JPH10202101A - Composite oxide-carrying catalyst support - Google Patents

Composite oxide-carrying catalyst support

Info

Publication number
JPH10202101A
JPH10202101A JP9012460A JP1246097A JPH10202101A JP H10202101 A JPH10202101 A JP H10202101A JP 9012460 A JP9012460 A JP 9012460A JP 1246097 A JP1246097 A JP 1246097A JP H10202101 A JPH10202101 A JP H10202101A
Authority
JP
Japan
Prior art keywords
cerium
catalyst
zirconium
aluminum
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9012460A
Other languages
Japanese (ja)
Other versions
JP3330296B2 (en
Inventor
Tadashi Suzuki
正 鈴木
Hideo Sofugawa
英夫 曽布川
Akihiko Suda
明彦 須田
Akira Morikawa
彰 森川
Toshio Kamitori
利男 神取
Mareo Kimura
希夫 木村
Masahiro Sugiura
正洽 杉浦
Yoshio Ukiyou
良雄 右京
Takaaki Kanazawa
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP01246097A priority Critical patent/JP3330296B2/en
Publication of JPH10202101A publication Critical patent/JPH10202101A/en
Application granted granted Critical
Publication of JP3330296B2 publication Critical patent/JP3330296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst support to be used for a catalyst for exhaust gas purification and having high heat resistance by adding a support having a large specific surface area to a suspension produced by adding an alkaline solution and hydrogen peroxide to a mixed solution containing cerium, aluminum, and zirconium ions and firing the resultant support. SOLUTION: A composite oxide-carrying catalyst support to be used for exhaust gas purification is produced by mixing a salt solution containing a plurality of elements at least containing cerium, zirconium, and aluminum with an alkaline solution and hydrogen peroxide solution to form precursors of composite oxides, adding a support powder with high specific surface area to the resultant suspension containing the precursors, and firing the obtained mixture. Though composition rations of the constituents are not specifically limited, the atomic ratio of cerium to the mixed solution (zirconium + cerium) containing core irons of cerium, aluminum, and zirconium is controlled to be in the range of 0.2-0.8. Moreover, the atomic ratio of aluminum to (zirconium + cerium) is preferably to be in the range of 0.2-2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性に優れた排
ガス浄化用触媒に用いられる触媒担体に関する。
TECHNICAL FIELD The present invention relates to a catalyst carrier used for an exhaust gas purifying catalyst having excellent heat resistance.

【0002】[0002]

【従来の技術】排ガス浄化に用いられる三元触媒は、高
温にさらされるとセリアによって発揮される酸素吸蔵能
力(以下OSCと称する)が低下する。これは白金、パ
ラジウムなどの触媒活性金属と、助触媒のセリアの凝集
や、触媒活性金属の酸化、ロジウムの担体への固溶など
によっておこる。さらにOSCが低い触媒においては、
触媒活性金属の使用環境が、変動する雰囲気にさらされ
やすく、触媒活性金属(白金、パラジウム、ロジウム)
の劣化(凝集や固溶)がさらに促進される不具合があ
る。
2. Description of the Related Art When exposed to a high temperature, a three-way catalyst used for purifying exhaust gas has a reduced oxygen storage capacity (hereinafter referred to as OSC) exhibited by ceria. This is caused by aggregation of a catalytically active metal such as platinum or palladium with ceria as a cocatalyst, oxidation of the catalytically active metal, or solid solution of rhodium in a carrier. Further, in a catalyst having a low OSC,
The environment in which catalytically active metals are used is easily exposed to fluctuating atmospheres, and catalytically active metals (platinum, palladium, rhodium)
Degradation (aggregation and solid solution) is further promoted.

【0003】そこで特開平4−4043号では、アルミ
ナ、セリア、ジルコニアを共沈澱させジルコニアを前記
の各元素間に分散させることによって高耐熱性の酸化物
担体を形成する開示がある。また、特開平7−3003
15号公報では、負の帯電粒子(アルミナ)を加えるこ
とによってセリウムおよびジルコニウムイオンを均一に
沈殿させた酸化物担体の開示がある。しかし、ここで開
示された共沈殿方法および混合率では、各構成元素の分
散性はOSCや浄化率を改善するほどには向上しなかっ
た。特開平7−315840号公報では、セリウムイオ
ン、ジルコニウムイオンを含むコロイド溶液を塩基性媒
体と接触させ、反応性媒体を得、この反応媒体をアルカ
リ性を保ちながら、アルミナを含む混合物から調製した
酸化物担体が開示されている。この方法によりアルミ
ナ、セリア、ジルコニアを含有する1000℃まで安定
な化合物が得られるとされている。しかし、この方法で
は、各元素間の固溶量が上がらず、例えば耐熱試験後の
OSCや浄化率の改善が不十分であった。
[0003] Japanese Patent Application Laid-Open No. 4-4043 discloses that alumina, ceria, and zirconia are coprecipitated and zirconia is dispersed between the above-mentioned elements to form a highly heat-resistant oxide carrier. In addition, Japanese Patent Application Laid-Open No. 7-3003
Japanese Patent Publication No. 15 discloses an oxide carrier in which cerium and zirconium ions are uniformly precipitated by adding negatively charged particles (alumina). However, according to the coprecipitation method and the mixing ratio disclosed herein, the dispersibility of each constituent element did not improve to improve the OSC and the purification rate. In JP-A-7-315840, a colloid solution containing cerium ions and zirconium ions is contacted with a basic medium to obtain a reactive medium, and an oxide prepared from a mixture containing alumina while keeping the reaction medium alkaline. A carrier is disclosed. According to this method, a compound containing alumina, ceria, and zirconia, which is stable up to 1000 ° C., can be obtained. However, according to this method, the amount of solid solution between the elements did not increase, and for example, the OSC and the purification rate after the heat resistance test were insufficiently improved.

【0004】さらに、特開昭62−212224号で
は、過酸化水素によりアルカリ土類元素、希土類元素の
水酸化物を錯体化し、焼成してジルコニア系固溶体結晶
微粉末の製造方法の開示がある。特開平4−55315
号では、スラリー中の3価セリウムを過酸化水素等の酸
化剤で4価にしてアルカリ剤により中和析出させる酸化
セリウム微粉末の製造方法の開示がある。
Further, Japanese Patent Application Laid-Open No. 62-212224 discloses a method for producing a zirconia-based solid solution crystal fine powder by complexing a hydroxide of an alkaline earth element or a rare earth element with hydrogen peroxide, followed by firing. JP-A-4-55315
Japanese Patent Publication No. JP-A No. 5-21067 discloses a method for producing cerium oxide fine powder in which trivalent cerium in a slurry is converted to tetravalent with an oxidizing agent such as hydrogen peroxide and neutralized and precipitated with an alkali agent.

【0005】上記の従来技術の方法では、セリウムとジ
ルコニウムの固溶量が十分に上がらなかったり担体中で
の分散性が低いため、セリウムの十分な助触媒効果を発
揮することができなかった。また、複合酸化物の耐熱性
は、特開平4−5531号の実施例においても900℃
の熱処理後18〜26.5m2/gの範囲であり十分で
はなかった。
[0005] In the above-mentioned conventional method, cerium and zirconium cannot sufficiently exhibit a co-catalyzing effect because the amount of solid solution of cerium and zirconium does not sufficiently increase or the dispersibility in the carrier is low. Also, the heat resistance of the composite oxide was 900 ° C. in the example of JP-A-4-5531.
After the heat treatment, the range was 18 to 26.5 m 2 / g, which was not sufficient.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、各構成元素を高度に均一分散さ
せた耐熱性を向上させた複合酸化物担持触媒担体を構成
することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composite oxide-supported catalyst carrier having improved heat resistance in which each of the constituent elements is highly uniformly dispersed. Make it an issue.

