JPH10202653A - Method and device for producing organic and inorganic composite powder - Google Patents

Method and device for producing organic and inorganic composite powder

Info

Publication number
JPH10202653A
JPH10202653A JP1066197A JP1066197A JPH10202653A JP H10202653 A JPH10202653 A JP H10202653A JP 1066197 A JP1066197 A JP 1066197A JP 1066197 A JP1066197 A JP 1066197A JP H10202653 A JPH10202653 A JP H10202653A
Authority
JP
Japan
Prior art keywords
organic polymer
polymer particles
inorganic fine
organic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1066197A
Other languages
Japanese (ja)
Other versions
JP3910245B2 (en
Inventor
Kishihiro Yamaoka
岸泰 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B H KOGYO KK
Original Assignee
B H KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B H KOGYO KK filed Critical B H KOGYO KK
Priority to JP01066197A priority Critical patent/JP3910245B2/en
Publication of JPH10202653A publication Critical patent/JPH10202653A/en
Application granted granted Critical
Publication of JP3910245B2 publication Critical patent/JP3910245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently and uniformly compound organic polymeric particle and inorganic fine particle so as to produce organic and inorganic composite powder of high quality, by making grinding shearing force act under a condition that the surface of the organic polymeric particle softens but not melts, and embedding the inorganic fine particle into the organic polymeric particle. SOLUTION: When a mixture of an organic polymeric particle A and an inorganic fine particle B is strongly kneaded at a temperature lower than the softening temperature of the organic polymeric particle A, the surfaces of the powders A and B are activated, the inorganic fine particle B attaches to the surface of the organic polymeric particle A, so that so-called encapsulation occurs. From the stage of the encapsulation or a stage of compounding of surface layer, a grinding shearing force is further added, the inorganic fine particle B is embedded up to the inside of the organic polymeric particle A, and further the grinding shearing force is made to act, so that the particles are segmented, and further fine organic and inorganic composite powder is produced. By properly controlling the temperature condition at giving the grinding shearing force, the organic and inorganic composite powder is obtained without melt of the organic polymeric particle A and without mutual fusion and roughening.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機質高分子粒子
の内部に無機質微細粒子が埋没した有機・無機複合粉末
を製造する方法および装置に関し、特に有機質高分子粒
子内に機能性無機質微細粒子を高密度で効率よく埋没さ
せて複合化することのできる方法とそれに適した装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing an organic / inorganic composite powder in which inorganic fine particles are embedded in organic polymer particles, and more particularly to a method and an apparatus in which functional inorganic fine particles are contained in organic polymer particles. The present invention relates to a method capable of being buried and compounded efficiently with high density and an apparatus suitable for the method.

【0002】[0002]

【従来の技術】機能性無機質微粒子を有機質高分子マト
リックス中に混入させてカプセル化した有機・無機複合
粉末としては、例えば粉末塗料や電子コピー用トナー等
があり、これらの複合粉末は、その機能性を高めるた
め、粒径が5〜20μm程度の微粉末として使用され
る。
2. Description of the Related Art Organic-inorganic composite powders in which functional inorganic fine particles are mixed in an organic polymer matrix and encapsulated include, for example, powder paints and toners for electronic copying. In order to enhance the properties, it is used as a fine powder having a particle size of about 5 to 20 μm.

【0003】これらの複合粉末を製造する際には、例え
ば混練ディスクを有する2軸混練押出装置あるいは特公
平2−92号に本願出願人が開示した様な連続捏和装置
を使用し、有機質高分子を溶融温度以上に加熱して顔料
や磁性粉末等の機能性無機質微細粒子と共に混練・分散
させて複合コンパウンドを製造し、冷却固化させてから
粗粉砕し、更に風力を利用したジェットミル等によって
微粉砕する方法が採用されている。
[0003] In producing these composite powders, for example, a twin-screw kneading extruder having a kneading disk or a continuous kneading apparatus as disclosed by the present applicant in Japanese Patent Publication No. 2-92 is used to increase the organic quality. The molecules are heated above the melting temperature and kneaded and dispersed with functional inorganic fine particles such as pigments and magnetic powders to produce a composite compound, which is cooled and solidified, then coarsely pulverized, and further jet-milled using wind power. A method of pulverizing is employed.

【0004】上記の様に、有機質高分子をマトリックス
或はバインダーとし、これを溶融状態で機能性無機質微
細粒子と混練・分散させる複合化法では、有機質高分子
が疎水性であるのに対し、機能性微細粒子が親水性であ
ることから、均一な分散状態が得られ難い。そのためシ
ランカップリング剤、チタネート系カップリング剤、界
面活性剤等を併用し、ヘンシェルミキサーやスーパーミ
キサー等の高速流動ミキサーを用いて均一に混合し、機
能性微細粒子の表面を改質した後に分散させる方法が一
般的に採用されているが、いずれにしても、均一な複合
コンパウンドの製造、冷却・粗粉砕、微粉砕の多段の工
程を必要とする点では変わりがない。
As described above, in the compounding method in which an organic polymer is used as a matrix or a binder and kneaded and dispersed in a molten state with functional inorganic fine particles, the organic polymer is hydrophobic, Since the functional fine particles are hydrophilic, it is difficult to obtain a uniform dispersion state. Therefore, a silane coupling agent, a titanate coupling agent, a surfactant, etc. are used in combination, uniformly mixed using a high-speed fluid mixer such as a Henschel mixer or a super mixer, and then dispersed after modifying the surface of the functional fine particles. In general, any method is employed, but it does not change in that it requires multiple steps of production of a uniform composite compound, cooling / coarse pulverization, and fine pulverization.

【0005】この様に、有機質高分子と機能性無機質微
細粒子の複合された複合粉末の製造には多種類の装置を
用いた多段の工程が必要であり、製造コストを高める大
きな原因となっている。
[0005] As described above, the production of a composite powder in which an organic polymer and functional inorganic fine particles are composited requires multi-step processes using various types of equipment, which is a major cause of increasing the production cost. I have.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な課
題に着眼してなされたものであって、その目的は、原料
として有機質高分子粒子と機能性無機質微細粒子を使用
し、これらが均一に複合された有機・無機複合粉末を、
簡単な方法で効率よく製造することのできる方法を提供
しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to use organic polymer particles and functional inorganic fine particles as raw materials, Organic / inorganic composite powder that is uniformly compounded,
An object of the present invention is to provide a method that can be efficiently manufactured by a simple method.

【0007】また、前述した特公平2−92号に開示し
た装置は、液状物と固形物を原料としてこれらを効率よ
く均一に捏和することのできる装置として開発されたも
のであるが、本発明の他の目的は、該装置を更に改善
し、原料として有機質高分子粒子と機能性無機質微細粒
子を用いてこれらを効率よく均一に複合し、高品質の有
機・無機複合粉末を製造することのできる装置を提供し
ようとするものである。
The apparatus disclosed in the above-mentioned Japanese Patent Publication No. 2-92 was developed as an apparatus capable of efficiently and uniformly kneading liquid and solid materials as raw materials. Another object of the present invention is to further improve the apparatus, to efficiently and uniformly composite the organic polymer particles and the functional inorganic fine particles as raw materials to produce a high-quality organic-inorganic composite powder. It is intended to provide a device capable of performing the above.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る有機・無機複合粉末の製法は、有
機質高分子粒子と無機質微細粒子との混合物に、有機質
高分子粒子の表面が軟化を起こすが溶融しない条件下で
擂り剪断力を作用させて、前記無機質微細粒子を有機質
高分子粒子の内部に埋没させ、あるいは有機質高分子粒
子と無機質微細粒子との混合物に、有機質高分子粒子の
表面が軟化を起こすが溶融しない条件下で擂り剪断力を
作用させ、前記有機質高分子粒子の表面に前記無機質微
細粒子を付着せしめた後、上記有機質高分子粒子の表面
が軟化を起こすが溶融しない条件下で更に擂り剪断力を
作用させて、前記無機質微細粒子を有機質高分子粒子の
内部に埋没させるところにその特徴が存在する。
Means for Solving the Problems The method for producing an organic-inorganic composite powder according to the present invention, which can solve the above-mentioned problems, is characterized in that the surface of the organic polymer particles is mixed with a mixture of organic polymer particles and inorganic fine particles. Under the condition of causing softening but not melting, the crushing shear force is applied to bury the inorganic fine particles inside the organic polymer particles, or a mixture of the organic polymer particles and the inorganic fine particles, After the surface of the organic polymer particles is softened but not melted, a shearing force is applied to cause the inorganic fine particles to adhere to the surface of the organic polymer particles, and then the surface of the organic polymer particles is softened but melted. The characteristic lies in that the inorganic fine particles are buried inside the organic polymer particles by further applying a crushing shear force under the conditions that do not occur.

