JPH10204187A - Production of friction material - Google Patents

Production of friction material

Info

Publication number
JPH10204187A
JPH10204187A JP1388597A JP1388597A JPH10204187A JP H10204187 A JPH10204187 A JP H10204187A JP 1388597 A JP1388597 A JP 1388597A JP 1388597 A JP1388597 A JP 1388597A JP H10204187 A JPH10204187 A JP H10204187A
Authority
JP
Japan
Prior art keywords
pressure
friction material
heat
molding
pressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1388597A
Other languages
Japanese (ja)
Inventor
Shoichi Shimamura
正一 島村
Yukinori Omote
征則 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1388597A priority Critical patent/JPH10204187A/en
Publication of JPH10204187A publication Critical patent/JPH10204187A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0088Multi-face stack moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/16Frictional elements, e.g. brake or clutch linings

Abstract

PROBLEM TO BE SOLVED: To produce a friction material efficiently at a low cost while permitting hardening by heating to high temperatures by abutting a porous plate against the pressurized surface of a molding obtained by molding a mixture comprising fibers, a thermosetting resin and a filler and heating the assemblage under applied pressure. SOLUTION: After a porous plate is abutted against the pressurized surface of a molding, the molding is heated under applied pressure, whereupon the gas formed during curing the resin can be smoothly discharged through the pores of the plate. The pressurization in the heat treatment may be performed continuously under constant pressure or may be performed by repeating a cycle of a step of pressurization under relatively high pressure and a step of pressurization at a relatively low pressure or a zero-pressure step. Preferably, the hardening by heating is carried out at 200-280 deg.C. The porous plate used is a porous ceramic or metal having open cells and has a porosity of about 15-40%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は摩擦材の製造方法に
係り、特に、自動車や各種産業用機械のブレーキ材、例
えば、ディスクパッドやブレーキライニングとして有用
な高特性摩擦材を効率的に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a friction material, and more particularly to a method for efficiently producing a brake material for an automobile or various industrial machines, for example, a high-performance friction material useful as a disc pad or a brake lining. About the method.

【0002】[0002]

【従来の技術】自動車や各種産業機械に用いられる摩擦
材のうち、アスベスト不使用のノンアスベスト系摩擦材
の主な構成材料は、アラミド繊維、スチール繊維、ガラ
ス繊維等の補強繊維、フェノール樹脂等の熱硬化性樹
脂、黒鉛、硫酸バリウム等の充填材であり、従来の摩擦
材は、これらの構成材料を混合してなる成形材料を加熱
加圧成形し、次いで加熱硬化処理を行い、厚み調整や摩
擦面に溝を設ける後加工工程を経て製造されている。
2. Description of the Related Art Among friction materials used in automobiles and various industrial machines, asbestos-free non-asbestos-based friction materials are mainly composed of reinforcing fibers such as aramid fiber, steel fiber, glass fiber, phenol resin and the like. Thermosetting resin, graphite, barium sulfate, and other fillers. Conventional friction materials are formed by mixing and forming these constituent materials under heat and pressure, and then heat-cured to adjust the thickness. It is manufactured through a post-processing step in which a groove is formed on the friction surface.

【0003】[0003]

【発明が解決しようとする課題】上記従来の摩擦材の製
造方法では、次のような問題点があった。
The above-described conventional method for producing a friction material has the following problems.

【0004】即ち、加熱加圧成形後の加熱硬化処理工程
において、200℃以上の高温で熱処理するとフェノー
ル樹脂の熱硬化時にガス(水、アンモニア)が急激に発
生し、これが得られる摩擦材の膨れや亀裂発生の原因と
なる。このため加熱硬化処理温度は200℃より低い温
度とする必要があるが、このような比較的低い温度での
加熱硬化処理では、加熱硬化処理時間を、例えば5時間
以上と長くする必要がある。そして、このことが製造の
長時間化及びコストアップの一因となっていた。
That is, in the heat-curing process after the heat-press molding, when heat treatment is performed at a high temperature of 200 ° C. or more, gas (water, ammonia) is rapidly generated at the time of thermosetting of the phenolic resin, and the swelling of the friction material is obtained. Or cracks. For this reason, the temperature of the heat-curing treatment needs to be lower than 200 ° C., but in the case of the heat-curing treatment at such a relatively low temperature, the time of the heat-curing treatment needs to be extended to, for example, 5 hours or more. This has contributed to an increase in manufacturing time and cost.