【0007】[0007]

【課題を解決するための手段】本発明の複合酸化物担持
触媒担体は、セリウム、アルミニウム及びジルコニウム
の各イオンを含む混合溶液に、アルカリ性溶液と過酸化
水素水とを添加して複合酸化物の前駆体が分散した懸濁
液を形成し、該懸濁液に比表面積の大きな担体をさらに
添加し、該担体添加懸濁液を焼成して形成されているこ
とを特徴とする。
The composite oxide-supported catalyst carrier of the present invention comprises a mixed solution containing cerium, aluminum and zirconium ions, to which an alkaline solution and a hydrogen peroxide solution are added to form a mixed oxide. The suspension is formed by forming a suspension in which the precursor is dispersed, further adding a carrier having a large specific surface area to the suspension, and calcining the suspension with the carrier added.

【0008】[0008]

【発明の実施の形態】本発明の複合酸化物担持触媒担体
は、少なくともセリウムとジルコニウムとアルミニウム
を含む複数元素の塩溶液とアルカリ性溶液(特にアンモ
ニア水および/または炭酸アンモニウム)と過酸化水素
水とを混合することにより、複合酸化物の前駆体を形成
し、この前駆体を含む懸濁液に高比表面積担体粉末を添
加した後、混合物を焼成されて構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION A composite oxide-supported catalyst carrier of the present invention comprises a salt solution of a plurality of elements containing at least cerium, zirconium and aluminum, an alkaline solution (particularly ammonia water and / or ammonium carbonate), and a hydrogen peroxide solution. Are mixed to form a precursor of the composite oxide, a high specific surface area carrier powder is added to a suspension containing the precursor, and then the mixture is fired.

【0009】上記塩溶液にアルミニウムを含むことによ
り、焼成後の担体のセリウムとジルコニウムの固溶が促
進できる。しかし、アルミニウムの添加量がセリウムと
ジルコニウムの合計のモル濃度に対して少なくなるとこ
の効果が徐々に低下する。そこで固溶促進助剤として過
酸化水素水を添加する。過酸化水素水の添加時期として
は、(1)セリウムイオンを含む液にあらかじめ添加し
て置く方法、(2)セリウムとジルコニウムの各イオン
を含む混合液に添加する方法、(3)セリウムとアルミ
ニウムおよびジルコニウムの各イオンを含む混合液に添
加する方法、(4)セリウムとアルミニウムおよびジル
コニウムの各イオンを含む混合液にアルカリ製溶液を混
合した後、添加する方法等があるが添加時期は特に限定
されない。
When the salt solution contains aluminum, the solid solution of cerium and zirconium in the carrier after firing can be promoted. However, if the amount of aluminum added is smaller than the total molar concentration of cerium and zirconium, this effect gradually decreases. Therefore, aqueous hydrogen peroxide is added as a solid solution accelerating aid. The timing of adding the hydrogen peroxide solution is as follows: (1) a method of adding to a liquid containing cerium ions in advance, (2) a method of adding to a mixed solution containing cerium and zirconium ions, (3) a method of adding cerium and aluminum And (4) a method of adding an alkali solution to a mixed solution containing cerium and each ion of aluminum and zirconium, and then adding the mixed solution. However, the timing of addition is particularly limited. Not done.

【0010】本発明において、構成成分の組成比は特に
限定しないが、セリウムとアルミニウムおよびジルコニ
ウムの核イオンを含む混合液中の(ジルコニウム+セリ
ウム)に対するセリウムの原子数比は0.2〜0.8の
範囲特に0.3〜0.7の範囲が望ましい。また、この
混合液中の、アルミニウムの組成比も特に限定されない
が、耐熱性の維持のため(ジルコニウム+セリウム)に
対するアルミニウムの原指数比は0.2〜2の範囲、特
に0.3〜1.2の範囲が好ましい。この組成範囲にす
ることにより耐久試験後においてもセリアによる酸素吸
蔵能や触媒の活性を高く維持できる。
In the present invention, the composition ratio of the components is not particularly limited, but the atomic ratio of cerium to (zirconium + cerium) in the mixed solution containing cerium, aluminum and zirconium nucleus ions is 0.2 to 0.1. A range of 8 is particularly desirable, and a range of 0.3 to 0.7 is desirable. The composition ratio of aluminum in the mixture is not particularly limited, but the original index ratio of aluminum to (zirconium + cerium) is in the range of 0.2 to 2, especially 0.3 to 1 for maintaining heat resistance. .2 is preferred. By setting the content in this range, the oxygen storage capacity of ceria and the activity of the catalyst can be kept high even after the durability test.

【0011】アルカリ性溶液の添加も特に限定されない
が、上記の各イオンを中和共沈するのに十分な量(当
量)以上で良く、たとえば、1.01〜1.2倍当量程
度が良い。これより多いとアンモニアを用いた場合に
は、焼成時に余剰なNOXガスの生成量が増え、生産工
程の排ガス処理設備の負担が大きくなる。過酸化水素水
の添加量も特に特定されないが、セリウムイオンの等モ
ル〜2倍量程度が良い。これより少ないと、セリウムと
ジルコニウムの固溶量が十分に上がらない。またこれ以
上多く添加しても効果は変わらない。
The addition of the alkaline solution is not particularly limited either, but may be at least an amount (equivalent) sufficient to neutralize and coprecipitate the above-mentioned respective ions, for example, about 1.01 to 1.2 times equivalent. If the amount is larger than this, when ammonia is used, the amount of surplus NO X gas generated during firing increases, and the burden on the exhaust gas treatment equipment in the production process increases. The addition amount of the hydrogen peroxide solution is not particularly specified either, but is preferably about equimolar to twice the amount of cerium ions. If it is less than this, the solid solution amount of cerium and zirconium will not be sufficiently increased. The effect does not change even if it is added more than this.

【0012】比表面積の大きな担体の量も特に限定しな
いが、以下に示す効果を得るため、合成した担体の総重
量に対する割合として、10〜90重量%の範囲が望ま
しい。特に、15〜60重量%の範囲がより好ましい。
これより少ないと効果が得られない。また、多いと触媒
中に含まれる助触媒の量が少なくなり、触媒活性を高く
維持できない。
The amount of the carrier having a large specific surface area is not particularly limited. However, in order to obtain the following effects, the ratio of the carrier to the total weight of the synthesized carrier is preferably in the range of 10 to 90% by weight. In particular, the range of 15 to 60% by weight is more preferable.
If less than this, no effect can be obtained. On the other hand, if the amount is too large, the amount of the co-catalyst contained in the catalyst becomes small, and the catalyst activity cannot be maintained high.