【0009】又本発明に係る他の製法は、上記方法によ
り無機質微細粒子を有機質高分子粒子の内部に埋没させ
た状態のものに、前記有機質高分子粒子の表面が軟化を
起こすが溶融しない条件下で更に擂り剪断力を作用さ
せ、前記有機質高分子粒子内に無機質微細粒子が埋没し
成長した複合粒子を分断して微細化することにより、よ
り微細な複合粉末を製造するところに要旨が存在する。
Another method according to the present invention relates to a method in which inorganic fine particles are buried in organic polymer particles by the above-mentioned method, and the surface of the organic polymer particles is softened but not melted. There is a gist in producing a finer composite powder by further applying a grinding force underneath and dividing and refining the composite particles grown by burying the inorganic fine particles in the organic polymer particles. I do.

【0010】本発明に係る更に他の構成は、上記の方法
を実施する際に用いられる好ましい製造装置に関するも
ので、回転スクリュー方式の移送手段の先端部に、該回
転スクリューと同軸回転できる様に大径回転円盤部材と
小径回転円盤部材を交互にスプライン軸上に嵌合すると
共に、前記大径回転円盤部材および小径回転円盤部材の
外周側を夫々微細間隙を残して囲む様な厚肉ドーナツ状
環状部材を固定して配置し、前記大径回転円盤部材と前
記厚肉ドーナツ状環状部材の隣り合った両側面には、夫
々山と谷を交互に放射状に形成すると共に前記大径回転
円盤部材および前記小径回転円盤部材の外周面と、それ
ら外周面に夫々対応する前記厚肉ドーナツ状環状部材の
内周面にも、夫々互いに斜交する山と谷を交互に形成し
てなるところに特徴を有している。
Still another configuration according to the present invention relates to a preferable manufacturing apparatus used in carrying out the above-mentioned method, wherein a rotating screw type transfer means is provided at a distal end portion thereof so as to be coaxially rotatable with the rotating screw. A thick donut shape in which a large-diameter rotating disk member and a small-diameter rotating disk member are alternately fitted on a spline shaft, and the outer peripheral sides of the large-diameter rotating disk member and the small-diameter rotating disk member are each surrounded with a fine gap therebetween. An annular member is fixedly arranged, and peaks and valleys are alternately radially formed on both sides adjacent to the large-diameter rotating disk member and the thick donut-shaped annular member, respectively, and the large-diameter rotating disk member is formed. In addition, the outer peripheral surface of the small-diameter rotating disk member and the inner peripheral surface of the thick-walled donut-shaped annular member corresponding to the outer peripheral surface, respectively, are formed by alternately forming peaks and valleys that are oblique to each other. The it has.

【0011】[0011]

【発明の実施の形態】上記の様に本発明の方法では、有
機質高分子粒子と無機質微細粒子との混合物に、有機質
高分子粒子の表面が軟化を起こすが溶融しない条件下で
擂り剪断力を作用させて、前記無機質微細粒子を有機質
高分子粒子の内部に埋没させ、あるいは前記有機質高分
子粒子の表面に前記無機質微細粒子を付着させてから、
上記有機質高分子粒子の表面が軟化を起こすが溶融しな
い条件下で擂り剪断力を作用させて、前記無機質微細粒
子を有機質高分子粒子の内部に埋没させ、さらには、上
記方法により無機質微細粒子を有機質高分子粒子の内部
に埋没させた状態のものに、前記有機質高分子粒子の表
面が軟化を起こすが溶融しない条件下で更に擂り剪断力
を作用させ、前記無機質微粒子の埋没した有機質高分子
粒子を分断して微細化し、より微細な複合粉末を製造す
るところに特徴を有しているが、その概念は図1に示す
通りである。
DETAILED DESCRIPTION OF THE INVENTION As described above, in the method of the present invention, a mixture of organic polymer particles and inorganic fine particles is subjected to a shearing force under conditions where the surface of the organic polymer particles is softened but not melted. Act, the inorganic fine particles are buried inside the organic polymer particles, or after the inorganic fine particles adhere to the surface of the organic polymer particles,
Under the condition that the surface of the organic polymer particles is softened but does not melt, a shearing force is applied to bury the inorganic fine particles inside the organic polymer particles. Under the condition that the surface of the organic polymer particles is softened but not melted, a further shearing force is applied to the particles embedded in the organic polymer particles, and the organic polymer particles embedded with the inorganic fine particles are applied. Is divided into fine particles to produce a finer composite powder, the concept of which is as shown in FIG.

【0012】即ち図1においてAは有機質高分子粒子、
Bは無機質微細粒子を示しており、これらの混合物を、
有機質高分子粒子Aの軟化温度未満の温度(通常は常
温)で強力に混練すると、両粉末A,Bが混合されると
共に衝撃、圧縮、摩擦、接触等の機械エネルギーを受
け、特に摩擦帯電による静電吸引力の作用によって両粉
末A,Bの表面が活性化され、有機質高分子粒子Aの表
面に無機質微細粒子Bが付着し、所謂カプセル化が起こ
る。こうした現象は、高分子粒子Aの表面に顔料や紫外
線防止剤等を付着してカプセル化した、例えば化粧品の
粉おしろいやファンデーション等として既に公知であ
る。またこのカプセル化工程で無機質微細粒子Bの一部
が有機質高分子粒子Aの表層部に埋まり込んで表層複合
化状態になることもあると考えられている。
That is, in FIG. 1, A is an organic polymer particle,
B indicates inorganic fine particles, and these mixtures are represented by the following formula:
When kneading vigorously at a temperature lower than the softening temperature of the organic polymer particles A (usually at normal temperature), the two powders A and B are mixed and receive mechanical energy such as impact, compression, friction, and contact. The surface of both powders A and B is activated by the action of electrostatic attraction, and the inorganic fine particles B adhere to the surface of the organic polymer particles A, so-called encapsulation occurs. Such a phenomenon is already known, for example, as a powder or foundation of cosmetics in which a pigment, an ultraviolet ray inhibitor or the like is adhered to the surface of the polymer particles A and encapsulated. It is also considered that in the encapsulation step, a part of the inorganic fine particles B may be buried in the surface layer of the organic polymer particles A to form a surface composite state.

【0013】そして従来の混練装置では、上記カプセル
化乃至表層複合化までが限度であり、むしろこうした状
態で止め無機質微細粒子Bを表面に露出させることによ
って、その機能をより効果的に発揮させることができる
と考えられている。
In the conventional kneading apparatus, the above-described encapsulation or surface layer formation is the limit. Rather, in such a state, by stopping the inorganic fine particles B on the surface, the function can be more effectively exerted. Is thought to be possible.

【0014】これに対し本発明では、該カプセル化乃至
表層複合化の段階から更に擂り剪断力を与え、無機質微
細粒子Bを有機質高分子粒子Aの内部にまで埋没させて
内部複合化状態にまで至らしめ、或は更にこれに擂り剪
断力を作用させることによって、内部複合化された有機
・無機複合粒子を分断し、更に微細な有機・無機複合粉
末を製造するところに特徴がある。
On the other hand, in the present invention, a further shearing force is applied from the stage of the encapsulation or the surface layer compounding, and the inorganic fine particles B are buried even inside the organic polymer particles A to reach the internal composite state. It is characterized by producing or further finer organic / inorganic composite powder by dividing the organic / inorganic composite particles which have been internally composited by applying a crushing shear force thereto.