【0005】本発明は上記従来の問題点を解決し、20
0℃以上での加熱硬化処理を可能として、摩擦材を低コ
ストで効率的に製造する方法を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, and solves the above-mentioned problems.
An object of the present invention is to provide a method for efficiently producing a friction material at a low cost by enabling a heat curing treatment at 0 ° C. or higher.

【0006】[0006]

【課題を解決するための手段】本発明の摩擦材の製造方
法は、繊維、熱硬化性樹脂及び充填材を混合してなる成
形材料を成形し、得られた成形体を加熱硬化処理して摩
擦材を製造する方法において、該成形体の加熱硬化処理
に当り、該成形体の加圧面に多孔板を当接させて加熱加
圧することを特徴とする。
According to the method for producing a friction material of the present invention, a molding material comprising a mixture of a fiber, a thermosetting resin and a filler is molded, and the obtained molded body is subjected to a heat curing treatment. The method for producing a friction material is characterized in that, in the heat-curing treatment of the molded body, a porous plate is brought into contact with a pressing surface of the molded body and heated and pressed.

【0007】成形体の加圧面に多孔板を当接させて加熱
加圧することにより、樹脂の熱硬化時に発生したガス
は、多孔板の気孔を経て円滑に排出されるようになる。
このようにガス抜きを容易に行えることから、200℃
以上の高温で熱硬化処理を行っても、膨れや亀裂を発さ
せることなく、高品質の摩擦材を短時間で生産性良く製
造することができる。
When the porous plate is brought into contact with the pressurized surface of the molded body and heated and pressurized, the gas generated during thermosetting of the resin is smoothly discharged through the pores of the porous plate.
Since degassing can be easily performed in this manner, the temperature is set to 200 ° C.
Even if the thermosetting treatment is performed at the above high temperature, a high-quality friction material can be manufactured in a short time with high productivity without causing swelling or cracking.

【0008】即ち、このように200℃以上の高温で熱
硬化処理することにより、比較的短時間でフェノール樹
脂等の熱硬化性樹脂の3次元構造をより多く形成するこ
とができ、短時間の処理で所望の硬度を有し、フェード
特性や耐久性に優れた摩擦材を製造できる。
That is, by performing the thermosetting treatment at a high temperature of 200 ° C. or more, a three-dimensional structure of a thermosetting resin such as a phenol resin can be formed in a relatively short time. A friction material having a desired hardness by the treatment and excellent in fade characteristics and durability can be manufactured.

【0009】本発明において、加熱硬化処理における加
圧は、一定の圧力で連続的に行っても良く、比較的高い
圧力での加圧工程と、比較的低い圧力での加圧工程又は
非加圧工程とを繰り返すことにより行っても良い。特
に、後者の方法であれば、より一層円滑なガス抜きを行
える。
In the present invention, the pressurization in the heat curing treatment may be performed continuously at a constant pressure, and a pressurizing step at a relatively high pressure, a pressurizing step at a relatively low pressure, or a non-pressurizing step. It may be performed by repeating the pressure step. In particular, the latter method enables more smooth degassing.

【0010】本発明において、熱硬化処理は200〜2
80℃で行うのが好ましい。
In the present invention, the heat-curing treatment is carried out at 200 to 2 times.
It is preferably performed at 80 ° C.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】図1は本発明の摩擦材の製造方法の実施の
形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a method for manufacturing a friction material according to the present invention.