【0013】また、上記懸濁液に高比表面積担体粉末を
添加した後、焼成する目的の1つは助触媒として働くセ
リウムとジルコニウムとアルミニウムを含む複合酸化物
を担体粉末粒界に高分散になおかつ、担体粉末の細孔を
閉塞することなく分散させるためである。また、もう一
つの目的としては合成した複合酸化物担体を焼成した後
の粉末の破砕(粉砕)性を向上させるためでもある。ま
た、前駆体を含む懸濁液に高比表面積担体粉末を添加し
た後、そのまま焼成する目的は、廃液処理コストの低減
および環境保全および製造設備の小型化を目的とするも
のである。さらに懸濁液中に含まれる不純物は焼成時に
飛散することにより、担体を微粉化したり細孔を形成す
る働きを持つ。これらの作用を伴い焼成後、前駆体は、
目的とする比表面積や耐熱性を有し、耐久試験後の状態
変化の少ない複合酸化物担体を形成する。
One of the purposes of calcining after adding the high specific surface area carrier powder to the above suspension is to highly disperse the composite oxide containing cerium, zirconium and aluminum acting as a cocatalyst at the carrier powder grain boundary. In addition, this is for dispersing the pores of the carrier powder without closing the pores. Another object is to improve the crushing (crushing) property of the powder after firing the synthesized composite oxide carrier. In addition, the purpose of adding the high specific surface area carrier powder to the suspension containing the precursor and calcining the suspension as it is is to reduce the waste liquid treatment cost, protect the environment, and reduce the size of the manufacturing equipment. Further, the impurities contained in the suspension are scattered at the time of calcination, and have a function of pulverizing the carrier and forming pores. After firing with these actions, the precursor is
A composite oxide carrier having the desired specific surface area and heat resistance and having little change in state after a durability test is formed.

【0014】高比表面積担体粉末としては、活性アルミ
ナ、(γ、δ、θ、α−)アルミナ、シリカ、ジルコニ
ア、チタニア、ゼオライト、モルデナイト、FSM、C
aやBa、Laを添加したヘキサアルミネート等から選
ばれた耐熱性の高い担体であれば特に限定されず、これ
らの中の1つ以上の酸化物で良く、セリウムとジルコニ
ウムに対する反応性が低く耐熱性が高いことから、特に
活性アルミナが含まれることが望ましい。
As the high specific surface area carrier powder, activated alumina, (γ, δ, θ, α-) alumina, silica, zirconia, titania, zeolite, mordenite, FSM, C
The carrier is not particularly limited as long as it is a high heat-resistant carrier selected from hexaaluminate to which a, Ba, and La are added. One or more oxides among these may be used, and the reactivity to cerium and zirconium is low. Because of high heat resistance, it is particularly desirable to include activated alumina.

【0015】さらに、前駆体を含む懸濁液に、セリウム
とジルコニムとの固溶促進および比表面積の向上や焼成
後の担体粉末の破砕(粉砕)性向上のため、界面活性剤
および/または高分子凝集剤、水溶性高分子を含んでも
良い。界面活性剤や高分子凝集剤、水溶性高分子の種類
は特に限定されない。カチオン系、アニオン系、ノニオ
ン系の高分子でよい。しかしナトリウム、硫黄、塩素等
が触媒中に残存すると触媒活性を低下させるおそれがあ
るため、ノニオン系の高分子を用いることが望ましい。
高分子凝集剤としては、ポリオキシエチレンアルキルエ
ーテル、水溶性高分子としてはセルロース、ポリビニル
アルコール等が挙げられる。
Further, in order to promote the solid solution of cerium and zirconium in the suspension containing the precursor, to improve the specific surface area, and to improve the crushing (crushing) property of the carrier powder after calcination, a surfactant and / or a surfactant is used. It may contain a molecular coagulant and a water-soluble polymer. The types of surfactant, polymer flocculant, and water-soluble polymer are not particularly limited. A cationic, anionic or nonionic polymer may be used. However, if sodium, sulfur, chlorine and the like remain in the catalyst, the catalytic activity may be reduced. Therefore, it is preferable to use a nonionic polymer.
Examples of the polymer flocculant include polyoxyethylene alkyl ether, and examples of the water-soluble polymer include cellulose and polyvinyl alcohol.

【0016】これらの界面活性剤を例示すると、アルキ
ルベンゼンスルホン酸、及びその塩、αオレフィンスル
ホン酸、及びその塩、アルキル硫酸エステル塩、アルキ
ルエーテル硫酸エステル塩、フェニルエーテル硫酸エス
テル塩、メチルタウリン酸塩、スルホコハク酸塩、エー
テル硫酸塩、アルキル硫酸塩、エーテルスルホン酸塩、
飽和脂肪酸、及びその塩、オレイン酸等の不飽和脂肪
酸、及びその塩、その他のカルポン酸、スルホン酸、硫
酸、リン酸、フェノールの誘導体等の陰イオン性界面活
性剤、ポリオキシエチレンポリプロレンアルキルエーテ
ル、ポリオキシエチレンアルキルエーテル、ポリキシエ
チレンアルキルフェニルエーテル、ポリオキシエチレン
ポリスチリルフェニルエーテル、ポリオキシエチレンポ
リオキシポロピレンアルキルエーテル、ポリオキシエチ
レンポリオキシプロピレングリコール、多価アルコー
ル;グリコール;グリセリン;ソルビトール;マンニト
ール;ペンタエスリトール;ショ糖;など多価アルコー
ル脂肪酸部分エステル、多価アルコール;グリコール;
グリセリン;ソロビトール;マンニトール;ペンタエス
リトール;ショ糖;などポリオキシエチレン多価アルコ
ール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エ
ステル、ポリオキシエチレン化ヒマシ油、ポリグリセン
脂肪酸エステル、脂肪酸ジエタノールアミド、ポロキシ
エチレンアルキルアミン、トリエタノールアミン脂肪酸
部分エステル、トリアルキルアミンオキサイド等の非イ
オン性界面活性剤、第一脂肪アミン塩、第二脂肪アミン
塩、第三脂肪アミン塩、テトラアルキルアンモニウム
塩;トリアルキルベンジルアンモニウム塩;アルキルピ
ロジニウム塩;2−アルキル−1−アルキル−1−ヒド
ロキシエチルイミダゾリニウム塩;N,N−ジアルキル
モルホリニウム塩;ポリエチレンポリアミン脂肪酸アミ
ド塩;等の第四吸アンモニウム塩、等の陽イオン性界面
活性剤、ベタイン化合物等の両イオン性界面活性剤であ
る。
Examples of these surfactants include alkylbenzenesulfonic acid and its salts, α-olefinsulfonic acid and its salts, alkyl sulfates, alkyl ether sulfates, phenyl ether sulfates, and methyl taurate. , Sulfosuccinate, ether sulfate, alkyl sulfate, ether sulfonate,
Saturated fatty acids and salts thereof, unsaturated fatty acids such as oleic acid and salts thereof, other anionic surfactants such as derivatives of carboxylic acid, sulfonic acid, sulfuric acid, phosphoric acid and phenol, polyoxyethylene polyprolene alkyl Ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polystyryl phenyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene polyoxypropylene glycol, polyhydric alcohol; glycol; glycerin; sorbitol Mannitol; pentaethritol; sucrose; polyhydric alcohol fatty acid partial esters, polyhydric alcohol; glycol;
Glycerin; Solobitol; Mannitol; Pentaethritol; Sucrose; etc. Polyoxyethylene polyhydric alcohol fatty acid partial ester, polyoxyethylene fatty acid ester, polyoxyethylated castor oil, polyglycene fatty acid ester, fatty acid diethanolamide, poloxyethylene alkyl Nonionic surfactants such as amines, triethanolamine fatty acid partial esters, and trialkylamine oxides, primary fatty amine salts, secondary fatty amine salts, tertiary fatty amine salts, tetraalkylammonium salts; trialkylbenzylammonium salts Alkylpyridinium salts; 2-alkyl-1-alkyl-1-hydroxyethylimidazolinium salts; N, N-dialkylmorpholinium salts; polyethylenepolyamine fatty acid amide salts; Moniumu salts, cationic surfactants and the like, a zwitterionic surfactant of the betaine compound.