【0015】この様な内部複合化もしくは分断微細化を
進めるには、有機質高分子粒子Aの表面が軟化を起こす
が溶融しない条件下で擂り剪断力を作用させることが必
要であり、有機質高分子粒子Aの表面が軟化を起こさな
い低温の条件下では上記の様な内部複合化が起こらず、
又溶融温度を超える高温で擂り剪断力を作用させると、
有機質高分子粒子Aが溶融して前記カプセル化乃至表層
複合化状態が崩れ、溶融状態の複合コンパウンドとなっ
てしまい、前記従来技術で指摘した様な冷却、粗粉砕、
微粉砕等の後工程が必須となり、工程簡素化の目的が果
たせなくなる。
In order to promote such internal compounding or splitting and miniaturization, it is necessary to apply a grinding shear force under the condition that the surface of the organic polymer particles A is softened but not melted. Under low temperature conditions where the surface of the particle A does not soften, the above-described internal complexation does not occur,
Also, when a mortar shear force is applied at a high temperature exceeding the melting temperature,
The organic polymer particles A are melted and the encapsulation or the surface composite state is broken, resulting in a composite compound in a molten state.
A post-process such as pulverization becomes essential, and the purpose of the process simplification cannot be fulfilled.

【0016】従って、本発明を実施するに当たっては、
擂り剪断力を与えるときの温度条件を「有機質高分子粒
子Aの表面が軟化を起こすが溶融しない温度」に設定す
ることが不可欠の要件であり、有機質高分子粒子Aの種
類に応じて当該温度条件を適正に制御することが極めて
重要であり、それにより、有機質高分子粒子Aが溶融し
たり或は相互に融着して粗大化する様なことなく、粒状
のままでその内部に無機質微細粒子Bが埋没した有機・
無機複合粉末を得ることが可能となる。
Therefore, in practicing the present invention,
It is indispensable to set the temperature condition for applying the mortar shearing force to “the temperature at which the surface of the organic polymer particles A softens but does not melt”, and the temperature depends on the type of the organic polymer particles A. It is extremely important to properly control the conditions, so that the organic polymer particles A do not melt or fuse with each other to become coarse, and the inorganic polymer Organic particles B buried
It is possible to obtain an inorganic composite powder.

【0017】上記において複合化される有機質高分子粒
子Aと無機質微細粒子Bの大きさの関係については、こ
れらをいずれも球状の粒子とした場合、無機質微細粒子
Bの径をd、有機質高分子粒子Aの径をDとすると、d
/Dが1/10以下、より好ましくは1/20以下とな
る様にすることが好ましく、それにより有機質高分子粒
子Aの内部に多数の無機質微細粒子Bが埋没した複合粉
末を得ることが可能となる。
Regarding the relationship between the size of the organic polymer particles A and the inorganic fine particles B to be composited in the above, when these are all spherical particles, the diameter of the inorganic fine particles B is d, the organic polymer particles are Assuming that the diameter of the particle A is D, d
/ D is preferably 1/10 or less, more preferably 1/20 or less, whereby a composite powder in which a large number of inorganic fine particles B are embedded in organic polymer particles A can be obtained. Becomes

【0018】ところで、特公平2−92号に示した様な
連続捏和装置を使用し、溶融状態の高分子粒子Aと無機
質微細粒子Bの混練を行なう場合、混練・分散効率を高
める手段としては、当該装置の回転速度を高めることに
よって擂り剪断力を高めるのが一般的であるが、この手
段では回転速度を高めるにつれて発熱量が急激に増大し
て素材の変質等が起こり易くなり、複合粉末の品質に悪
影響が現われてくる。即ち、溶融状態の高分子と無機質
粉末を混練するときの液相−固相系の分散を効率よく行
なうには、該分散系にかかる剪断応力τを如何に大きく
するかが重要であり、この関係は、粘性流体に関するニ
ュートンの法則から次式によって表わすことができ、溶
融状態の高分子の粘性ηが大きく影響する。 τ=η・Ds =η・v/t……(1) 式中、ηは粘度、D,v/tは剪断速度勾配またはずり
速度、vは速度、tは剪断が作用する2面間の距離を夫
々表わす。
By the way, when a continuous kneading apparatus as shown in Japanese Patent Publication No. 2-92 is used to knead the polymer particles A and the inorganic fine particles B in a molten state, as a means for increasing the kneading / dispersion efficiency. In general, the shearing force is increased by increasing the rotation speed of the device.However, with this means, the amount of heat generated increases sharply as the rotation speed is increased, so that the quality of the material is likely to deteriorate, and the composite The quality of the powder is adversely affected. That is, in order to efficiently disperse a liquid-solid system when kneading a polymer and an inorganic powder in a molten state, it is important to increase the shear stress τ applied to the dispersion system. The relationship can be expressed by the following equation from Newton's law for a viscous fluid, and the viscosity η of the polymer in a molten state has a large effect. τ = η · D s = η · v / t (1) where η is viscosity, D and v / t are shear rate gradients or shear rates, v is velocity, and t is between two surfaces on which shear acts. Respectively represent the distances.

【0019】これに対し本発明では、上記の様に有機質
高分子粒子が軟化を起こすが溶融しない温度条件下で擂
り剪断力を作用させ、軟化した有機質高分子粒子Aの内
部に無機質微細粒子Bをめり込ます様に埋没させ、或は
その後更に擂り剪断力を作用させて分断し微細化する方
法、即ち固相−固相系での複合化であり、以下に示す如
く液相−固相系での複合化に比べると分散エネルギーを
少なく抑えることができ、それに伴って複合化工程での
発熱も抑えることが可能となる。即ち粉体と粉体の混練
系に作用する剪断応力τは、クーロンの摩擦則から τ=δtanΦi +C=δμi +C……(2) 式中、δは圧縮力、Φi は内部摩擦角、μi は摩擦係
数、Cは付着力を夫々表わす。で表わされる。
On the other hand, in the present invention, as described above, the organic fine polymer particles are softened but are not melted by applying a shearing force, and the inorganic fine particles B are contained inside the softened organic polymer particles A. Is a method in which the material is immersed so as to be immersed in it, or is further divided by applying a further crushing shear force to make it finer, that is, a composite in a solid phase-solid phase system, as shown below. Dispersion energy can be reduced as compared with composite in a phase system, and accordingly, heat generation in the composite process can be suppressed. That is the shear stress tau acting on the powder and the powder mixing system, Coulomb friction law from τ = δtanΦ i + C = δμ i + C ...... (2) wherein, [delta] is the compressive force, [Phi i is the angle of internal friction , Μ i represent the coefficient of friction, and C represents the adhesion. Is represented by

【0020】即ち、粘性流体の分散系に作用する分散に
必要な液相−固相系の剪断応力は、前記式(1)に示し
た様に溶融高分子の粘度ηの影響を強く受けるが、粉体
−粉体同士の混練時における剪断応力は、上記式(2)
で示される如く粉体同士の摩擦係数と圧縮力によって直
接材料に作用させることができ、従って粉体−粉体間の
接触・複合化を行なう本発明によれば複合化に要するエ
ネルギーを少なく抑えることができ、ひいては温度上昇
も抑えられることになる。
That is, the shear stress of the liquid-solid system required for dispersion acting on the dispersion system of the viscous fluid is strongly affected by the viscosity η of the molten polymer as shown in the above equation (1). The shear stress at the time of kneading powder-powder is expressed by the above equation (2).
As shown in the above, the powder can directly act on the material by the friction coefficient and the compressive force. Therefore, according to the present invention in which the powder and the powder are brought into contact with each other and combined, the energy required for the combination is reduced. Therefore, the temperature rise can be suppressed.

【0021】尚前記図1の例では、カプセル化→表層複
合化→内部複合化→分断・微細化の一連の工程からなる
最も代表的な経緯を示したが、求められる複合粉末の粒
度によっては内部複合化の段階で完了したり、或は更に
分断を進めて複合粉末を一層微細にすることも可能であ
る。また、複合化工程で採用される温度や擂り剪断力を
高めに設定し、カプセル化状態から一気に内部複合化状
態まで進めることも可能であり、それらも本発明の技術
的範囲に包含される。
In the example shown in FIG. 1, the most typical process consisting of a series of steps of encapsulation → surface layer composite → internal composite → separation / miniaturization is shown, but depending on the required particle size of the composite powder, It can be completed at the stage of internal compounding, or can be further divided to make the composite powder finer. Further, it is possible to set the temperature and the shearing force used in the compounding step to be higher, and to proceed from the encapsulated state to the internal compounded state at once, and these are also included in the technical scope of the present invention.