【0013】本発明においては、まず、繊維、熱硬化性
樹脂及び充填材を混合して成形材料を調製し、この成形
材料を0.2〜1.0kgf/cm2 で仮成形し、仮成
形体を、予めバックプレートを配置した成形金型に入れ
て130〜180℃、30〜400kgf/cm2 で3
〜15分程度加熱加圧成形してバックプレートと一体成
形した成形体を得る。
In the present invention, first, a molding material is prepared by mixing a fiber, a thermosetting resin and a filler, and the molding material is provisionally molded at 0.2 to 1.0 kgf / cm 2. The body is placed in a molding die in which a back plate has been previously placed, and placed at 130 to 180 ° C. and 30 to 400 kgf / cm 2 for 3 hours.
Heat and pressure molding is performed for about 15 minutes to obtain a molded body integrally molded with the back plate.

【0014】そして、このバックプレート2付き成形体
1を図1に示す如く、成形体1の表面側に多孔板3を介
して複数枚(図1においては3枚)積層し、加熱加圧す
る。
Then, as shown in FIG. 1, a plurality of (three in FIG. 1) laminated bodies 1 with the back plate 2 are laminated on the surface side of the molded body 1 via a porous plate 3 as shown in FIG.

【0015】この多孔板3としては、成形体1とほぼ等
しい面積を有し、厚さ0.5〜2cm程度の、連続気孔
を有する多孔質セラミックス(多孔質アルミナ(DFA
−P:三菱マテリアル(株)製)等)や多孔質金属(通
気性金属(ポーセラックスII)等)を用いることがで
き、その気孔率はガス抜き効率及び強度(耐圧性)等の
面から、15〜40%程度であることが好ましい。 本
発明では、このような多孔板3を用いて加圧下、加熱す
ることにより、ガス抜きを円滑に行って200℃以上で
の比較的高い温度での加熱硬化処理を行うことを可能と
する。
The porous plate 3 is made of a porous ceramic (porous alumina (DFA) having an area approximately equal to that of the compact 1 and a thickness of about 0.5 to 2 cm and having continuous pores.
-P: manufactured by Mitsubishi Materials Corporation) or a porous metal (such as a permeable metal (Pocerax II)), and the porosity of the porous metal can be reduced in terms of gas release efficiency and strength (pressure resistance). And preferably about 15 to 40%. In the present invention, it is possible to perform degassing smoothly by performing heating under pressure using such a perforated plate 3 and perform heat curing at a relatively high temperature of 200 ° C. or higher.

【0016】本発明において、この加熱硬化処理温度が
高過ぎるとフェノール樹脂が熱劣化するため、加熱硬化
処理は200〜280℃で行うのが好ましい。
In the present invention, if the temperature of the heat curing treatment is too high, the phenol resin is thermally degraded. Therefore, the heat curing treatment is preferably performed at 200 to 280 ° C.

【0017】また、この加熱硬化処理における加圧は、
次の〜の方法で行うことができる。
The pressure in this heat curing treatment is as follows:
The following method can be used.

【0018】 一定の圧力で連続的に加圧する。この
場合、圧力は0.5〜10kgf/cm2 、特に1〜5
kgf/cm2 程度とするのが好ましい。 加圧を断続的に行う。この場合、0.5〜10kg
f/cm2 、特に1〜5kgf/cm2 の加圧工程と非
加圧工程(0kgf/cm2 )とを30秒〜3分程度の
サイクルで繰り返し行うのが好ましい。 比較的高い圧力での加圧工程と比較的低い圧力での
加圧工程とを繰り返し行う。この場合、5〜10kgf
/cm2 の高加圧工程と0.5〜2kgf/cm2 の低
加圧工程とを30秒〜3分程度のサイクルで繰り返し行
うのが好ましい。
The pressure is continuously increased at a constant pressure. In this case, the pressure is 0.5 to 10 kgf / cm 2 , especially 1 to 5 kgf / cm 2 .
It is preferred to be about kgf / cm 2 . Pressurization is performed intermittently. In this case, 0.5-10 kg
f / cm 2, particularly 1~5kgf / cm 2 of pressure steps and non-pressurized process (0kgf / cm 2) and a preferably carried out repeatedly for 30 seconds to 3 minutes to the cycle. The pressurizing step at a relatively high pressure and the pressurizing step at a relatively low pressure are repeatedly performed. In this case, 5-10kgf
/ Cm 2 of the high pressure step and 0.5~2Kgf / cm 2 and a low-pressure process preferably performed repeatedly for 30 seconds to 3 minutes to the cycle.