【0017】さらに、複数元素の塩溶液に、担体の耐熱
性を向上させるためアルカリ、アルカリ土類、希土類元
素の中から選ばれ一つ以上の添加剤を含んでも良い。し
かしこれらの元素は触媒活性金属であるロジウムの活性
低下を引き起こす元素であるため、ロジウムとは分離し
た状態で添加するのが望ましい。さらに、複数元素の塩
溶液に、触媒活性物質を高分散する目的や、自動車用触
媒における硫化水素臭低減の目的のため、貴金属元素
(白金、パラジウム、ロジウム)のうちの1以上および
/または遷移金属元素(鉄、ニッケル、モリブデン、コ
バルト等)の中の一つ以上を含んでも良い。
Further, the salt solution of a plurality of elements may contain one or more additives selected from alkali, alkaline earth and rare earth elements in order to improve the heat resistance of the carrier. However, these elements are elements that cause a reduction in the activity of rhodium, which is a catalytically active metal, and thus it is desirable to add them in a state separated from rhodium. Furthermore, for the purpose of highly dispersing the catalytically active substance in a salt solution of a plurality of elements and for the purpose of reducing the odor of hydrogen sulfide in an automobile catalyst, one or more of the noble metal elements (platinum, palladium, rhodium) and / or transitions It may contain one or more of metal elements (iron, nickel, molybdenum, cobalt, etc.).

【0018】さらに、触媒にロジウムを添加せず白金ま
たはパラジウムを添加した触媒層の上に、ロジウムを添
加した触媒層をさらにコートした2層コートとしても良
い。2層目の触媒担体としてはアルミナ、ジルコニア、
アルミナ−ジルコニア複合酸化物等で良く特に限定され
ない。
Further, a two-layer coat may be formed by further coating a catalyst layer to which rhodium is added on a catalyst layer to which platinum or palladium is added without adding rhodium to the catalyst. Alumina, zirconia,
Alumina-zirconia composite oxide or the like is not particularly limited.

【0019】[0019]

【実施例】以下、実施例により具体的に説明する。 (実施例1)硝酸セリウム水溶液(Ce:0.25モ
ル)、硝酸ジルコニウム水溶液(Zr:0.25モ
ル)、硝酸アルミニウム水溶液(Al:0.5モル)、
アンモニア水(3.3モル)及び過酸化水素水(0.2
75モル)を混合することにより、水酸化セリウム、水
酸化ジルコニウム、水酸化アルミニウムの沈殿物を含む
懸濁液を得た。この懸濁液に平均二次粒子径3μmの活
性アルミナ粉末95gを添加し約1時間混合した後、混
合物を650℃で1時間焼成することにより触媒担体を
調製した。
The present invention will be specifically described below with reference to examples. (Example 1) Cerium nitrate aqueous solution (Ce: 0.25 mol), zirconium nitrate aqueous solution (Zr: 0.25 mol), aluminum nitrate aqueous solution (Al: 0.5 mol),
Ammonia water (3.3 mol) and hydrogen peroxide water (0.2
75 mol) to obtain a suspension containing a precipitate of cerium hydroxide, zirconium hydroxide, and aluminum hydroxide. After adding 95 g of activated alumina powder having an average secondary particle diameter of 3 μm to this suspension and mixing for about 1 hour, the mixture was calcined at 650 ° C. for 1 hour to prepare a catalyst carrier.

【0020】この触媒担体100重量部、水100重量
部、硝酸アルミニウム20重量部、ベーマイト(AlO
(OH))5重量部をアトライターで約3分間混合し触
媒担体スラリーを調製した。このスラリーを1.7Lの
コージエライト製ハニカムに、焼成後の固形分としてハ
ニカム1L当たり200g分コートし、500℃で1時
間焼成した。その後白金をハニカム1Lあたり1.5g
担持し、250℃で1時間焼成した。さらにRhをハニ
カム1Lあたり0.3g担持し貴金属担持触媒を調製し
た。
100 parts by weight of this catalyst carrier, 100 parts by weight of water, 20 parts by weight of aluminum nitrate, boehmite (AlO
(OH)) 5 parts by weight were mixed with an attritor for about 3 minutes to prepare a catalyst carrier slurry. This slurry was coated on 1.7 L of cordierite honeycomb as a solid content after firing in an amount of 200 g per 1 L of the honeycomb, and fired at 500 ° C. for 1 hour. Then, 1.5g of platinum per liter of honeycomb
It was baked at 250 ° C. for 1 hour. Further, 0.3 g of Rh was supported per liter of honeycomb to prepare a noble metal supported catalyst.

【0021】この触媒を排気量2リットルのエンジンを
持つガソリン自動車の排気管に取り付け、欧州走行を模
試した触媒床最高温度約1000℃の促進耐久走行試験
を50時間行った。その後欧州走行を模試した走行時の
排気分析を触媒の上流部と下流部の排気について同時に
行い、排気成分(NOX、HC、CO)の平均浄化率を
測定した。その結果この触媒は98%という従来の触媒
より高い浄化率を示した。浄化率測定後触媒を分解して
触媒の状態解析を実施した。XRD測定の結果、セリウ
ムとジルコニウムはほぼ均一な固溶体を形成しており、
その一次粒子径は6.7nmであった。また触媒層の断
面を研磨しSEM観察した結果、セリウムとジルコニウ
ムの固溶体がアルミナ中に高分散状態で分布し、さらに
この複合酸化物が活性アルミナ担体の粒界部に均一分散
していることが確認された。さらに触媒層を掻き取り粉
末の比表面積を測定した結果、約70m2/gの比表面
積を有することが確認された。さらに、この粉末を用い
て酸素吸蔵放出能(OSC)を測定した結果、評価温度
300℃におけるセリウム1モルあたりOSCは0.0
9(モル−O2/モル−Ce)という高い値を示すこと
が確認された。このようにアルミニウム塩を含む塩の共
沈殿物から複合酸化物担持触媒担体を合成することより
触媒の耐熱性が向上することが確認された。
This catalyst was attached to the exhaust pipe of a gasoline automobile having a 2 liter engine, and an accelerated durability test was conducted for 50 hours at a maximum catalyst bed temperature of about 1000 ° C., which simulated European driving. Then European traveling exhaust analysis in running that mock was carried out simultaneously for exhaust upstream portion and downstream portion of the catalyst was measured average purification rate of the exhaust gas components (NO X, HC, CO) . As a result, this catalyst showed a higher purification rate of 98% than the conventional catalyst. After the measurement of the purification rate, the catalyst was decomposed to analyze the state of the catalyst. As a result of the XRD measurement, cerium and zirconium form a substantially uniform solid solution,
Its primary particle size was 6.7 nm. In addition, the cross section of the catalyst layer was polished and observed by SEM. As a result, it was found that the solid solution of cerium and zirconium was distributed in a highly dispersed state in alumina, and that the composite oxide was uniformly dispersed in the grain boundaries of the activated alumina carrier. confirmed. Further, the catalyst layer was scraped off, and the specific surface area of the powder was measured. As a result, it was confirmed that the powder had a specific surface area of about 70 m 2 / g. Further, as a result of measuring the oxygen storage / release capacity (OSC) using this powder, the OSC was 0.03 per mole of cerium at an evaluation temperature of 300 ° C.
9 to show a high value of (mol -O 2 / mol -Ce) was confirmed. Thus, it was confirmed that the heat resistance of the catalyst was improved by synthesizing the composite oxide-supported catalyst support from the coprecipitate of the salt containing the aluminum salt.

