentation Nyuhane port 68 nm 3 / hr
It was supplied at a rate of 72 Nm 3 / hr. At this time, (V 2
/ (V 1 + V 2 ) = 0.15.

【0016】このようにして実験を行い、2次燃焼率を
調査したところ図2に示す結果が得られた。この図か
ら、下部送風羽口と2次燃焼用の上部装入羽口の間の距
離が0.3〜0.9mの範囲で、50%以上の好ましい
2次燃焼率が達成できることが明らかとなった。したが
って、本発明では、下部送風羽口と2次燃焼用の上部装
入羽口の間の距離を0.3〜0.9mの範囲に規定する
ものである。
Experiments were conducted in this way, and the secondary combustion rate was investigated. The results shown in FIG. 2 were obtained. From this figure, it is clear that a preferable secondary combustion rate of 50% or more can be achieved when the distance between the lower blowing tuyere and the upper charging tuyere for secondary combustion is in the range of 0.3 to 0.9 m. became. Therefore, in the present invention, the distance between the lower blowing tuyere and the upper charging tuyere for secondary combustion is defined in the range of 0.3 to 0.9 m.

【0017】また、上部送風羽口5により、(1)式で
示した流量比及び送風羽口1本当りの送風量を60〜4
00Nm3 /hの範囲であれば、局所的な加熱によりス
クラップの融着が起こらず、装入物充填層部の高さ方向
で温度分布を制御することができ、最適な予熱を行うこ
とができ、炭材のもつエネルギーを有効にスクラップの
予熱、溶解に利用することができる。
Further, the upper blower tuyere 5 allows the flow rate ratio and the blown amount per blower tuyere represented by the expression (1) to be 60 to 4 times.
Within the range of 00 Nm 3 / h, the fusion of the scrap does not occur due to local heating, the temperature distribution can be controlled in the height direction of the charged bed portion, and the optimal preheating can be performed. The energy of the carbon material can be used effectively for preheating and melting the scrap.

【0018】前述したように、2次燃焼を生じさせるた
めには上部送風羽口からの送風が不可欠であり、上部送
風羽口から吹き込む空気の量を増すことで2次燃焼率が
向上する。しかしながら、上部羽口からの送風量を増大
していくと、スクラップが浸炭・溶解する以前に過度に
予熱されることになり、スクラップの融着により棚吊り
や通気抵抗の増大をきたし、逆に2次燃焼率を悪化させ
ることが経験された。そこで、本発明者等は上部羽口か
らの吹込み空気量の全吹込み空気量に対する割合V2
(V1 +V2 )を種々変化させて、2次燃焼率に及ぼす
影響を調査した。なお、実験条件は、前述と同じキュポ
ラを用い、キュポラへスクラップとコークスの装入を層
状に炉頂弁より投入し、得られる溶銑温度が1540±
10℃、溶銑中炭素濃度が3.5±0.5%となるよう
に炉頂からのコークス装入量を調節した。一方、下部送
風羽口と2次燃焼用の上部装入羽口の間の距離を0.9
mとした。
As described above, in order to cause secondary combustion, it is essential to blow air from the upper blowing tuyere. By increasing the amount of air blown from the upper blowing tuyere, the secondary combustion rate is improved. However, if the amount of air blown from the upper tuyere is increased, the scrap will be preheated excessively before carburizing and melting, and the fusion of the scrap will cause shelving and increase the ventilation resistance, and conversely It has been experienced to worsen the secondary burn rate. Therefore, the present inventors have determined that the ratio of the amount of air blown from the upper tuyere to the total amount of blown air V 2 /
(V 1 + V 2 ) was varied to investigate the effect on the secondary combustion rate. The experimental conditions were as follows. The same cupola as described above was used, and scrap and coke were charged into the cupola in layers from the furnace top valve, and the resulting hot metal temperature was 1540 ±
The amount of coke charged from the furnace top was adjusted at 10 ° C. so that the carbon concentration in the hot metal was 3.5 ± 0.5%. On the other hand, the distance between the lower blowing tuyere and the upper charging tuyere for secondary combustion is 0.9.
m.