【0019】特に、上記,の加工工程を経ることに
より、ガス抜きをより円滑に行うことができる。
In particular, degassing can be performed more smoothly through the above processing steps.

【0020】本発明においては、加熱硬化処理を200
℃以上の比較的高い温度で行うため、加熱硬化処理時間
は2〜5時間程度、一般的には約3時間で良く、処理時
間は従来に比べて大幅に短縮される。
In the present invention, the heat curing treatment is performed for 200 hours.
Since the heat curing is performed at a relatively high temperature of not less than 2 ° C., the heat hardening treatment time may be about 2 to 5 hours, generally about 3 hours, and the treatment time is greatly reduced as compared with the conventional case.

【0021】なお、本発明では、このようにガス抜きを
円滑に行えることから、急激な高温加熱を行うこともで
き、加熱硬化処理に当り、昇温工程を省略することがで
きる。従って、200℃以上の加熱炉に成形体を投入し
て、加熱硬化処理を200℃以上の温度から開始するこ
ともでき、この点からも加熱硬化処理時間の短縮を図る
ことができる。
In the present invention, since the degassing can be performed smoothly in this way, rapid high-temperature heating can be performed, and the heating step can be omitted in the heat curing treatment. Therefore, the heat-curing treatment can be started at a temperature of 200 ° C. or higher by putting the molded body into a heating furnace of 200 ° C. or higher, and the heat-curing treatment time can be shortened from this point as well.

【0022】このような加熱硬化処理後は、常法に従っ
て、厚み調整や溝加工などの後加工及び400〜700
℃で30秒〜5分程度の表面熱処理(スコーチ)を施
し、更に防錆のためのアクリル塗装を行って製品とされ
る。
After such heat curing, post-processing such as thickness adjustment and groove processing, and 400-700
The product is subjected to a surface heat treatment (scorch) at 30 ° C. for about 30 seconds to 5 minutes, and is further coated with an acrylic coating for rust prevention.

【0023】なお、本発明において、成形材料は、スチ
ール繊維、アラミド繊維、ガラス繊維、カーボン繊維、
チタン酸カリウム繊維、アルミナ繊維等の補強繊維材料
と、フェノール樹脂、ポリアミドイミド樹脂等の熱硬化
性樹脂よりなる結合材と、黒鉛、硫酸バリウム、アルミ
ナ、ダストレジン、二硫化モリブデン、三酸化アンチモ
ン、ジルコニア、石英、ガーネット、マグネシア、フェ
ライト、ゴム、カシューダスト、銅等の金属粒子等の充
填材ないし摩擦調整材とを、補強繊維材料3〜35体積
%、結合材8〜20体積%、充填材ないし摩擦調整材4
5〜90体積%の割合で乾式混合機により十分に混合す
ることにより調製される。
In the present invention, the molding material is steel fiber, aramid fiber, glass fiber, carbon fiber,
Potassium titanate fiber, a reinforcing fiber material such as alumina fiber, a binder made of a thermosetting resin such as phenol resin and polyamide imide resin, graphite, barium sulfate, alumina, dust resin, molybdenum disulfide, antimony trioxide, Filler or friction modifier such as zirconia, quartz, garnet, magnesia, ferrite, rubber, cashew dust, metal particles such as copper, 3 to 35% by volume of reinforcing fiber material, 8 to 20% by volume of binder, filler Or friction adjusting material 4
It is prepared by thoroughly mixing with a dry mixer at a ratio of 5 to 90% by volume.

【0024】成形材料を構成する原料のうち、繊維材料
は、平均繊維径1〜200μm、平均繊維長さ1〜10
mm程度であることが好ましく、粒状材料は平均粒径3
〜250μm程度であることが好ましい。
Among the raw materials constituting the molding material, the fiber material has an average fiber diameter of 1 to 200 μm and an average fiber length of 1 to 10 μm.
mm, and the granular material has an average particle size of 3 mm.
It is preferably about 250 μm.