【0022】(実施例2)実施例1で調製した懸濁液
に、比表面積50m2/gのジルコニウム粉末95gを
添加し約1時間混合したこと以外、実施例1と同じ方法
で触媒担体を調製し、貴金属担持触媒を得、浄化率の測
定および状態解析を行った。これらの結果をまとめて表
1に示す。
Example 2 A catalyst carrier was prepared in the same manner as in Example 1 except that 95 g of zirconium powder having a specific surface area of 50 m 2 / g was added to the suspension prepared in Example 1 and mixed for about 1 hour. The catalyst was prepared and a noble metal-supported catalyst was obtained, and the purification rate was measured and the state was analyzed. The results are summarized in Table 1.

【0023】(実施例3)実施例1の硝酸アルミニウム
水溶液を(Al:0.25モル)、アンモニア水を
(2.4モル)とし、活性アルミナ粉末107.4gを
添加し約1時間混合したこと以外、実施例1と同じ方法
で触媒担体を調製し、貴金属担持触媒を得、浄化率の測
定および状態解析を行った。これらの結果をまとめて表
1に示す。
(Example 3) The aqueous solution of aluminum nitrate of Example 1 (Al: 0.25 mol) and aqueous ammonia (2.4 mol) were added, and 107.4 g of activated alumina powder was added and mixed for about 1 hour. Except for this, a catalyst carrier was prepared in the same manner as in Example 1, a noble metal-supported catalyst was obtained, and the purification rate was measured and the state was analyzed. The results are summarized in Table 1.

【0024】(実施例4)硝酸セリウム水溶液(Ce:
0.25モル)、硝酸ジルコニウム水溶液(Zr:0.
5モル)、硝酸アルミニウム水溶液(Al:0.5モ
ル)、アンモニア水(3.9モル)及び過酸化水素水
(0.275モル)を混合することにより、水酸化セリ
ウム、水酸化ジルコニウム、水酸化アルミニウムの沈殿
物を含む懸濁液を得た。この懸濁液に平均二次粒子径3
μmの活性アルミナ粉末64.2gを添加し約1時間混
合した後、650℃で1時間焼成することにより触媒担
体を調製した。その後、実施例1と同じ方法で触媒担体
を調製し、貴金属担持触媒を得、浄化率の測定および状
態解析を行った。これらの結果をまとめて表1に示す。
Example 4 Cerium nitrate aqueous solution (Ce:
0.25 mol), an aqueous solution of zirconium nitrate (Zr: 0.
5 mol), an aqueous solution of aluminum nitrate (Al: 0.5 mol), aqueous ammonia (3.9 mol) and aqueous hydrogen peroxide (0.275 mol) to form cerium hydroxide, zirconium hydroxide, water A suspension containing a precipitate of aluminum oxide was obtained. This suspension has an average secondary particle size of 3
64.2 g of activated alumina powder of μm was added, mixed for about 1 hour, and calcined at 650 ° C. for 1 hour to prepare a catalyst carrier. Thereafter, a catalyst carrier was prepared in the same manner as in Example 1, a noble metal-supported catalyst was obtained, and a purification rate was measured and a state analysis was performed. The results are summarized in Table 1.

【0025】表1に示すように実施例1〜4は、平均浄
化率が97%以上で、担体の粉砕性も良好で、セリア−
ジルコニアの固溶性も良く、アルミナ中に高分散し一次
粒子径もほぼ均一でOSCも高い値を示している。 (実施例5)硝酸セリウム水溶液(Ce:0.25モル
部)、硝酸ジルコニウム水溶液(Zr:0.25モル
部)、硝酸アルミニウム水溶液(Al:0.5モル
部)、アンモニア水(3.3モル部)および過酸化水素
水(0.275モル部)を混合することにより、水酸化
セリウム、水酸化ジルコニウム、水酸化アルミニウムの
沈殿物を含む懸濁液を得、この懸濁液に平均二次粒子径
3μmの活性アルミナ粉末35gを添加し焼く1時間混
合した後、650℃で1時間焼成することにより2層コ
ートの下層用触媒を調製した。
As shown in Table 1, in Examples 1 to 4, the average purification rate was 97% or more, the crushability of the carrier was good, and ceria
Zirconia has good solid solubility, is highly dispersed in alumina, has a substantially uniform primary particle size, and has a high OSC value. (Example 5) Cerium nitrate aqueous solution (Ce: 0.25 mol part), zirconium nitrate aqueous solution (Zr: 0.25 mol part), aluminum nitrate aqueous solution (Al: 0.5 mol part), ammonia water (3.3) Mol part) and aqueous hydrogen peroxide (0.275 mol part) to obtain a suspension containing a precipitate of cerium hydroxide, zirconium hydroxide, and aluminum hydroxide. 35 g of activated alumina powder having a secondary particle size of 3 μm was added, mixed for 1 hour at baking, and then calcined at 650 ° C. for 1 hour to prepare a two-layer coat lower layer catalyst.

【0026】この担体100重量部、水100重量部、
硝酸アルミニウム20重量部、ベーマイト(AlO(O
H))5重量部をアトライターで約3分間混合し、触媒
担体スラリーを調製した。このスラリーを1.7Lのコ
ージエライト製ハニカムに焼成後の固形分としてハニカ
ム1Lあたり104g分コートし、500℃で1時間焼
成した。その後白金をハニカム1Lあたり1.5g担持
し、250℃で1時間焼成した。
100 parts by weight of this carrier, 100 parts by weight of water,
20 parts by weight of aluminum nitrate, boehmite (AlO (O
H)) 5 parts by weight were mixed with an attritor for about 3 minutes to prepare a catalyst carrier slurry. This slurry was coated on 1.7 L of cordierite honeycomb as a solid after firing in an amount of 104 g per 1 L of the honeycomb, and fired at 500 ° C. for 1 hour. Thereafter, 1.5 g of platinum was supported per liter of honeycomb, and baked at 250 ° C. for 1 hour.

【0027】次に硝酸ジルコニウム水溶液(Zr:0.
5モル部)アンモニア水(3.0モル部)を混合するこ
とにより、水酸化ジルコニウム、水酸化アルミニウムの
沈殿物を含む懸濁液を得、この懸濁液に平均粒子径3μ
mの活性アルミナ粉末35gを添加して焼く1時間混合
した後、650℃で1時間焼成することにより2層コー
トの上層用触媒担体を調製した。
Next, an aqueous solution of zirconium nitrate (Zr: 0.
5 mol parts) aqueous ammonia (3.0 mol parts) to obtain a suspension containing a precipitate of zirconium hydroxide and aluminum hydroxide.
Then, 35 g of activated alumina powder of m was added, and the mixture was baked for 1 hour, followed by calcination at 650 ° C. for 1 hour to prepare a two-layer coated upper layer catalyst carrier.

【0028】このタン他愛100重量部、水100重量
部、硝酸アルミニウム20重量部、ベーマイト(AlO
(OH))5重量部をアトライターで約3分間混合し触
媒担体スラリーを調製した。このスラリーを上記1.7
Lのコージエライト製ハニカムに、焼成後の固形分とし
てハニカム1Lあたり60g分コートし、500℃で1
時間焼成した。その後Rhをハニカム1Lあたり0.3
g吸着担持し、2層コート白金/ロジウム担持触媒を調
製した。
100 parts by weight of this tongue, 100 parts by weight of water, 20 parts by weight of aluminum nitrate, boehmite (AlO
(OH)) 5 parts by weight were mixed with an attritor for about 3 minutes to prepare a catalyst carrier slurry. This slurry was mixed with the above 1.7
L of cordierite honeycomb was coated as a solid content after firing at a rate of 60 g per 1 L of the honeycomb,
Fired for hours. Then, Rh was changed to 0.3 per liter of honeycomb.
g was adsorbed and supported to prepare a two-layer coated platinum / rhodium supported catalyst.