【0022】尚、本発明で用いられる有機高分子粒子お
よび無機質微細粒子の種類には一切制限がなく用途、目
的等に応じて適宜選択すればよいが、代表的なものを例
示すると、有機質高分子粒子としては、エポキシ樹脂、
フェノール樹脂、ポリエステル系樹脂、ポリアミド系樹
脂、アクリル系樹脂、ポリオレフィン系樹脂(ポリエチ
レン、ポリプロピレン、ポリブテン)など、熱硬化性、
熱可塑性の如何を問わず使用可能であり、これらは単独
で使用し得る他、必要に応じて2種以上を併用すること
ができ、これら有機質高分子粒子の好ましい粒径は1〜
20μm、より一般的には5〜10μm程度である。
The types of the organic polymer particles and the inorganic fine particles used in the present invention are not particularly limited, and may be appropriately selected according to the application and purpose. Epoxy resin,
Thermosetting, such as phenolic resin, polyester resin, polyamide resin, acrylic resin, polyolefin resin (polyethylene, polypropylene, polybutene)
Any type of thermoplastic can be used, and these can be used alone, or two or more types can be used in combination, if necessary.
It is about 20 μm, more usually about 5 to 10 μm.

【0023】また無機質微細粒子としては、有機質高分
子粒子と複合化することによって、導電性、磁性、熱伝
導性、制振性、遮音性、摺動性、断熱性、電磁波吸収
性、光散乱性、光反射性、難燃性、放射線防護性、紫外
線防護性、着色、抗菌性など、様々の機能性を高めるこ
とのできる全ゆる無機質粉末が、使用目的や要求性能に
応じて任意に選択して使用することができ、これらも単
独で使用し得る他、必要に応じて2種以上を併用するこ
とが可能である。これら無機質微細粒子の好ましい粒径
は0.05〜5μm、より一般的には0.1〜2μm程
度で、前記有機質高分子粒子の粒径の1/10以下、よ
り好ましくは1/20以下の粒径のものが望ましい。
As inorganic fine particles, by compounding with organic polymer particles, conductivity, magnetism, heat conductivity, vibration damping, sound insulation, slidability, heat insulation, electromagnetic wave absorption, light scattering are obtained. All inorganic powders that can enhance various functions such as properties, light reflectivity, flame retardancy, radiation protection, ultraviolet protection, coloring, antibacterial, etc. can be arbitrarily selected according to the purpose of use and required performance These can be used alone, and if necessary, two or more of them can be used in combination. The preferred particle size of these inorganic fine particles is 0.05 to 5 μm, more generally about 0.1 to 2 μm, and is 1/10 or less, more preferably 1/20 or less of the particle size of the organic polymer particles. Particle size is desirable.

【0024】次に本発明にかかる装置について、その一
例を示す図面を参照しながら詳細に説明する。図2は本
発明にかかる有機・無機複合粉末の製造装置を示す全体
図であり、図2において1はホッパー、1aは定量フィ
ーダー、1cは材料供給口、4はフィードシリンダーで
あり、フィードシリンダー4内には、駆動装置2によっ
て回転する回転軸5が挿入されると共に、該回転軸5の
前方には、図3に示す如く回転スプライン軸5aが一体
に固定され、この回転スプライン軸5の基端部(フィー
ド部F領域)にはスクリューFsが嵌合されて原料粒子
の供給が行なわれる。また前記スクリューFsの前方に
は、大径回転円盤部材6a,6b,6c,6d,6eと
小径回転円盤部材7a,7b,7c,7dが、回転軸5
と同軸のスプライン軸5aに嵌合されて締付ナット5に
より交互に固定され、回転軸5と同軸的に回転する様に
構成されると共に、大径回転円盤部材6a,6b,6
c,6d,6eおよび小径回転円盤部材7a,7b,7
c,7dに対応して夫々の外周側には、それらの外周を
微細間隙を残して取り囲む様に大径厚肉ドーナツ状環状
部材8a,8b,8c,8d,8eおよび小径厚肉ドー
ナツ状環状部材9a,9b,9c,9dが、いずれもタ
イロッド10によってシリンダー内に一体に固定されて
おり、これらの取付領域は擂り剪断部S1 ,S2 ,S
3 ,S4 を構成している。
Next, an apparatus according to the present invention will be described in detail with reference to the drawings showing an example thereof. FIG. 2 is an overall view showing an apparatus for producing an organic-inorganic composite powder according to the present invention. In FIG. 2, 1 is a hopper, 1a is a fixed-quantity feeder, 1c is a material supply port, 4 is a feed cylinder, and 4 is a feed cylinder. A rotary shaft 5 that is rotated by the drive device 2 is inserted therein, and a rotary spline shaft 5a is integrally fixed in front of the rotary shaft 5 as shown in FIG. A screw Fs is fitted to the end (the feed section F area) to supply the raw material particles. In front of the screw Fs, large-diameter rotating disk members 6a, 6b, 6c, 6d, 6e and small-diameter rotating disk members 7a, 7b, 7c, 7d are provided with a rotating shaft 5a.
And are alternately fixed by tightening nuts 5 so as to rotate coaxially with the rotating shaft 5, and have large-diameter rotating disk members 6a, 6b, 6
c, 6d, 6e and small diameter rotating disk members 7a, 7b, 7
The large-diameter thick donut-shaped annular members 8a, 8b, 8c, 8d, 8e and the small-diameter thick donut-shaped annular members are provided on the outer peripheral sides corresponding to c and 7d, respectively, so as to surround the outer periphery with leaving a fine gap. The members 9a, 9b, 9c and 9d are all integrally fixed in the cylinder by a tie rod 10, and their mounting areas are crushed shear portions S 1 , S 2 and S.
3, constitutes a S 4.

【0025】大径回転円盤部材6a,6b,6c,6
d,6eは、例えば図4の符号6として示す如く回転ス
プライン軸5aに嵌合する厚肉円盤状に構成されると共
に、その両側面には中心から放射状に伸びる山12が円
周方向に複数条形成され、それらの間には谷13が形成
され、またその外周面側には、回転スプライン軸5aの
軸心に対して斜方向(図5参照)に山14と谷15が交
互に設けられている。
Large diameter rotating disk members 6a, 6b, 6c, 6
Each of d and 6e has a thick disk shape fitted to the rotary spline shaft 5a as shown by a reference numeral 6 in FIG. 4, and has a plurality of ridges 12 extending radially from the center on both sides thereof in the circumferential direction. The valleys 13 are formed between them, and ridges 14 and valleys 15 are alternately provided on the outer peripheral surface side in an oblique direction (see FIG. 5) with respect to the axis of the rotary spline shaft 5a. Have been.

【0026】また、該大径回転円盤部材6の外周側に設
けられる大径肉厚ドーナツ状環状部材8の内周面には、
図6にも現われる如く回転スプライン軸5aの軸心とほ
ぼ平行方向に複数の山16と谷17が交互に設けられて
おり、上記大径回転円盤部材6の外周面との間で擂り剪
断力が作用する様に構成されている。
On the inner peripheral surface of the large-diameter thick donut-shaped annular member 8 provided on the outer peripheral side of the large-diameter rotating disk member 6,
As shown in FIG. 6, a plurality of peaks 16 and valleys 17 are alternately provided in a direction substantially parallel to the axis of the rotary spline shaft 5a. Are configured to operate.

【0027】一方、回転スプライン軸5aに嵌合された
小径回転円盤部材7の外周面にも、前記図5に現われ又
図7に示す如く、複数の山18と谷19が回転スプライ
ン軸5aの軸心に対してやや傾斜する方向に交互に形成
されると共に、該小径回転円盤部材7の外周面側に固定
して設けられる厚肉ドーナツ状環状部材9の内周面に
は、図6,7に現われる如く回転スプライン軸5aの軸
心とほぼ平行方向に複数の山20と谷21が交互に設け
られており、上記小径回転円盤部材7の外周面との間で
擂り剪断力が作用する様に構成されている。また、該小
径厚肉ドーナツ状環状部材9は、図1に現われる如く大
径回転円盤部材6の側面側に近接して配置されることに
なるが、その両側面には、例えば図7に示す如く放射方
向に伸びる多数の山22と谷23が交互に設けられてい
る。
On the other hand, a plurality of peaks 18 and valleys 19 are formed on the outer peripheral surface of the small-diameter rotary disk member 7 fitted to the rotary spline shaft 5a, as shown in FIG. 5 and shown in FIG. The inner peripheral surface of the thick donut-shaped annular member 9 which is formed alternately in a direction slightly inclined with respect to the axis and is fixedly provided on the outer peripheral surface side of the small-diameter rotating disk member 7 has the structure shown in FIG. 7, a plurality of peaks 20 and valleys 21 are provided alternately in a direction substantially parallel to the axis of the rotary spline shaft 5a, and a rubbing shearing force acts on the outer peripheral surface of the small-diameter rotary disk member 7. It is configured as follows. The small-diameter thick donut-shaped annular member 9 is disposed close to the side surface of the large-diameter rotating disk member 6 as shown in FIG. As described above, a large number of peaks 22 and valleys 23 extending in the radial direction are provided alternately.