【0025】[0025]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0026】実施例1〜4,比較例1 繊維材料としてスチール繊維(平均繊維径60μm、平
均繊維長3mm)及びアラミド繊維(平均繊維径12μ
m、平均繊維長6mmのフィブリル状)を用い、結合材
としてフェノール樹脂(平均粒径45μm)を用い、充
填材及び摩擦調整材として黒鉛(平均粒径100μ
m)、硫酸バリウム(平均粒径75μm)、アルミナ
(平均粒径5μm)、及びダストレジン(平均粒径15
0μm)を用い、これらを表1に示す割合で乾式混合機
により均一混合及び分散を行った。
Examples 1-4, Comparative Example 1 Steel fibers (average fiber diameter: 60 μm, average fiber length: 3 mm) and aramid fibers (average fiber diameter: 12 μm) were used as fiber materials.
m, a fibril shape having an average fiber length of 6 mm), a phenol resin (average particle size of 45 μm) as a binder, and graphite (average particle size of 100 μm) as a filler and a friction modifier.
m), barium sulfate (average particle diameter 75 μm), alumina (average particle diameter 5 μm), and dust resin (average particle diameter 15 μm).
0 μm), and these were uniformly mixed and dispersed at a ratio shown in Table 1 using a dry mixer.

【0027】[0027]

【表1】 [Table 1]

【0028】得られた成形材料200gを150kgf
/cm2 でプレス成形し、仮成形体を、金型に入れて温
度150℃、圧力400kg/cm2 で10分間加熱加
圧成形した。なお、金型内にはバックプレートとして1
30mm×50mm×5mm(厚み)のスチール製板を
配置してある。得られたバックプレート付き成形体を図
1に示す如く、多孔板(気孔率40%のアルミナ製多孔
板。150mm×50mm×10mm(厚み))を介し
て10枚積層し、表2に示す温度及び加圧条件で表2に
示す時間加熱硬化処理した。その後、平研加工及び溝加
工し、次いで500℃で1分間表面熱処理した後、アク
リル塗料を塗装して防錆処理した。
The obtained molding material (200 g) is weighed at 150 kgf.
/ Cm 2 , and the temporary formed body was placed in a mold and heated and pressed at a temperature of 150 ° C. and a pressure of 400 kg / cm 2 for 10 minutes. In the mold, one back plate is used.
A steel plate of 30 mm × 50 mm × 5 mm (thickness) is arranged. As shown in FIG. 1, 10 sheets of the obtained molded body with a back plate were laminated via a porous plate (alumina porous plate having a porosity of 40%; 150 mm × 50 mm × 10 mm (thickness)). Heat-curing treatment was performed under the pressure conditions for the time shown in Table 2. Then, after flattening and grooving, and then heat-treating the surface at 500 ° C. for 1 minute, an acrylic paint was applied to prevent rust.

【0029】得られた摩擦材の寸法は45mm×120
mm×10mm(厚み)である。
The size of the obtained friction material is 45 mm × 120.
mm × 10 mm (thickness).

【0030】得られた摩擦材について外観(側面部の亀
裂の有無)を観察すると共に、ロックウェル硬度を測定
した。また、ダイナモ試験機によるフェード試験(制動
初速度100km/h、終速度0km/h、制動減速度
0.45G、制動間隔35秒、制動回数15回)で摩擦
係数(フェード試験の最低値)を調べると共に、摩耗試
験(制動初速度100km/h、終速度50km/h、
制動減速度0.4G、制動前ブレーキ温度350℃、制
動回数500回)で摩耗量を調べた。
The appearance (the presence or absence of cracks on the side surfaces) of the obtained friction material was observed, and the Rockwell hardness was measured. In addition, the friction coefficient (the lowest value of the fade test) was determined by a fade test using a dynamo testing machine (100 km / h of initial braking speed, 0 km / h of final speed, 0.45 G of braking deceleration, 35 seconds of braking interval, 15 times of braking). In addition to checking, wear test (100 km / h of initial braking speed, 50 km / h of final speed,
The amount of wear was examined at a braking deceleration of 0.4 G, a brake temperature before braking of 350 ° C., and the number of braking times of 500).