【0029】この触媒を排気量2リットルのエンジンを
持つガソリン自動車の排気管に取り付け、欧州走行を模
試した触媒床最高温度約1000℃の促進耐久走行試験
を50時間行った。その後欧州走行を模試した走行時の
排気分析を触媒の上流部と下流部の排気について同時に
行い、排気成分(NOX、HC、CO)の平均浄化率を
測定した。その結果この触媒は98%とい羽従来の触媒
より高い浄化率を示した。浄化率測定後触媒を分解して
触媒の状態解析を実施した。XRD測定の結果、セリウ
ムとジルコニウムはほぼ均一な固溶体を形成した下層担
体のセリア−ジルコニア固溶体の結晶相と、上層担体の
ジルコニア相が確認された。下層担体のセリア−ジルコ
ニア固溶体の結晶相の一次粒子径は6.8nmであっ
た。また触媒層の断面を研磨しSEM観察した結果、セ
リウムとジルコニウムの固溶体がアルミナ中に高分散に
分布し、さらにこの複合酸化物が活性アルミナ担体の粒
界部に均一に分散している下層と、ジルコニアがアルミ
ナ中に高分散に分散し、さらにこの複合酸化物が活性ア
ルミナ担体の粒界部に均一分散している上層が確認され
た。さらに触媒層を掻き取り粉末の比表面積測定を行っ
た結果、約67m2の比表面積を有することが確認され
た。さらに、この粉末を用いて酸素吸蔵放出能を測定し
た結果、評価温度300℃におけるセリウム1モルあた
りOSCは0.09(モル−O2/モル−Ce)という
高い値を示すことが確認された。このようにアルミニウ
ム塩を含む塩の共沈物から担体を合成し2層コート触媒
を調製した場合にも耐熱性が向上することが確認され
た。
This catalyst was attached to the exhaust pipe of a gasoline vehicle having an engine with a displacement of 2 liters, and an accelerated endurance running test was conducted for 50 hours at a maximum catalyst bed temperature of about 1000 ° C., which simulated European running. Then European traveling exhaust analysis in running that mock was carried out simultaneously for exhaust upstream portion and downstream portion of the catalyst was measured average purification rate of the exhaust gas components (NO X, HC, CO) . As a result, this catalyst showed 98% higher purification rate than the conventional catalyst. After the measurement of the purification rate, the catalyst was decomposed to analyze the state of the catalyst. As a result of the XRD measurement, a crystal phase of the ceria-zirconia solid solution of the lower carrier in which cerium and zirconium formed a substantially uniform solid solution and a zirconia phase of the upper carrier were confirmed. The primary particle size of the crystal phase of the ceria-zirconia solid solution of the lower carrier was 6.8 nm. The cross section of the catalyst layer was polished and observed by SEM. As a result, the solid solution of cerium and zirconium was highly dispersed in the alumina, and this composite oxide was uniformly dispersed in the grain boundaries of the activated alumina carrier. The zirconia was highly dispersed in the alumina, and an upper layer in which the composite oxide was uniformly dispersed in the grain boundaries of the activated alumina carrier was confirmed. Further, the catalyst layer was scraped off, and the specific surface area of the powder was measured. As a result, it was confirmed that the powder had a specific surface area of about 67 m 2 . Furthermore, as a result of measuring the oxygen storage / release capacity using this powder, it was confirmed that the OSC exhibited a high value of 0.09 (mol-O 2 / mol-Ce) per mol of cerium at an evaluation temperature of 300 ° C. . Thus, it was confirmed that the heat resistance was also improved when a carrier was synthesized from a coprecipitate of a salt containing an aluminum salt to prepare a two-layer coated catalyst.

【0030】[0030]

【表1】 [Table 1]

【0031】(比較例1)過酸化水素を添加しなかたこ
と以外は実施例1と同じ方法で触媒担体を調製し、貴金
属担持触媒を得、浄化率の測定および状態解析を行っ
た。これらの結果をまとめて表1に示す。過酸化水素を
添加しない場合は、均一な固溶ができず一次粒子径はセ
リアリッチ相において15nmと大きく成長しOSCは
実施例のものに比べて低い値であり、平均浄化率も85
%と低い値であった。
Comparative Example 1 A catalyst carrier was prepared in the same manner as in Example 1 except that hydrogen peroxide was not added, a noble metal-supported catalyst was obtained, and a purification rate was measured and a state analysis was performed. The results are summarized in Table 1. When hydrogen peroxide was not added, uniform solid solution could not be obtained, and the primary particle size grew to a large value of 15 nm in the ceria-rich phase, the OSC was lower than that of the example, and the average purification rate was 85%.
%.

【0032】(比較例2)アルミナ粉末を添加せず焼成
し、セリア−ジルコニア固溶体を形成した後、この粉末
40重量部と平均二次粒子径3μmの活性アルミナ粉末
60重量部、水100重量部、硝酸アルミニウム20重
量部、ベーマイト5重量部をアトライターで約3分間混
合し触媒担体スラリーを調製した。これ以後は実施例1
と同じ方法で貴金属担持触媒を得、浄化率の測定および
状態解析をおこなった。これらの結果もまとめて表1に
示す。前駆体を形成した後懸濁液に比表面積の大きいア
ルミナ粉末を混合しないで焼成すると、均一で一次粒子
径の小さいセリア−ジルコニアの固溶体は形成できる
が、活性アルミナ粉末と固溶体とは粉末同士の分散とな
り、平均浄化率およびOSCは比較例1の場合よりやや
向上するが実施例の場合に比べて低い値である。 (比較例3)硝酸セリウム水溶液(Ce:0.25モ
ル)、硝酸ジルコニウム水溶液(Zr:0.25モ
ル)、アンモニア水(1.5モル)及び過酸化水素水
(0.275モル)を混合することにより、水酸化セリ
ウムと水酸化ジルコニウムの沈殿物を含む懸濁液を得
た。この懸濁液に平均二次粒子径3μmの活性アルミナ
粉末120gを添加し約1時間混合した後、650℃で
1時間焼成することにより触媒担体を調製した。
Comparative Example 2 After baking without adding alumina powder to form a ceria-zirconia solid solution, 40 parts by weight of this powder, 60 parts by weight of activated alumina powder having an average secondary particle diameter of 3 μm, and 100 parts by weight of water , Aluminum nitrate (20 parts by weight) and boehmite (5 parts by weight) were mixed by an attritor for about 3 minutes to prepare a catalyst carrier slurry. After this, Example 1
A noble metal-supported catalyst was obtained in the same manner as described above, and the purification rate was measured and the state was analyzed. Table 1 also shows these results. If the suspension is calcined without mixing with the alumina powder having a large specific surface area after forming the precursor, a uniform solid solution of ceria-zirconia having a small primary particle size can be formed, but the activated alumina powder and the solid solution are powder-to-solid. As a result, the average purification rate and the OSC are slightly improved as compared with the case of the comparative example 1, but are lower than those of the example. (Comparative Example 3) An aqueous cerium nitrate solution (Ce: 0.25 mol), an aqueous zirconium nitrate solution (Zr: 0.25 mol), aqueous ammonia (1.5 mol), and aqueous hydrogen peroxide (0.275 mol) were mixed. As a result, a suspension containing a precipitate of cerium hydroxide and zirconium hydroxide was obtained. 120 g of activated alumina powder having an average secondary particle diameter of 3 μm was added to this suspension, mixed for about 1 hour, and calcined at 650 ° C. for 1 hour to prepare a catalyst carrier.