【0019】このようにして実験を行い、2次燃焼率を
調査したところ図3に示す結果が得られた。図3から、
2 /(V1 +V2 )が0.15〜0.21の範囲で6
0%以上の好ましい2次燃焼率が得られた。従って本発
明ではV2 /(V1 +V2 )を0.15〜0.21の範
囲に規定するものである。
The experiment was performed as described above, and the secondary combustion rate was investigated. The result shown in FIG. 3 was obtained. From FIG.
In the range of V 2 / (V 1 + V 2) is from 0.15 to 0.21 6
A desirable secondary combustion rate of 0% or more was obtained. The present invention therefore is intended to define V 2 / a (V 1 + V 2) in the range of 0.15 to 0.21.

【0020】[0020]

【実施例】【Example】

(実施例1)本発明の1実施例として、竪型溶解炉とし
て3t/hの能力を有するキュポラを用いて、100t
のスクラップを溶解した。この実施例において、使用し
たスクラップはサイズが25〜150mmのシュレッダ
ースクラップであり、炭材としてサイズが30〜75m
mの高炉用コークスを使用した。なお、溶解炉シャフト
部1の内径は600mmである。
(Embodiment 1) As one embodiment of the present invention, 100 t is used by using a cupola having a capacity of 3 t / h as a vertical melting furnace.
Was dissolved. In this example, the scrap used was a shredder scrap having a size of 25 to 150 mm and a size of 30 to 75 m as a carbon material.
m of blast furnace coke was used. Note that the inner diameter of the melting furnace shaft portion 1 is 600 mm.

【0021】操業条件としては、キュポラへのスクラッ
プとコークスの装入を層状に炉頂弁より投入し、得られ
る溶銑温度が1540±10℃、溶銑中炭素濃度が3.
5±0.5%となるように炉頂からのコークス装入量を
調節した。一方、送風量は、最下部送風羽口から、1本
当り382Nm3 /hrで計1528Nm3 /hr、上
部送風羽口から1本当り68Nm3 /hrで計272N
3 /hrの割合で供給した。このときV2 /(V1
2 )=0.15である。なお、送風羽口各段の炉体高
さ方向距離を0.3mとした。以上の実施例−1におけ
る操業の結果、下記に示す2次燃焼率は56%となり、
コークス原単位は100kg/tとなった。
The operating conditions are as follows. The scrap and coke are charged into the cupola in a layered manner from the furnace top valve, and the resulting hot metal temperature is 1540 ± 10 ° C. and the carbon concentration in the hot metal is 3.
The amount of coke charged from the furnace top was adjusted to be 5 ± 0.5%. On the other hand, the blast volume is from the bottom blowing tuyeres, by 1 Hontori 382 nm 3 / hr in total of 1528Nm 3 / hr, 1 from the upper air blowing tuyere Hontori 68 nm 3 / hr Total 272N
It was supplied at a rate of m 3 / hr. At this time, V 2 / (V 1 +
V 2 ) = 0.15. In addition, the distance in the furnace body height direction of each stage of the blowing tuyere was 0.3 m. As a result of the operation in Example 1 described above, the secondary combustion rate shown below was 56%,
The basic unit of coke was 100 kg / t.

【0022】 2次燃焼率:100×CO2 /(CO+CO2 )(%) …(2) (実施例2)実施例2として、上記の実施例と同様のや
り方で操業を行い、送風羽口各段の炉体高さ方向距離を
0.9mとした。その結果、2次燃焼率は62%、コー
クス原単位は96kg/tとなった。
Secondary combustion rate: 100 × CO 2 / (CO + CO 2 ) (%) (2) (Example 2) As Example 2, operation was performed in the same manner as in the above-described example, The furnace body height direction distance of each stage was 0.9 m. As a result, the secondary combustion rate was 62%, and the basic unit of coke was 96 kg / t.

【0023】(比較例1)実施例1、2の比較例とし
て、送風条件を実施例1、2と同一条件で行い、送風羽
口各段の炉体高さ方向距離を1.0mとした。その結
果、2次燃焼率は47%と低下し、コークス原単位は1
06kg/tとなった。 (比較例2)実施例1、2の比較例として、送風条件を
実施例1、2と同一条件で行い、送風羽口各段の炉体高
さ方向距離を0.25mとした。その結果、2次燃焼率
は実施例3と同様に48%と低下し、コークス原単位は
105kg/tとなった。
(Comparative Example 1) As a comparative example of Examples 1 and 2, the blowing conditions were the same as in Examples 1 and 2, and the distance in the furnace body height direction at each stage of the tuyere was 1.0 m. As a result, the secondary combustion rate was reduced to 47%, and the coke intensity was 1 unit.
It became 06 kg / t. (Comparative Example 2) As a comparative example of Examples 1 and 2, the blowing conditions were the same as in Examples 1 and 2, and the distance in the furnace body height direction at each stage of the blowing tuyere was 0.25 m. As a result, the secondary combustion rate was reduced to 48% as in Example 3, and the unit coke consumption was 105 kg / t.

【0024】(実施例3)実施例3として、上記の実施
例と同様の条件で操業を行い、送風羽口各段の炉体高さ
方向距離を0.9mとした。送風量は、最下部送風羽口
から1本当り355Nm3 /hrで計1420Nm3
hr、上部送風羽口から1本当り95NNm3 /hrの
割合で供給した。このときV2 /(V1 +V2 )=0.
21となる。その結果、2次燃焼率は72%となり、コ
ークス原単位は90kg/tとなった。
(Example 3) As Example 3, operation was performed under the same conditions as in the above example, and the distance in the furnace height direction at each stage of the blow tuyere was set to 0.9 m. The air flow rate is, from the bottom blowing tuyeres 1 Hontori 355Nm 3 / hr for a total of 1420Nm 3 /
hr, and was supplied at a rate of 95 NNm 3 / hr per piece from the upper blowing tuyere. At this time, V 2 / (V 1 + V 2 ) = 0.
It becomes 21. As a result, the secondary combustion rate was 72%, and the basic unit of coke was 90 kg / t.

【0025】(比較例3)実施例3の比較例として、送
風羽口各段の炉体高さ方向距離を0.9mとし、送風条
件を最下部送風羽口から、1本当り387Nm3 /hr
で計1548Nm 3 /hr、上部送風羽口から1本当り
63Nm3 /hrで計252Nm3 /hrの割合で供給
した。このとき、V2 /(V1 +V2 )=0.14であ
る。その結果、2次燃焼率は48%と低下し、コークス
原単位は105kg/tと高くなった。 (比較例4) 実施例3の比較例として、送風羽口各段の炉体高さ方向
距離を0.9mとし、送風条件を最下部送風羽口から、
1本当り351Nm3 /hrで計1404Nm 3 /h
r、上部送風羽口から1本当り99Nm3 /hrで計3
96Nm3 /hrの割合で供給した。V2 /(V1 +V
2 )=0.22となる。その結果、2次燃焼率は実施例
3と同様に50%と低下し、コークス原単位は104k
g/tとなった。次に操業上では、スクラップの融着が
起こり、1日あたりの操業で3〜4回の棚吊りが生じ
た。また、送風羽口各段の炉体高さ方向距離が0.3〜
0.9mの範囲でも、この条件の送風量では棚吊りが発
生した。各実施例・比較例の実験条件を結果を表1にま
とめて示す。
(Comparative Example 3) As a comparative example of Embodiment 3, the transmission
The height direction distance of the furnace body at each stage of the tuyere is 0.9m,
387Nm per line from the lowermost tuyereThree / Hr
Total 1548Nm Three / Hr, per one from the upper tuyere
63NmThree / Hr total 252NmThree / Hr supply
did. At this time, VTwo / (V1 + VTwo ) = 0.14
You. As a result, the secondary combustion rate decreased to 48%,
The basic unit increased to 105 kg / t. (Comparative Example 4) As a comparative example of Example 3, the furnace height direction of each stage of the blowing tuyere
The distance is 0.9m, and the blowing condition is
351 Nm per oneThree / Hr total 1404Nm Three / H
r, 99Nm per one from upper tuyereThree / Hr total 3
96NmThree / Hr. VTwo / (V1 + V
Two ) = 0.22. As a result, the secondary combustion rate was
As in the case of No. 3, it decreased to 50%, and the basic unit of coke was 104 k.
g / t. Next, in operation, the fusion of scrap
Occasionally, three or four shelves are suspended in one operation
Was. In addition, the distance in the furnace body height direction of each stage of the tuyere
Even in the range of 0.9 m, shelves are hung at the air volume under this condition.
I was born. Table 1 shows the experimental conditions of each example and comparative example.
Show it.

【0026】以上の実施例において上部送風羽口流量比
率を前述の(1)式に示した割合でかつ送風羽口1本当
りの送風量を60〜400Nm3 /hの範囲の送風量で
はスクラップの融着は起こらず順調な操業を行うことが
できた。しかし、上部送風羽口流量比率が0.21を上
廻る比率、あるいは送風羽口1本当りの送風量が400
Nm3 /h以上を越える条件で操業を行うと、スクラッ
プの局所的な加熱により、スクラップの融着が起こり、
棚吊りの原因になり不安定な操業になってしまった。ま
た、上部送風羽口流量比率を0.15未満の比率あるい
は送風羽口1本当りの送風量が60Nm3 /hr未満で
操業を行うと2次燃焼率が向上しなかった。従って、上
部送風羽口流量比率は0.15〜0.21の範囲でか
つ、送風羽口1本当りの送風量は60〜400Nm3
hの範囲が好ましい。また、送風羽口各段の炉体高さ方
向距離が0.3〜0.9mの範囲では、2次燃焼率は向
上したが、0.3m未満又は0.9mを越える範囲では
逆に2次燃焼率が低下した。
In the above embodiment, when the flow rate ratio of the upper blowing tuyere is the ratio shown in the above formula (1) and the blowing amount per blowing tuyere is in the range of 60 to 400 Nm 3 / h, the scrap is scrapped. No fusing occurred and the operation was successful. However, the ratio of the upper tuyere tuyere flow rate exceeding 0.21 or the blowing amount per tuyere is 400
When the operation is performed under a condition exceeding Nm 3 / h or more, fusion of the scrap occurs due to local heating of the scrap,
The operation became unstable due to hanging on the shelf. Further, when the operation was performed with the upper blow tuyere flow rate ratio of less than 0.15 or the blow amount per blow tuyere of less than 60 Nm 3 / hr, the secondary combustion rate did not improve. Therefore, the upper tuyere tuyere flow rate ratio is in the range of 0.15 to 0.21 and the amount of air blown per tuyere is 60 to 400 Nm 3 /.
The range of h is preferred. Further, the secondary combustion rate was improved in the range of 0.3 to 0.9 m in the height direction of the furnace at each stage of the blowing tuyere, but the secondary combustion rate was improved in the range of less than 0.3 m or more than 0.9 m. Burning rate decreased.

【0027】以上の実施例から明らかなように、本発明
は、2次燃焼率向上による低炭材原単位でかつ棚吊り等
のトラブルがないスクラップの溶解が可能となる。
As is apparent from the above-described embodiments, the present invention makes it possible to dissolve scrap with a low carbon unit consumption and no trouble such as hanging on a shelf by improving the secondary combustion rate.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によれば、シャフト部上部に設け
た送風羽口により、2次燃焼を向上させ、棚吊り等のト
ラブルが発生せずに高さ方向でスクラップの温度分布が
制御でき、炉内で炭材のエネルギーを十分に使い切り、
エネルギー効率向上すなわち、炭材原単位減少が可能と
なった。
According to the present invention, the secondary combustion can be improved by the blowing tuyere provided at the upper portion of the shaft portion, and the temperature distribution of the scrap in the height direction can be controlled without any trouble such as hanging the shelf. In the furnace, fully use the energy of the carbon material,
Energy efficiency could be improved, that is, the carbon unit consumption could be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】使用した竪型スクラップ溶解炉の縦断面図であ
る。
FIG. 1 is a vertical sectional view of a vertical scrap melting furnace used.

【図2】送風羽口各段の炉体高さ方向距離と2次燃焼率
との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a distance in a furnace body height direction at each stage of a blow tuyere and a secondary combustion rate.

【図3】V2 /(V1 +V2 )の値と2次燃焼率との関
係を示すグラフである。
FIG. 3 is a graph showing a relationship between a value of V 2 / (V 1 + V 2 ) and a secondary combustion rate.

【符号の説明】[Explanation of symbols]

1 溶解炉シャフト部 2 スクラップ 3 コークス 4 下部送風羽口 5 上部送風羽口 6 羽口から吹き込まれる空気 7 排ガス 8 溶銑 9 取鍋 DESCRIPTION OF SYMBOLS 1 Melting furnace shaft part 2 Scrap 3 Coke 4 Lower blowing tuyere 5 Upper blowing tuyere 6 Air blown from a tuyere 7 Exhaust gas 8 Hot metal 9 Ladle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉体高さ方向に2段以上の送風羽口を具
備した竪型炉を用いて、炭材の燃焼熱により主にスクラ
ップを溶解して溶銑を製造するに当り、送風羽口1本当
りの送風量を60〜400Nm3 /hの範囲とし、上部
送風羽口からの送風量を下記(1)式に示す量に規定
し、かつ送風羽口各段の炉体高さ方向距離を0.3〜
0.9mの範囲とすることを特徴とする竪型スクラップ
溶解炉の操業方法。 V2 /(V1 +V2 )=0.15〜0.21 …(1) V1 :最下部送風羽口流量(Nm3 /h) V2 :上部送風羽口流量(Nm3 /h)
In a vertical furnace having two or more blast tuyeres in the height direction of the furnace body, a scrap is mainly melted by the heat of combustion of carbon material to produce molten iron, The amount of air blown per tube is in the range of 60 to 400 Nm 3 / h, the amount of air blown from the upper tuyere is defined as the amount shown in the following formula (1), and the distance in the furnace body height direction of each stage of the tuyere is From 0.3 to
A method for operating a vertical scrap melting furnace, characterized in that the thickness is 0.9 m. V 2 / (V 1 + V 2 ) = 0.15 to 0.21 (1) V 1 : Lowermost tuyere flow rate (Nm 3 / h) V 2 : Upper blown tuyere flow rate (Nm 3 / h)
JP893697A 1997-01-21 1997-01-21 Operation of vertical scrap melting furnace Withdrawn JPH10204512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP893697A JPH10204512A (en) 1997-01-21 1997-01-21 Operation of vertical scrap melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP893697A JPH10204512A (en) 1997-01-21 1997-01-21 Operation of vertical scrap melting furnace

Publications (1)

Publication Number Publication Date
JPH10204512A true JPH10204512A (en) 1998-08-04

Family

ID=11706563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP893697A Withdrawn JPH10204512A (en) 1997-01-21 1997-01-21 Operation of vertical scrap melting furnace

Country Status (1)

Country Link
JP (1) JPH10204512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202325A1 (en) * 2007-09-06 2010-06-30 Nippon Steel Corporation Method of operating vertical furnace
JP2013185191A (en) * 2012-03-07 2013-09-19 Jfe Steel Corp Method for producing molten pig iron using vertical scrap melting furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202325A1 (en) * 2007-09-06 2010-06-30 Nippon Steel Corporation Method of operating vertical furnace
EP2202325A4 (en) * 2007-09-06 2010-09-22 Nippon Steel Corp Method of operating vertical furnace
JP2013185191A (en) * 2012-03-07 2013-09-19 Jfe Steel Corp Method for producing molten pig iron using vertical scrap melting furnace

Similar Documents

Publication Publication Date Title
JP4745731B2 (en) Method of melting hot metal with cupola
JPS62227024A (en) Method and apparatus for continuously melting waste iron and/or sponge iron
JPS6227513A (en) Method for melting and over-heating iron material
KR100187693B1 (en) Scrap melting method
JP2007138207A (en) Smelting-reduction process
US3759699A (en) Ting means process for melting scrap with a plurality of oppositely directed hea
JP3023617B2 (en) Method and apparatus for producing steel from iron carbide
US3603571A (en) Apparatus for melting scrap metal
JPH10204512A (en) Operation of vertical scrap melting furnace
US1934082A (en) Reduction of ore
JP3511784B2 (en) Raw material charging method for vertical iron scrap melting furnace
KR930004473B1 (en) Process for making iron in the blast furnace
JPS61221322A (en) Melting and refining method for metallic raw material
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
JPH02200713A (en) Device and method for producing molten iron
US1991008A (en) Method and apparatus for producing low carbon metal
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JPH08219644A (en) Vertical scrap-melting-furnace and operating method therefor
JP3121894B2 (en) Metal melting furnace
JP2002003917A (en) Method for supplying oxygen in vertical melting furnace
JP3280839B2 (en) Metal melting method in vertical furnace
US1945342A (en) Apparatus for producing low carbon metals
JPS63130707A (en) Production of molten iron
JPH032306A (en) Production of molten pig iron combined with recovery of rare metal
JPH0961058A (en) Method for operating vertical scrap melting furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406