【0031】結果を表2に示す。The results are shown in Table 2.

【0032】比較例2〜4 多孔板を用いず、熱硬化処理条件を表2に示す通りとし
たこと以外は実施例1と同様に行って、摩擦材を製造
し、得られた摩擦材の外観の観察結果、ロックウェル硬
度の測定結果、フェード試験結果及び摩耗試験結果を表
2に示した。
Comparative Examples 2 to 4 A friction material was produced in the same manner as in Example 1 except that the thermosetting treatment conditions were as shown in Table 2 without using a perforated plate, and a friction material was produced. Table 2 shows the appearance observation results, the Rockwell hardness measurement results, the fade test results, and the abrasion test results.

【0033】[0033]

【表2】 [Table 2]

【0034】表2より次のことが明らかである。The following is clear from Table 2.

【0035】即ち、多孔板を用いず、加圧を行わずに2
30℃の高温加熱を行った比較例4では、亀裂が発生
し、製品とし得ない。多孔板を用いず、加圧を行わない
場合であっても、200℃の比較的低い温度で加圧をし
た比較例3では亀裂の発生なく摩擦材を製造できるが加
熱硬化処理に5時間も要し、しかも得られる摩擦材は硬
度が低く、摩擦性能、耐摩耗性に劣る。加圧を行って
も、多孔板を用いない比較例2では硬度が低く、耐摩耗
性に劣る。また、多孔板を用いても、加圧を行わない比
較例1でも同様に硬度が低く、耐摩耗性に劣る。
That is, without using a perforated plate and without applying pressure,
In Comparative Example 4 in which heating was performed at a high temperature of 30 ° C., cracks occurred and the product could not be obtained. Even in the case where no pressure is applied without using a perforated plate, in Comparative Example 3 in which pressure is applied at a relatively low temperature of 200 ° C., a friction material can be produced without generation of cracks, but it takes 5 hours for heat curing treatment. In addition, the obtained friction material has low hardness, and is inferior in friction performance and wear resistance. Even when pressure is applied, Comparative Example 2, which does not use a perforated plate, has low hardness and poor abrasion resistance. Even when a perforated plate is used, the hardness is similarly low in Comparative Example 1 in which pressure is not applied, and the abrasion resistance is poor.

【0036】これに対して、本発明によれば、多孔板を
用いて加熱加圧することにより、短時間の処理で、高硬
度で摩擦性能、耐摩耗性に優れた摩擦材を製造できる。
On the other hand, according to the present invention, by heating and pressing using a perforated plate, a friction material having high hardness, excellent friction performance and excellent wear resistance can be manufactured in a short time.

【0037】[0037]

【発明の効果】以上詳述した通り、本発明の摩擦材の製
造方法によれば、200℃以上の熱硬化処理温度でも膨
れや亀裂の発生を防いで、高硬度で摩擦性能や耐摩耗性
に優れたノンアスベスト系摩擦材を得ることができる。
本発明によれば、熱硬化処理時間を短縮して、高性能摩
擦材を低コストで効率的に製造することが可能となる。
As described above in detail, according to the method for producing a friction material of the present invention, swelling and cracking are prevented even at a thermosetting temperature of 200 ° C. or more, and the friction performance and wear resistance are high with high hardness. It is possible to obtain a non-asbestos-based friction material excellent in quality.
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture a high-performance friction material efficiently at low cost by shortening the heat-curing process time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の摩擦材の製造方法の実施の形態を示す
断面図である。
FIG. 1 is a sectional view showing an embodiment of a method for manufacturing a friction material according to the present invention.