【0033】この担体100重量部、水100重量部、
硝酸アルミニウム20重量部、ベーマイト5重量部をア
トライターで約3分間混合して触媒担体スラリーを調製
した。 このスラリーを1.7Lのコージエライト製ハ
ニカムに、焼成後の固形分としてハニカム1Lあたり2
00g分コートし、500℃で1時間焼成した。その
後、白金をハニカム1Lあたり1.5g担持し、250
℃で1時間焼成した後、さらにロジウムをハニカム1L
あたり0.3g担持して貴金属担持触媒を調製した。
この触媒を排気量2リットルのエンジンを持つガソリン
自動車の排気管に取り付け、欧州走行を模試した触媒床
最高温度約1000℃の促進耐久走行試験を50時間行
った。
100 parts by weight of this carrier, 100 parts by weight of water,
20 parts by weight of aluminum nitrate and 5 parts by weight of boehmite were mixed by an attritor for about 3 minutes to prepare a catalyst carrier slurry. This slurry was applied to 1.7 L of cordierite honeycomb as solid matter after firing at a rate of 2 per 1 L of honeycomb.
It was coated for 00 g and baked at 500 ° C. for 1 hour. Thereafter, 1.5 g of platinum was supported per liter of honeycomb, and
After sintering at 1 ° C for 1 hour, rhodium was further added to honeycomb 1L.
Noble metal-supported catalyst was prepared by supporting 0.3 g per noble metal.
This catalyst was attached to the exhaust pipe of a gasoline vehicle having a 2 liter engine, and an accelerated durability test was performed for 50 hours at a maximum catalyst bed temperature of about 1000 ° C., which simulated European driving.

【0034】その後欧州走行を模試した走行時の排気分
析を触媒の上流部と下流部の排気について同時に行い、
排気成分(NOX、HC、CO)の平均浄化率を測定し
た。その結果この触媒は92%であった。浄化率測定後
触媒を分解して触媒の状態解析を実施した。XRD測定
の結果、セリウムとジルコニウムはほぼ均一な固溶体を
形成しており、その一次粒子径は12nmであった。ま
た触媒層の断面を研磨しSEM観察した結果、セリウム
とジルコニウムの固溶体が活性アルミナ担体の粒界部に
均一分散していることが確認された。さらに触媒層を掻
き取り粉末の比表面積測定した結果、約65m2の比表
面積を有することが確認された。さらに、この粉末を用
いて酸素吸蔵放出能を測定した結果、評価温度300℃
におけるセリウム1モルあたりOSCは0.06(モル
−O2/モル−Ce)であった。本比較例では、前駆体
形成時にアルミニウムイオンが存在しないのでセリアと
ジルコニアとの均一の固溶体は形成できるが表1に示す
ように焼成後の一次粒子径が大きくなりOSCも低く浄
化率も向上しない。
After that, an exhaust gas analysis at the time of running simulating the European running is simultaneously performed on the exhaust gas at the upstream portion and the downstream portion of the catalyst.
The average purification rate of the exhaust gas components (NO X, HC, CO) was measured. As a result, this catalyst was found to be 92%. After the measurement of the purification rate, the catalyst was decomposed to analyze the state of the catalyst. As a result of XRD measurement, cerium and zirconium formed a substantially uniform solid solution, and the primary particle diameter was 12 nm. The cross section of the catalyst layer was polished and observed by SEM. As a result, it was confirmed that the solid solution of cerium and zirconium was uniformly dispersed at the grain boundaries of the activated alumina carrier. Further, the catalyst layer was scraped off, and the specific surface area of the powder was measured. As a result, it was confirmed that the powder had a specific surface area of about 65 m 2 . Furthermore, as a result of measuring the oxygen storage / release ability using this powder, the evaluation temperature was 300 ° C.
Cerium per mole OSC at was 0.06 (mol -O 2 / mol -Ce). In this comparative example, a uniform solid solution of ceria and zirconia can be formed because no aluminum ions are present at the time of forming the precursor, but as shown in Table 1, the primary particle diameter after firing is large, the OSC is low, and the purification rate is not improved. .

【0035】[0035]

【発明の効果】本発明の複合酸化物担持触媒担体は、セ
リウム、ジルコニウム、アルミニウムのイオン溶液に過
酸化水素とアルカリを加えて酸化物の前駆体の懸濁液状
とし、これに比表面積の大きい活性アルミナ粉末などの
微細な(平均二次粒子径数μm以下が望ましい)担体を
加えて混合し、そのまま焼成して形成されている。
The composite oxide-supported catalyst carrier of the present invention is prepared by adding hydrogen peroxide and alkali to an ionic solution of cerium, zirconium and aluminum to form a suspension of an oxide precursor, which has a large specific surface area. It is formed by adding and mixing a fine carrier (preferably having an average secondary particle diameter of several μm or less) such as activated alumina powder, and baking the mixture as it is.

【0036】その結果、セリア−ジルコニアが均一に固
溶し、一次粒子径も小さく、かつアルミナなどの担体中
での分散性が向上し、耐熱性に優れた浄化性能を示す触
媒が形成できる。
As a result, it is possible to form a catalyst in which ceria-zirconia is uniformly dissolved, the primary particle diameter is small, the dispersibility in a carrier such as alumina is improved, and the purification performance is excellent in heat resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽布川 英夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 須田 明彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 森川 彰 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 神取 利男 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 木村 希夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 杉浦 正洽 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 右京 良雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 金沢 孝明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideo Sobugawa 41-cho, Chuchu-shi, Oku-cho, Nagakute-cho, Aichi-gun, Aichi 1 Toyota Central R & D Laboratories Co., Ltd. No. 41, Toyota Chuo R & D Co., Ltd., No. 41, Chuchu-Yokomichi (72) Inventor Akira Morikawa, No. 41, Toyota Chuo Research Institute, Co., Ltd. 41 Toyota Chuo R & D Co., Ltd., No. 41, Nagakute-cho, Nagakute-cho, Aichi-gun, Japan. (72) Inventor Kimura Norio 41 Toyota Central Research Laboratories, Co., Ltd. 72) Inventor Masataka Sugiura 41 Toyota Chuo R & D Laboratories, Inc. Male Aichi Prefecture Aichi-gun Nagakute Oaza Nagakute-shaped side street No. 41 land of 1 Co., Ltd. Toyota Central Research Institute in (72) inventor Takaaki Kanazawa Toyota City, Aichi Prefecture, Toyota-cho, Toyota first address Toyota Motor Co., Ltd. in

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セリウム、アルミニウム及びジルコニウ
ムの各イオンを含む混合溶液に、アルカリ性溶液と過酸
化水素水とを添加して複合酸化物の前駆体が分散した懸
濁液を形成し、該懸濁液に比表面積の大きな担体を添加
して混合物とし、該混合物を焼成して形成されたことを
特徴とする複合酸化物担持触媒担体。
An alkaline solution and a hydrogen peroxide solution are added to a mixed solution containing ions of cerium, aluminum and zirconium to form a suspension in which a precursor of a composite oxide is dispersed. A composite oxide-carrying catalyst carrier formed by adding a carrier having a large specific surface area to a liquid to form a mixture and calcining the mixture.
JP01246097A 1997-01-27 1997-01-27 Composite oxide supported catalyst carrier Expired - Fee Related JP3330296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01246097A JP3330296B2 (en) 1997-01-27 1997-01-27 Composite oxide supported catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01246097A JP3330296B2 (en) 1997-01-27 1997-01-27 Composite oxide supported catalyst carrier

Publications (2)

Publication Number Publication Date
JPH10202101A true JPH10202101A (en) 1998-08-04
JP3330296B2 JP3330296B2 (en) 2002-09-30

Family

ID=11805972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01246097A Expired - Fee Related JP3330296B2 (en) 1997-01-27 1997-01-27 Composite oxide supported catalyst carrier