【0028】そして、該小径厚肉ドーナツ状環状部材9
の側面に設けられる山22と谷23は放射方向からやや
傾斜し、その傾斜方向は装置の入口側では外周方向ほど
回転方向に対し位相が遅れる方向に、また出口方向では
逆方向に傾斜し、それによってその隙間を通る混合粉末
が擂り剪断力を受けながら円盤部材6のつけ根側から外
周方向へ送られ、該回転円盤部材6の外周面と上記ドー
ナツ状環状部材9の内周面に設けられた前記山と谷の間
で擂り剪断力を受けながら、該回転円盤部材6の反対面
側へ送られ、更に該円盤部材6の反対側の面と前記環状
部材9との間で擂り剪断力を受けながら中心方向に送ら
れる様に構成されている。
Then, the small-diameter thick donut-shaped annular member 9
The peaks 22 and valleys 23 provided on the side surfaces of the device are slightly inclined from the radial direction, and the inclination direction is such that the phase is delayed with respect to the rotation direction toward the outer peripheral direction on the entrance side of the apparatus, and the direction is inclined in the opposite direction in the exit direction, As a result, the mixed powder passing through the gap is sent to the outer peripheral direction from the base side of the disk member 6 while receiving the crushing shear force, and is provided on the outer peripheral surface of the rotating disk member 6 and the inner peripheral surface of the donut-shaped annular member 9. While receiving the crushing shear force between the peaks and the valleys, it is sent to the opposite surface side of the rotating disk member 6, and further the crushing shear force is applied between the opposite surface of the disk member 6 and the annular member 9. It is configured to be sent toward the center while receiving.

【0029】尚、上記大径回転円盤部材6や小径厚肉ド
ーナツ状環状部材9の側面に設けられる山と谷の数、形
状、形成パターン等はその一例を示しただけのものであ
って、勿論図示例に限定される訳ではなく、また大径回
転円盤部材6と小径回転円盤部材7の外周面に設けられ
る山と谷、厚肉ドーナツ状環状部材8,9の内周面に設
けられる山と谷の数や形状、形成方向についても同様で
あり、原料素材の種類などに応じて適宜変更することが
可能である。
The number, shape, pattern, etc. of the peaks and valleys provided on the side surfaces of the large-diameter rotating disk member 6 and the small-diameter thick donut-shaped annular member 9 are merely examples. Of course, the present invention is not limited to the illustrated example, and is provided on the inner peripheral surfaces of the peaks and valleys provided on the outer peripheral surfaces of the large-diameter rotary disk member 6 and the small-diameter rotary disk member 7 and the thick donut-shaped annular members 8 and 9. The same applies to the number and shape of the peaks and valleys, and the forming direction, and it can be appropriately changed according to the type of the raw material.

【0030】但し、大径回転円盤部材6と小径回転円盤
部材7の外周面に設けられる山と谷については、擂り剪
断力をより効果的に発揮させるため、好ましくは15〜
30。のリード角で形成するのが良く、また、大径回転
円盤部材6の側面と厚肉ドーナツ状環状部材9の側面の
間の隙間、大径回転円盤部材6および小径回転円盤部材
7の外周面と厚肉ドーナツ状環状部材8,9の内周面と
の間の隙間は、原料となる有機質高分子粒子や無機質微
細粒子の粒度や目的とする複合粉末の粒度も加味して適
宜に設定すれば良いが、十分な擂り剪断力を確保する意
味から0.5〜3mm、より好ましくは1〜1.5mm
の範囲に設定することが望ましい。
However, the peaks and valleys provided on the outer peripheral surfaces of the large-diameter rotating disk member 6 and the small-diameter rotating disk member 7 are preferably 15 to 15 in order to more effectively exert the crushing shear force.
30. The clearance between the side surface of the large-diameter rotary disk member 6 and the side surface of the thick-walled donut-shaped annular member 9 and the outer peripheral surfaces of the large-diameter rotary disk member 6 and the small-diameter rotary disk member 7 are preferable. The gap between the inner peripheral surface of each of the thick donut-shaped annular members 8 and 9 is appropriately set in consideration of the particle size of the organic polymer particles and inorganic fine particles as the raw materials and the particle size of the target composite powder. 0.5 to 3 mm, more preferably 1 to 1.5 mm, from the viewpoint of securing a sufficient grinding force.
It is desirable to set in the range.

【0031】また、図1の例では各部材を夫々有効数で
4個組み付けた例を示したが、その数も必要に応じて任
意に増減変更することができる。更に、上記擂り剪断部
Sでは擂り摩擦によってかなりの昇温が起こり、場合に
よっては有機質高分子粒子の溶融温度以上にまで昇温す
る恐れもあるので、例えば図6に表われる如く小径厚肉
ドーナツ状環状部材9内に水冷ジャケット9xを付設す
ることによって昇温を抑制し、あるいは温度センサー等
や加熱機構を組合せて最適の温度に制御できる様にする
ことが望ましい。また図示例では、原料粒子を水平方向
に移送しながら擂り剪断力を作用させる構成の横形装置
を示したが、縦形装置とし原料粒子の重力を利用して下
方に移送しながら連続処理できる様にすることも可能で
ある。
In the example shown in FIG. 1, four members are assembled in an effective number, but the number can be arbitrarily increased or decreased as needed. Further, in the crushing shear portion S, a considerable temperature rise occurs due to rubbing friction, and in some cases, there is a possibility that the temperature may rise to a temperature higher than the melting temperature of the organic polymer particles. For example, as shown in FIG. It is desirable to provide a water-cooling jacket 9x in the annular member 9 to suppress the temperature rise, or to control the temperature to an optimum temperature by combining a temperature sensor or the like and a heating mechanism. In the illustrated example, the horizontal apparatus is configured to apply a crushing shear force while transferring the raw material particles in the horizontal direction. However, a vertical apparatus is used so that continuous processing can be performed while transferring the raw material particles downward using the gravity of the raw material particles. It is also possible.

【0032】上記の様に、擂り剪断部Sは、大・小径回
転円盤部材6,7と厚肉ドーナツ状環状部材8,9との
組合わせによって複雑な形状となっているが、それらは
いずれも独立の部材となっているので、それらの加工は
容易に行なうことができ、又その組み立ても、スプライ
ン軸5aへ嵌め込んでタイロッドで締め付けるだけでよ
いので簡単である。従って、擂り剪断部を比較的短くし
て装置を小型化し、その製作を容易にすることができ
る。
As described above, the crushing shear portion S has a complicated shape due to the combination of the large and small diameter rotating disk members 6 and 7 and the thick donut-shaped annular members 8 and 9. Are also independent members, so that they can be easily processed, and the assembling is simple, since they only need to be fitted into the spline shaft 5a and fastened with tie rods. Therefore, it is possible to reduce the size of the device by making the grinding shear portion relatively short, and to easily manufacture the device.

【0033】次にこの装置の作用について説明する。ま
ず駆動装置2によって回転軸5を回転させると共に、定
量フィーダ1aを作動させ、無機質微細粒子と有機質高
分子粒子が配合された原料粒子をホッパー1から一定量
づつシリンダー4へ供給する。シリンダー4内に供給さ
れた原料粉末は、スクリューFsによって前方へ移送さ
れる。大径回転円盤部材6aの基部に達した原料粒子
は、大径厚肉ドーナツ状環状部材8aとの隙間に送り込
まれ、この部分で、回転する大径回転円盤部材6aの外
周面と固定された大径厚肉ドーナツ状環状部材8aの内
周面との間で擂り剪断を受けながら図面左方向へ移送さ
れ、次いで大径回転円盤部材6aの左側面と小径厚肉ド
ーナツ状環状部材9aの右側面との間で擂り剪断力を受
けながら中心方向へ移送される。そして、小径回転円盤
部材7aの表面に到達した原料は、該表面と小径厚肉ド
ーナツ状環状部材9aの内周面との間を左方向に移送さ
れながら擂り剪断力を受け、更に大径回転円盤部材6b
の基部に達した後は、該大径回転円盤部材9bの右側面
と小径厚肉ドーナツ状環状部材9aの左側面との間を外
周方向へ移送されながら再度の擂り剪断力を受け、これ
らを順次繰り返して複数回にわたる擂り剪断を受け、大
径厚肉ドーナツ状環状部材8eの内周面と大径回転円盤
部材6eの外周面の間を移送される過程で最後の擂り剪
断力を受けて排出される。
Next, the operation of this device will be described. First, the rotating shaft 5 is rotated by the driving device 2 and the fixed-quantity feeder 1a is operated, and the raw material particles in which the inorganic fine particles and the organic polymer particles are mixed are supplied from the hopper 1 to the cylinder 4 by a fixed amount. The raw material powder supplied into the cylinder 4 is transferred forward by the screw Fs. The raw material particles that have reached the base of the large-diameter rotating disk member 6a are sent into a gap between the large-diameter thick-walled donut-shaped annular member 8a, and are fixed to the outer peripheral surface of the rotating large-diameter rotating disk member 6a at this portion. It is transported to the left in the drawing while being subjected to gross shearing with the inner peripheral surface of the large-diameter thick donut-shaped annular member 8a, and then to the left side of the large-diameter rotating disk member 6a and the right side of the small-diameter thick donut-shaped annular member 9a. It is transported toward the center while receiving a crushing shear force with the surface. Then, the raw material that has reached the surface of the small-diameter rotating disk member 7a is subjected to a crushing shear force while being transferred leftward between the surface and the inner peripheral surface of the small-diameter thick donut-shaped annular member 9a, and is further rotated by a large diameter. Disc member 6b
After reaching the base portion, while being transferred in the outer circumferential direction between the right side surface of the large-diameter rotating disk member 9b and the left side surface of the small-diameter thick donut-shaped annular member 9a, they are subjected to another crushing shear force, It is subjected to a plurality of crushing shears repeatedly in sequence, and receives the last crushing shearing force in the process of being transferred between the inner peripheral surface of the large-diameter thick donut-shaped annular member 8e and the outer peripheral surface of the large-diameter rotating disk member 6e. Is discharged.

【0034】上記擂り剪断部においては、例えば図8,
9に示す如く相対面する面に形成された山Y1 とY2
対向する部分は広く、谷H1 とH2 が対向する部分はや
や狭く、更に山Y1 と山Y2 とが対向する部分は極く僅
かの間隙が形成される。従って、回転円盤部材が矢印R
方向に移動すると夫々の境界線部の距離Lがちじまる結
果、その内部の粒子は強力な圧縮作用を受ける。圧縮作
用を受けた粒子は谷Hと山Yの間の狭い隙間を通って押
し出され、ここで強力な擂り剪断作用を受ける。この様
な作用が、回転円盤部材と厚肉ドーナツ状環状部材との
隙間で繰り返される。即ち、圧縮工程Pと剪断工程Sと
が交互に円周方向に繰り返され、強力な擂り剪断が加え
られることになる。こうした擂り剪断は、大径回転円盤
部材6の側面と小径厚肉ドーナツ状環状部材9の側面と
の隙間で繰り返されるばかりでなく、大径回転円盤部材
6の外周面と大径厚肉ドーナツ状環状部材8の内周面と
の隙間、及び小径回転円盤部材7の外周面と厚肉ドーナ
ツ状環状部材9の内周面との間でも同様に繰り返され、
上記山Yと谷Hの出会い回数すなわち剪断工程Sと圧縮
工程Pとの繰り返し回数が無数に繰り返されることにな
り、短い移動距離の間に擂り剪断が効率よく進行し、ひ
いては、有機質高分子粒子内への無機質微細粒子の埋め
込みによる複合化、更には複合化した粒子の分断を効率
よく遂行することが可能となる。
In the above-mentioned mortar shearing section, for example, FIG.
Portion mountains Y 1 and Y 2, which are formed in the phase opposite to the surface as shown in 9 faces is large, portions valley H 1 and H 2 are opposed somewhat narrower, further mountain Y 1 and mountain Y 2 and the counter A very small gap is formed in the portion where the light beam flows. Therefore, the rotating disk member is the arrow R
As a result of the movement in the direction, the distance L between the respective boundary portions becomes smaller, and as a result, the particles therein undergo a strong compressing action. The compressed particles are extruded through a narrow gap between the valleys H and the peaks Y, where they are subjected to a strong shearing action. Such an operation is repeated in the gap between the rotating disk member and the thick donut-shaped annular member. That is, the compression step P and the shearing step S are alternately repeated in the circumferential direction, so that strong grinding shear is applied. Such grinding shear is repeated not only in the gap between the side surface of the large-diameter rotating disk member 6 and the side surface of the small-diameter thick donut-shaped annular member 9, but also in the outer peripheral surface of the large-diameter rotating disk member 6 and the large-diameter thick donut shape. The same is repeated in the gap between the inner peripheral surface of the annular member 8 and the outer peripheral surface of the small-diameter rotating disk member 7 and the inner peripheral surface of the thick donut-shaped annular member 9.
The number of encounters between the peaks Y and the valleys H, that is, the number of repetitions of the shearing step S and the compression step P is repeated innumerably, so that the crushing shear proceeds efficiently during a short moving distance, and thus the organic polymer particles Compounding by embedding the inorganic fine particles in the inside, and further, dividing of the compounded particles can be efficiently performed.

【0035】かくして、この装置を使用すれば、擂り剪
断を与える領域を短縮することが可能となり、コンパク
トな設備で先に示した様な有機・無機複合粉末の製造を
効率よく行なうことができる。
Thus, the use of this apparatus makes it possible to shorten the area to which the shearing is applied, and to efficiently produce the organic-inorganic composite powder as described above with a compact facility.

【0036】[0036]

【実施例】次に実施例を挙げて本発明をより具体的に説
明するが、本発明はもとより下記実施例によって制限を
受けるものではなく、前・後記の趣旨に適合し得る範囲
で適当に変更を加えて実施することも可能であり、それ
らは全て本発明の技術的範囲に包含される。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, but may be appropriately adjusted within a range that can conform to the purpose of the preceding and following examples. Modifications can be made and all are included in the technical scope of the present invention.

【0037】実施例 有機質高分子粒子として、粒径10μm±4の低密度ポ
リエチレン(溶融温度:76℃)、無機質微細粒子とし
て、粒径0.4μm±0.1のアナタース型TiO2
使用し、図2〜9に示した様な構造の装置を用いて有機
・無機複合粉末の製造を行なった。尚、装置各部の寸法
は、フィード部のスクリュー径80mm、大径回転円盤
部材6の径は100mm、幅は16mm、小径回転円盤
部材7の径は57mm、幅は36mmとし、擂り剪断の
与えられる面に形成される山と谷の形状および形成パタ
ーンは図2〜9に示したものを使用し、それらを有効4
組用いた。そして、小径厚肉ドーナツ状環状部材9に形
成したジャケットに冷水および加熱水を媒体とする冷却
・加温調節器を設けると共に、温度センサーによって内
部温度を制御できる様にした。この装置を用い、駆動装
置により動力3.7Kw、主軸回転数3〜33rpmで
駆動した。
Example Low-density polyethylene (melting temperature: 76 ° C.) having a particle size of 10 μm ± 4 was used as organic polymer particles, and anatase-type TiO 2 having a particle size of 0.4 μm ± 0.1 was used as inorganic fine particles. An organic / inorganic composite powder was produced using an apparatus having a structure as shown in FIGS. The dimensions of each part of the apparatus were as follows: the screw diameter of the feed section was 80 mm, the diameter of the large-diameter rotary disk member 6 was 100 mm, the width was 16 mm, the diameter of the small-diameter rotary disk member 7 was 57 mm, and the width was 36 mm. The shapes and formation patterns of peaks and valleys formed on the surface are those shown in FIGS.
Used in pairs. The jacket formed on the small-diameter and thick donut-shaped annular member 9 was provided with a cooling / heating controller using cold water and heated water as a medium, and the internal temperature could be controlled by a temperature sensor. Using this apparatus, it was driven by a driving device at a power of 3.7 Kw and a spindle speed of 3 to 33 rpm.

【0038】上記原料粒子と装置を使用し、小径厚肉ド
ーナツ状環状部材9内に設けたジャケット9x(図6参
照)に通水する水温を、図2のT2 〜T5 領域の温度が
30℃となる様に設定し、回転数30rpmで主回転軸
を回転させながら、低密度ポリエチレン23重量部とT
iO2 77重量部の混合物を、定量フィーダーから10
kg/hrで供給しつつ、負荷電流9Aで運転を行なっ
た。
Using the above-described raw material particles and the apparatus, the temperature of water passing through the jacket 9x (see FIG. 6) provided in the small-diameter and thick-walled donut-shaped annular member 9 is set to the temperature in the range of T 2 to T 5 in FIG. The temperature was set to 30 ° C., and while rotating the main rotating shaft at a rotation speed of 30 rpm, 23 parts by weight of low-density polyethylene and T
77 parts by weight of the mixture of iO 2 was
The operation was performed at a load current of 9 A while supplying at a rate of kg / hr.

【0039】その結果、図10の図面代用写真に示す如
く、低密度ポリエチレン粒子の表面にTiO2 の微細粒
子が内部に埋没し、その一部は表面に付着してカプセル
化された複合粉末が得られた。
As a result, as shown in the drawing substitute photograph of FIG. 10, fine particles of TiO 2 are buried inside the surface of the low-density polyethylene particles, and a part thereof adheres to the surface and the encapsulated composite powder is formed. Obtained.

【0040】また、小径厚肉ドーナツ状環状部材9のジ
ャケット9xの全てに40℃の温水を通し、T2 とT3
の温度が42℃、T4 とT5 の温度が46℃となる様に
設定し、主回転軸を30rpmで回転させながら、前記
と同じ低密度ポリエチレン10重量部とTiO2 90重
量部の混合物を、定量フィーダーから10kg/hrの
速度で供給しつつ、負荷電圧12Aで運転を行なった。
Further, warm water of 40 ° C. is passed through all of the jackets 9x of the small-diameter thick donut-shaped annular member 9, and T 2 and T 3
The mixture of 10 parts by weight of the same low-density polyethylene and 90 parts by weight of TiO 2 as described above, while setting the temperature at 42 ° C. and the temperature at T 4 and T 5 at 46 ° C. while rotating the main rotating shaft at 30 rpm. Was supplied at a rate of 10 kg / hr from a fixed-quantity feeder, and operation was performed at a load voltage of 12A.

【0041】得られた複合粉末は、図11の図面代用写
真に示す如く、低密度ポリエチレンがTiO2 の表面に
現われ、TiO2 が低密度ポリエチレンの内部に埋没し
た複合粉末であることが確認された。また、図10に示
した複合粉末の粒径は14μmであるのに対し、図11
の複合粉末の粒径は17μmであることが確認された。
このことは次の事実を物語っている。
The composite powder obtained, as shown in drawing-substitute photograph of FIG. 11, a low-density polyethylene appears on the surface of the TiO 2, it TiO 2 is a composite powder buried in the interior of the low density polyethylene is confirmed Was. Further, the particle diameter of the composite powder shown in FIG.
It was confirmed that the particle size of the composite powder was 17 μm.
This explains the following facts.

【0042】即ち図10の複合粉末は、粒径13μmの
低密度ポリエチレン粒子に0.4μmのTiO2 が複合
したものと思われる。そして、該14μmの複合粒子が
更に擂り剪断を受けて複合化が進み、該ポリエチレン粒
子内にTiO2 が埋没すると、得られる複合粉末の粒径
は約20μmにまで成長するはずであるが、図11に示
した如く実際に得られる複合粉末の粒径は17μmとな
っている。そして、粒径20μmの粒子の体積は4.1
886×10-6mm3 であるのに対し、粒径17μmの
粒子の体積は2.5724×10-6mm3 であり、約1
/2の体積に減少しているところから、上記後半の擂り
剪断処理を行なうと、一旦複合化した粒子が約半分に分
断されて微細化されたことを確認することができる。
That is, it is considered that the composite powder of FIG. 10 is composed of low-density polyethylene particles having a particle size of 13 μm and TiO 2 having a particle size of 0.4 μm. When the 14 μm composite particles are further subjected to shearing and complexation proceeds, and TiO 2 is buried in the polyethylene particles, the particle diameter of the obtained composite powder should grow to about 20 μm. As shown in FIG. 11, the particle size of the composite powder actually obtained is 17 μm. The volume of the particles having a particle diameter of 20 μm is 4.1.
886 × to 10 -6 in the range of mm 3, the volume of the particles having a particle diameter of 17μm is 2.5724 × 10 -6 mm 3, about 1
From the fact that the volume is reduced to / 2, it can be confirmed that when the above-mentioned crush shearing treatment is carried out in the latter half, the once-composited particles are divided into about half and are refined.

【0043】[0043]

【発明の効果】本発明は以上の様に構成されており、有
機質高分子粒子と機能性無機質微細粒子を原料として、
1段の工程でこれらが複合一体化した有機・無機複合粉
末を効率よく製造することができる。しかも本発明の装
置を使用すれば、比較的短い擂り剪断付与領域長さで十
分な擂り剪断を与えることができ、上記の様な有機・無
機複合粉末をコンパクトな擂り剪断装置で連続的に効率
よく製造することができる。
The present invention is constituted as described above, and uses organic polymer particles and functional inorganic fine particles as raw materials.
In one step, an organic / inorganic composite powder in which these are combined and integrated can be efficiently produced. Moreover, if the apparatus of the present invention is used, sufficient crushing shear can be applied with a relatively short crushing shearing application area length, and the organic / inorganic composite powder as described above can be continuously and efficiently used with a compact crushing shearing apparatus. Can be manufactured well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a method of the present invention.

【図2】本発明の方法および装置を説明するための全体
図である。
FIG. 2 is an overall view for explaining the method and apparatus of the present invention.

【図3】本発明で用いられる装置の回転軸とスプライ軸
の部分を例示する構造図である。
FIG. 3 is a structural diagram illustrating a portion of a rotation shaft and a splice shaft of the device used in the present invention.

【図4】本発明で用いられる大径回転円盤部材および厚
肉ドーナツ状環状部材の形状と組付け例を示す図2のA
−A線断面矢視図である。
FIG. 4A shows the shape of a large-diameter rotating disk member and a thick donut-shaped annular member used in the present invention and an example of assembly thereof.
FIG. 4 is a cross-sectional view taken along line A-A.

【図5】本発明で用いられる大径回転円盤部材と小径回
転円盤部材の外周形状と組み付け例を示す側面図であ
る。
FIG. 5 is a side view showing an outer peripheral shape of a large-diameter rotary disk member and a small-diameter rotary disk member used in the present invention and an example of assembly.

【図6】本発明で用いられる厚肉ドーナツ状環状部材の
内面形状と組み付け例を示す断面図である。
FIG. 6 is a cross-sectional view showing an inner surface shape and an example of assembly of a thick donut-shaped annular member used in the present invention.

【図7】本発明で用いられる小径回転円盤部材と小径厚
肉ドーナツ状環状部材の形状と組付け例を示す図2のB
−B線断面矢視図である。
FIG. 7B shows the shape and assembly example of the small-diameter rotating disk member and the small-diameter thick donut-shaped annular member used in the present invention.
FIG. 4 is a cross-sectional view taken along a line B.

【図8】擂り剪断機構を説明するための概念図である。FIG. 8 is a conceptual diagram for explaining a grinding shear mechanism.

【図9】擂り剪断機構を説明するための概念図である。FIG. 9 is a conceptual diagram for explaining a grinding shear mechanism.

【図10】実施例で得た有機・無機複合粒子の形状を示
す図面代用写真である。
FIG. 10 is a drawing substitute photograph showing the shape of the organic / inorganic composite particles obtained in the example.

【図11】実施例で得た有機・無機複合粒子の形状を示
す図面代用写真である。
FIG. 11 is a photograph as a drawing showing the shape of the organic / inorganic composite particles obtained in the example.

【符号の説明】[Explanation of symbols]

A 有機質高分子粒子 B 無機質微細粒子 4 シリンダー 5 回転軸 5a 回転スプライン軸 5b 締付ナット 6,6a,6b,6c,6d,6e 大径回転円盤部材 7,7a,7b,7c,7d 小径回転円盤部材 8,8a,8b,8c,8d,8e 大径厚肉ドーナツ
状環状部材 9,9a,9b,9c,9d 小径厚肉ドーナツ状環状
部材 9x ジャケット 10 タイロッド
A Organic polymer particles B Inorganic fine particles 4 Cylinder 5 Rotating shaft 5a Rotating spline shaft 5b Tightening nut 6,6a, 6b, 6c, 6d, 6e Large-diameter rotating disk member 7,7a, 7b, 7c, 7d Small-diameter rotating disk Member 8, 8a, 8b, 8c, 8d, 8e Large-diameter thick donut-shaped annular member 9, 9a, 9b, 9c, 9d Small-diameter thick donut-shaped annular member 9x Jacket 10 Tie rod

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 3/00 C08K 3/00 C08L 101/00 C08L 101/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 3/00 C08K 3/00 C08L 101/00 C08L 101/00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機質高分子粒子と無機質微細粒子との
混合物に、有機質高分子粒子の表面が軟化を起こすが溶
融しない条件下で擂り剪断力を作用させ、前記無機質微
細粒子を有機質高分子粒子の内部に埋没させることを特
徴とする有機・無機複合粉末の製法。
A crushing shearing force is applied to a mixture of organic polymer particles and inorganic fine particles under conditions where the surface of the organic polymer particles is softened but not melted, and the inorganic fine particles are mixed with the organic polymer particles. A method for producing an organic-inorganic composite powder, characterized by being buried in a container.
【請求項2】 有機質高分子粒子と無機質微細粒子との
混合物に、有機質高分子粒子の表面が軟化を起こすが溶
融しない条件下で擂り剪断力を作用させ、前記有機質高
分子粒子の表面に前記無機質微細粒子を付着せしめた
後、上記有機質高分子粒子の表面が軟化を起こすが溶融
しない条件下で更に擂り剪断力を作用させ、前記無機質
微細粒子を有機質高分子粒子の内部に埋没させることを
特徴とする有機・無機複合粉末の製法。
2. A mixture of organic polymer particles and inorganic fine particles is subjected to a shearing force under such a condition that the surface of the organic polymer particles is softened but not melted, so that the surface of the organic polymer particles is After adhering the inorganic fine particles, the surface of the organic polymer particles is further softened but not further melted under a condition in which the surface is not melted, so that the inorganic fine particles are buried inside the organic polymer particles. Characteristic method of manufacturing organic / inorganic composite powder.
【請求項3】 前記請求項1または2に記載の方法によ
って、無機質微細粒子を有機質高分子粒子の内部に埋没
させた状態のものに、前記有機質高分子粒子の表面が軟
化を起こすが溶融しない条件下で更に擂り剪断力を作用
させることにより、前記無機質微細粒子の埋没した有機
質高分子粒子を分断して微細化することを特徴とする有
機・無機複合粉末の製法。
3. The method according to claim 1, wherein the surface of the organic polymer particles softens but does not melt in a state where the inorganic fine particles are buried inside the organic polymer particles. A method for producing an organic-inorganic composite powder, characterized in that crushing force is further applied under the conditions to separate and finely divide the organic polymer particles embedded with the inorganic fine particles.
【請求項4】 回転スクリュー方式の移送手段の先端部
に、該回転スクリューと同軸回転できる様に大径回転円
盤部材と小径回転円盤部材を交互に連結すると共に、前
記大径回転円盤部材および小径回転円盤部材の外周側を
夫々微細間隙を残して囲む様な厚肉ドーナツ状環状部材
を固定して配置し、 前記大径回転円盤部材と前記厚肉ドーナツ状環状部材の
隣り合った両側面には、夫々山と谷を交互に放射状に形
成すると共に前記大径回転円盤部材および前記小径回転
円盤部材の外周面と、それら外周面に夫々対応する前記
厚肉ドーナツ状環状部材の内周面にも、夫々互いに斜交
する山と谷を交互に形成してなることを特徴とする有機
・無機複合粉末の製造装置。
4. A large-diameter rotary disk member and a small-diameter rotary disk member are alternately connected to the tip of a rotary screw type transfer means so as to be able to rotate coaxially with the rotary screw. A thick donut-shaped annular member is fixedly arranged so as to surround the outer peripheral side of the rotating disk member with a fine gap, respectively, and is disposed on both adjacent side surfaces of the large-diameter rotating disk member and the thick donut-shaped annular member. Are formed on the outer peripheral surface of the large-diameter rotating disk member and the small-diameter rotating disk member, and the inner peripheral surface of the thick donut-shaped annular member respectively corresponding to the outer peripheral surface. The present invention also provides an organic-inorganic composite powder manufacturing apparatus characterized by alternately forming peaks and valleys that are oblique to each other.
JP01066197A 1997-01-23 1997-01-23 Production method of organic / inorganic composite powder Expired - Lifetime JP3910245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01066197A JP3910245B2 (en) 1997-01-23 1997-01-23 Production method of organic / inorganic composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01066197A JP3910245B2 (en) 1997-01-23 1997-01-23 Production method of organic / inorganic composite powder

Publications (2)

Publication Number Publication Date
JPH10202653A true JPH10202653A (en) 1998-08-04
JP3910245B2 JP3910245B2 (en) 2007-04-25

Family

ID=11756431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01066197A Expired - Lifetime JP3910245B2 (en) 1997-01-23 1997-01-23 Production method of organic / inorganic composite powder

Country Status (1)

Country Link
JP (1) JP3910245B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035820A1 (en) * 2004-09-28 2006-04-06 Refinverse, Inc. Process for producing reclaimed modified resin compound and reclaimed modified resin compound
WO2006059574A1 (en) * 2004-12-02 2006-06-08 Tokyo Printing Ink Mfg. Co., Ltd. Process for producing polymer composite
JP2006218436A (en) * 2005-02-14 2006-08-24 Kishihiro Yamaoka Continuous shearing apparatus
JP2011126089A (en) * 2009-12-16 2011-06-30 Ricoh Co Ltd Kneader and method for manufacturing toner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035820A1 (en) * 2004-09-28 2006-04-06 Refinverse, Inc. Process for producing reclaimed modified resin compound and reclaimed modified resin compound
WO2006059574A1 (en) * 2004-12-02 2006-06-08 Tokyo Printing Ink Mfg. Co., Ltd. Process for producing polymer composite
JP2006218436A (en) * 2005-02-14 2006-08-24 Kishihiro Yamaoka Continuous shearing apparatus
JP2011126089A (en) * 2009-12-16 2011-06-30 Ricoh Co Ltd Kneader and method for manufacturing toner

Also Published As

Publication number Publication date
JP3910245B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
KR900005175B1 (en) Particulate material treating apparatus
JP4116661B2 (en) Thermal interface material with aligned carbon nanotubes
JPH06506165A (en) Method and apparatus for continuous extrusion of solid articles
US5474803A (en) Method for preparing composite particles
JP4596134B2 (en) Method for improving dispersibility of carbon nanotubes
JP3950648B2 (en) Method and apparatus for kneading ultrafine powder and resin
JPH10202653A (en) Method and device for producing organic and inorganic composite powder
US6513737B2 (en) Apparatus and process for pulverization of a polymeric material
US7335316B2 (en) Plastic magnet precursor, production method for the same, and plastic magnet
JPH10230520A (en) Use and device of recycled plastic material and plastic product made with extruder therefrom
JPH0816795B2 (en) Toner manufacturing method and apparatus
JP3625256B2 (en) Resin composition milling equipment
US6631861B1 (en) Grinding device for resin composition
JPS6342728A (en) Method and apparatus for treating particulate matter
JP3695686B2 (en) Granulator for thermosetting resin composition
JP4180428B2 (en) Granulating apparatus and toner production method
JPH11513616A (en) Method for producing molten particle agglomerates
JP3695683B2 (en) Resin composition milling equipment
RU1213612C (en) Method of producing powder materials from thermoplasts
CN106200286A (en) A kind of preparation method of the powdered ink being applicable to high speed laser printer
JP2005281379A (en) Composite of crosslinked silicone rubber and thermoplastic resin and pulverization method
JP2006218436A (en) Continuous shearing apparatus
JP2002253983A (en) Production process of powder product
JPS5917559A (en) Nonmagnetic toner used for pressure fixing
JPH1112498A (en) Production of powder coating material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170202

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term