【符号の説明】[Explanation of symbols]

1 成形体 2 バックプレート 3 多孔板 Reference Signs List 1 molded body 2 back plate 3 perforated plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 61:06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 61:06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維、熱硬化性樹脂及び充填材を混合し
てなる成形材料を成形し、得られた成形体を加熱硬化処
理して摩擦材を製造する方法において、 該成形体の加熱硬化処理に当り、該成形体の加圧面に多
孔板を当接させて加熱加圧することを特徴とする摩擦材
の製造方法。
1. A method for producing a friction material by molding a molding material comprising a mixture of fibers, a thermosetting resin and a filler, and subjecting the obtained molded body to a heat-curing treatment, wherein the molded body is heat-cured. In the treatment, a method for producing a friction material, wherein a perforated plate is brought into contact with a pressurized surface of the molded body and heated and pressed.
【請求項2】 請求項1の方法において、加熱硬化処理
における加圧を一定の圧力で連続的に行うことを特徴と
する摩擦材の製造方法。
2. The method for producing a friction material according to claim 1, wherein the pressurization in the heat curing treatment is continuously performed at a constant pressure.
【請求項3】 請求項1の方法において、加熱硬化処理
における加圧を比較的高い圧力での加圧工程と、比較的
低い圧力での加圧工程又は非加圧工程とを繰り返すこと
により行うことを特徴とする摩擦材の製造方法。
3. The method according to claim 1, wherein the pressurization in the heat curing treatment is performed by repeating a pressurizing step at a relatively high pressure and a pressurizing step at a relatively low pressure or a non-pressurizing step. A method for producing a friction material, comprising:
【請求項4】 請求項1ないし3のいずれか1項におい
て、加熱硬化処理を200〜280℃の温度で行うこと
を特徴とする摩擦材の製造方法。
4. The method for producing a friction material according to claim 1, wherein the heat-curing treatment is performed at a temperature of 200 to 280 ° C.
JP1388597A 1997-01-28 1997-01-28 Production of friction material Withdrawn JPH10204187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1388597A JPH10204187A (en) 1997-01-28 1997-01-28 Production of friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1388597A JPH10204187A (en) 1997-01-28 1997-01-28 Production of friction material

Publications (1)

Publication Number Publication Date
JPH10204187A true JPH10204187A (en) 1998-08-04

Family

ID=11845668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1388597A Withdrawn JPH10204187A (en) 1997-01-28 1997-01-28 Production of friction material

Country Status (1)

Country Link
JP (1) JPH10204187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728612A1 (en) 2005-06-02 2006-12-06 Nisshinbo Industries, Inc. Method for manufacturing friction linings
KR20170089630A (en) * 2016-01-27 2017-08-04 한국과학기술연구원 Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728612A1 (en) 2005-06-02 2006-12-06 Nisshinbo Industries, Inc. Method for manufacturing friction linings
US7837924B2 (en) 2005-06-02 2010-11-23 Nisshinbo Holdings, Inc. Method for manufacturing friction material or friction material products
KR20170089630A (en) * 2016-01-27 2017-08-04 한국과학기술연구원 Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
KR101955037B1 (en) Brake pad backing plate and brake pad usung the same
EP3091247B1 (en) Methods for the preparation of a friction material and for the manufacturing of a brake pad using such friction material
JPS63254240A (en) Frictional material and manufacture thereof
JPS60221431A (en) Non-asbestos clutch facing material
JP2007326999A (en) Friction material
KR20070029050A (en) Manufacturing method for friction material
JPS594455B2 (en) Friction material with excellent wear resistance and its manufacturing method
JPH10204187A (en) Production of friction material
CN114585826A (en) Friction material
JPH07167173A (en) Manufacture of brake pad
JPH10202678A (en) Production of friction material
JPH10246261A (en) Manufacture of frictional material
US1766932A (en) Hardened cellular or fibrous friction elements and method of producing same
JP3228096B2 (en) Manufacturing method of friction material
JPH0741567A (en) Friction material
JPH11322960A (en) Friction material
JP3782243B2 (en) Friction material for brake
JP2000219872A (en) Frictional material for parking brake
JP4795213B2 (en) Friction material and manufacturing method thereof
JP2003127161A (en) Mold for thermoforming of friction material and method for molding friction material
JPH08209116A (en) Friction material composition for brake pad and production of brake pad
CN117062892A (en) Friction material
JP2000002276A (en) Friction material
JP2022039523A (en) Friction material for disc brake pads and method for producing the same
JP2000219750A (en) Friction material for brake

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406