Country Status (1)

Country Link
JP (1) JP3330296B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020227A (en) * 2001-07-02 2003-01-24 Toyota Central Res & Dev Lab Inc Fine mixed oxide powder, production method thereor and catalyst
US6932848B2 (en) 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
JP2006160578A (en) * 2004-12-09 2006-06-22 Toyota Central Res & Dev Lab Inc Composite oxide and catalyst for cleaning exhaust gas
US7166263B2 (en) 2002-03-28 2007-01-23 Utc Fuel Cells, Llc Ceria-based mixed-metal oxide structure, including method of making and use
CN1314783C (en) * 2003-07-29 2007-05-09 中国石油化工股份有限公司齐鲁分公司 Catalyst of inverting thiol in liquefied gas and producing process thereof
JP2009090235A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
WO2009054315A1 (en) 2007-10-23 2009-04-30 Cataler Corporation Exhaust gas purification catalyst
JP4586293B2 (en) * 2001-04-13 2010-11-24 株式会社豊田中央研究所 NOx occlusion agent, NOx occlusion reduction type catalyst and method for producing the same
WO2011010700A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
WO2011010699A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
WO2011030831A1 (en) 2009-09-10 2011-03-17 株式会社 キャタラー Catalyst for exhaust gas purification
WO2015087836A1 (en) 2013-12-11 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst
EP3153225A1 (en) 2015-10-08 2017-04-12 Cataler Corporation Exhaust gas-purifying catalyst
DE102017101059A1 (en) 2016-01-21 2017-07-27 Cataler Corporation purifying catalyst
WO2017150350A1 (en) 2016-03-01 2017-09-08 株式会社キャタラー Exhaust gas purification catalyst
US9789469B2 (en) 2016-02-19 2017-10-17 Cataler Corporation Exhaust gas-purifying catalyst and exhaust gas-purifying catalyst material
US10471419B2 (en) 2016-01-13 2019-11-12 Korea Institute Of Energy Research Method for forming metal oxide coating layer on catalyst substrate, catalyst substrate including metal oxide coating layer and catalyst apparatus
CN114130390A (en) * 2021-10-20 2022-03-04 四川大学 Method for preparing integral torch combustion catalyst based on etching method and application

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586293B2 (en) * 2001-04-13 2010-11-24 株式会社豊田中央研究所 NOx occlusion agent, NOx occlusion reduction type catalyst and method for producing the same
JP2003020227A (en) * 2001-07-02 2003-01-24 Toyota Central Res & Dev Lab Inc Fine mixed oxide powder, production method thereor and catalyst
US7166263B2 (en) 2002-03-28 2007-01-23 Utc Fuel Cells, Llc Ceria-based mixed-metal oxide structure, including method of making and use
US7612011B2 (en) 2002-03-28 2009-11-03 Utc Power Corporation Ceria-based mixed-metal oxide structure, including method of making and use
US6932848B2 (en) 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
CN1314783C (en) * 2003-07-29 2007-05-09 中国石油化工股份有限公司齐鲁分公司 Catalyst of inverting thiol in liquefied gas and producing process thereof
JP4677779B2 (en) * 2004-12-09 2011-04-27 株式会社豊田中央研究所 Composite oxide and exhaust gas purification catalyst
JP2006160578A (en) * 2004-12-09 2006-06-22 Toyota Central Res & Dev Lab Inc Composite oxide and catalyst for cleaning exhaust gas
JP2009090235A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
WO2009054315A1 (en) 2007-10-23 2009-04-30 Cataler Corporation Exhaust gas purification catalyst
US8361925B2 (en) 2007-10-23 2013-01-29 Cataler Corporation Exhaust gas-purifying catalyst
WO2011010699A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
US9358535B2 (en) 2009-07-24 2016-06-07 Cataler Corporation Exhaust gas-purifying catalyst
WO2011010700A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
US9295945B2 (en) 2009-07-24 2016-03-29 Cataler Corporation Exhaust gas-purifying catalyst
US8569198B2 (en) 2009-09-10 2013-10-29 Cataler Corporation Exhaust gas-purifying catalyst
WO2011030831A1 (en) 2009-09-10 2011-03-17 株式会社 キャタラー Catalyst for exhaust gas purification
WO2015087836A1 (en) 2013-12-11 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst
US9597663B2 (en) 2013-12-11 2017-03-21 Cataler Corporation Exhaust cleaning catalyst
EP3153225A1 (en) 2015-10-08 2017-04-12 Cataler Corporation Exhaust gas-purifying catalyst
US10279338B2 (en) 2015-10-08 2019-05-07 Cataler Corporation Exhaust gas-purifying catalyst
US10471419B2 (en) 2016-01-13 2019-11-12 Korea Institute Of Energy Research Method for forming metal oxide coating layer on catalyst substrate, catalyst substrate including metal oxide coating layer and catalyst apparatus
DE102017101059A1 (en) 2016-01-21 2017-07-27 Cataler Corporation purifying catalyst
US9855550B2 (en) 2016-01-21 2018-01-02 Cataler Corporation Exhaust gas-purifying catalyst
US9789469B2 (en) 2016-02-19 2017-10-17 Cataler Corporation Exhaust gas-purifying catalyst and exhaust gas-purifying catalyst material
WO2017150350A1 (en) 2016-03-01 2017-09-08 株式会社キャタラー Exhaust gas purification catalyst
US10710023B2 (en) 2016-03-01 2020-07-14 Cataler Corporation Exhaust gas purification catalyst
CN114130390A (en) * 2021-10-20 2022-03-04 四川大学 Method for preparing integral torch combustion catalyst based on etching method and application

Also Published As

Publication number Publication date
JP3330296B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
JP3330296B2 (en) Composite oxide supported catalyst carrier
EP2335823B1 (en) Exhaust gas purification catalyst and exhaust gas purification method using same
CN1921935B (en) Composition based on oxides of zirconium, praseodymium, lanthanum or neodymium, method for the preparation and use thereof in a catalytic system
JP5076377B2 (en) Exhaust gas purification catalyst
CN100584762C (en) Zirconium and yttrium oxide-based composition, method for preparing same and use thereof in a catalyst system
RU2731104C2 (en) Catalysts based on platinum group metals (pgm) for automotive exhaust treatment
US7641875B1 (en) Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts
JP6732766B2 (en) Rhodium-containing catalyst for automobile exhaust gas treatment
CN100553760C (en) The production method of catalysed particulate filter and the filter that obtains thus
RU2515542C2 (en) Exhaust gas cleaning catalyst and method of its production
JP4950365B2 (en) Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst
CN101293203A (en) Exhaust gas purification catalyst and manufacturing method thereof
CN105873663A (en) Inorganic oxide material
JP3238316B2 (en) Exhaust gas purification catalyst
TW200846068A (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JP2005139029A (en) Oxide powder, its preparation process, and catalyst
WO2018147408A1 (en) Exhaust gas purifying catalyst composition, method for producing same and exhaust gas purifying catalyst for automobiles
JP4316586B2 (en) Exhaust gas purification catalyst
JP6544880B1 (en) Catalyst for hydrogen production and catalyst for purification of exhaust gas using the same
JP2002220228A (en) Oxide powder, method for producing the same, and catalyst
JP3250714B2 (en) Oxide-supported catalyst carrier, method for producing the same, and catalyst for purifying exhaust gas
JP7329060B2 (en) Exhaust gas purifying catalyst, exhaust gas purifying method, and exhaust gas purifying catalyst manufacturing method
JPH08323205A (en) Exhaust gas purifying catalyst and its production
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2006297236A (en) Catalyst for cleaning exhaust gas and manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees