JPH10199507A - Electrode for lithium secondary battery - Google Patents

Electrode for lithium secondary battery

Info

Publication number
JPH10199507A
JPH10199507A JP9005747A JP574797A JPH10199507A JP H10199507 A JPH10199507 A JP H10199507A JP 9005747 A JP9005747 A JP 9005747A JP 574797 A JP574797 A JP 574797A JP H10199507 A JPH10199507 A JP H10199507A
Authority
JP
Japan
Prior art keywords
average particle
particle diameter
active substance
assistant agent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9005747A
Other languages
Japanese (ja)
Inventor
Kimihiro Morita
公裕 守田
Tomoo Numazawa
朋雄 沼沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9005747A priority Critical patent/JPH10199507A/en
Publication of JPH10199507A publication Critical patent/JPH10199507A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the intensity of over-voltage and to aim at improvement in electric collection property among active substances by controlling the compound ratio and average particle diameter in relation to the active substance of a conductive assistant agent, by composing an electrode from a positive pole active material and a conductive assistant agent with an average particle diameter within a specific range capable of storing/releasing lithium. SOLUTION: An electrode is composed of a positive electrode active substance capable of occluding discharging lithium with an average particle diameter in a range from 10 to 20μm and a conductive assistant agent. The average particle diameter ratio to the of the positive pole active substance is set in a range from 0.1 to 1.0, conductive assistant agent is packed in gaps among the positive pole active substance so as to reduce the impedance to improve the electricity collective property. If the average particle diameter ratio is larger than 1.0, the active substance bulk density is low to cause reduction in battery capacity and when it is smaller than 0.1, the collective property among active substances is poor and overvoltage becomes further higher so as to cause deterioration of cycle property. In addition, the quantity of conductive assistant agent is set to 2.0 to 10weight% in relation to 100weight% of the active substance, so as to pack the conductive assistant agent into gaps in positive electrode active substance so as to enhance electric collective property. In this case, less than 2.0% of assistant agent may cause poor electric collection property and more than 10% gap is widened, active substance bulk density is lowered so that the battery capacity is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
の充放電特性を改善する事を目的とした電池電極の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a battery electrode for improving the charge / discharge characteristics of a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、軽量化はめざ
ましく、それに伴い電源となる電池に対しても高性能、
小型化、軽量化が要求されている。その中でもリチウム
二次電池は高エネルギー密度の高性能電池として有望視
されている。従来のリチウム二次電池は、活物質粉末と
バインダーを混合し、結着剤とともに溶剤に分散させた
スラリーを金属箔上に塗布・乾燥して作成し電極として
用いた。かかる従来のリチウム二次電池用正極は活物質
自体の導電性が小さいために電極内部の各活物質間の集
電が達成されず電池にしたときの過電圧が高くなり電池
容量を高く得られないという問題があった。
2. Description of the Related Art In recent years, miniaturization and weight reduction of electronic devices have been remarkable, and with this, high performance has been achieved for batteries as power sources.
Miniaturization and weight reduction are required. Among them, lithium secondary batteries are promising as high performance batteries with high energy density. A conventional lithium secondary battery is prepared by mixing an active material powder and a binder, dispersing the slurry together with a binder in a solvent, applying the slurry on a metal foil, drying the slurry, and using it as an electrode. In such a conventional positive electrode for a lithium secondary battery, since the conductivity of the active material itself is small, current collection between the respective active materials inside the electrode is not achieved, and an overvoltage when the battery is formed becomes high, so that a high battery capacity cannot be obtained. There was a problem.

【0003】これに対し、たとえば特開平4−1623
57号公報では正極活物質の平均粒子径が0.1〜10
μmのものに導電助剤として平均粒子径が0.01〜
0.08μmのカーボンを混合することを開示してい
る。一方、特開平8−83607号公報では、平均粒子
径が1μm以下の粒子の割合が10%以上の天然黒鉛を
添加することで集電性を高めることが開示されている。
On the other hand, for example, Japanese Patent Laid-Open No.
No. 57, the average particle diameter of the positive electrode active material is 0.1 to 10
μm as a conductive additive with an average particle diameter of 0.01 to
It discloses mixing 0.08 μm of carbon. On the other hand, Japanese Patent Application Laid-Open No. 8-83607 discloses that the current collecting property is enhanced by adding natural graphite in which the ratio of particles having an average particle diameter of 1 μm or less is 10% or more.

【0004】しかしながら、これらの提案で用いた導電
助剤は平均粒子径が1μm以下の粒子の含有率が高いた
めに積層体の厚みが大きく塗膜後のプレス回数、プレス
圧力を高めなければ目的とする膜厚を達成できず、仮に
目標膜厚を達成できない場合は十分な電池容量を確保で
きないという欠点があった。
However, since the conductive additive used in these proposals has a high content of particles having an average particle diameter of 1 μm or less, the thickness of the laminate is large, and the number of presses after coating and the press pressure must be increased. If the target film thickness cannot be achieved, a sufficient battery capacity cannot be secured.

【0005】[0005]

【発明が解決しようとする課題】本発明はこれらの問題
を解決するためになされたものである。すなわち、リチ
ウム二次電池用電極として、導電助剤を添加することで
電池にしたときの過電圧を小さくせしめ、さらに導電助
剤の活物質に対する配合比、平均粒径比を制御すること
で活物質間の集電性を高め、電池缶の電池容量を高める
ものである。
The present invention has been made to solve these problems. That is, as an electrode for a lithium secondary battery, the addition of a conductive additive reduces the overvoltage when the battery is formed, and further controls the compounding ratio of the conductive additive to the active material and the average particle size ratio to control the active material. It improves the current collection between the batteries and increases the battery capacity of the battery can.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に、本発明の電極は、リチウムの吸蔵放出が可能で平均
粒子径10〜20μmの正極活物質と導電助剤とからな
るリチウム二次電池用電極であって、正極活物質に対す
る導電助剤の平均粒子径比が0.1〜1.0であり、該
導電助剤を正極活物質に対し2.0〜10重量%添加す
る事を特徴とする。また導電助剤は、その粒度分布にお
いて平均粒子径1μm未満の粒子の含有率が5%未満で
あることを特徴とする。
In order to solve the above problems, an electrode of the present invention comprises a lithium secondary electrode comprising a positive electrode active material capable of inserting and extracting lithium and having an average particle diameter of 10 to 20 μm and a conductive auxiliary. An electrode for a battery, wherein the average particle diameter ratio of the conductive auxiliary to the positive electrode active material is 0.1 to 1.0, and the conductive auxiliary is added at 2.0 to 10% by weight to the positive electrode active material. It is characterized by. The conductive additive is characterized in that the content of particles having an average particle size of less than 1 μm is less than 5% in the particle size distribution.

【0007】本発明の正極活物質に対する導電助剤の平
均粒子径比は0.1〜1.0であることが望ましい。こ
の平均粒子径比範囲では正極活物質間の隙間に導電助剤
が入り込むことでインピーダンスが下がり集電性を高め
ることが可能となる。また、活物質嵩密度を容易に高め
ることができるので電池容量を高める効果を有する。し
かしながら、平均粒子径比が1.0より大きくなると活
物質嵩密度が低くなり電池容量が低下する。また、平均
粒子径比が0.1より小さくなると活物質間の集電性が
悪くなるために過電圧が高くなりサイクル性が低下す
る。
The average particle size ratio of the conductive auxiliary to the positive electrode active material of the present invention is desirably 0.1 to 1.0. In this average particle size ratio range, the impedance is reduced by the conductive auxiliary agent entering the gap between the positive electrode active materials, so that the current collecting property can be improved. Further, since the bulk density of the active material can be easily increased, there is an effect of increasing the battery capacity. However, when the average particle diameter ratio is larger than 1.0, the bulk density of the active material decreases, and the battery capacity decreases. On the other hand, if the average particle diameter ratio is smaller than 0.1, the current collecting property between the active materials deteriorates, so that the overvoltage increases and the cyclability decreases.

【0008】また、本発明に用いる導電助剤は活物質1
00重量部に対して2.0〜10重量%である。この範
囲であれば導電助剤が正極活物質間の隙間に理想的に詰
め込まれ集電性を高める効果が得られる。しかしなが
ら、導電助剤添加量が2.0重量%未満であると集電性
が悪くなりサイクル性が低下する。また、10重量%を
越えると活物質間の隙間を導電助剤が広げるため活物質
嵩密度が低くなり電池容量が低下する。
[0008] The conductive additive used in the present invention is active material 1
2.0 to 10% by weight based on 00 parts by weight. Within this range, the conductive additive is ideally packed in the gaps between the positive electrode active materials, and the effect of improving the current collecting property can be obtained. However, if the amount of the conductive additive is less than 2.0% by weight, the current collecting property is deteriorated, and the cyclability is reduced. On the other hand, when the content exceeds 10% by weight, the conductive aid widens the gap between the active materials, so that the bulk density of the active material is reduced and the battery capacity is reduced.

【0009】さらに導電助剤の粒度分布において1μm
未満の粒子の含有率は成形加工性の面からは5%未満で
あることが好ましい。5%以上の含有率になると成形加
工性が低下、もしくは成形加工効率が低下する。正極活
物質としては下記の化学式(I)で示される酸化物であ
る。、 化学組成式(I):Lixyz2 (Mは遷移金属の
少なくとも一種を表し、Nは非遷移金属の少なくとも一
種を表し、XYZ は各々0.05<X<1.10,0.8
5<Y<1.00,0≦Z<0.10の数である。) 本発明の正極の活物質に好ましく用いられる酸化物とし
ては、化学組成式Li xyz2 (Mはコバルト、ニ
ッケル、マンガン及びその他の遷移金属の一種、または
それらの混合物を表し、NはAl、In、Snの少なく
とも一種を表し、XYZ は各々0.05<X<1.10,
0.85<Y<1.00,0≦Z<0.10)である。
もっと好ましくはLiCoSnO2,LiNiSn
z2、LiNiSnz2、LiMnSnz2及びこれら
の混合物である。(ただし、0≦Z<0.10であ
る。) 尚、上記の化学組成式で定義した無機化合物には、Li
0.5MnO2、すなわち一般にLiMn24と記述される
組成の化合物も含む。また、Z=0、すなわちAl,I
n、Snを含まない場合も本発明の範囲である。
Further, the particle size distribution of the conductive additive is 1 μm.
The content of particles less than 5% is less than 5% from the viewpoint of moldability.
Preferably, there is. When the content exceeds 5%,
The workability decreases, or the molding efficiency decreases. Positive electrode active
The substance is an oxide represented by the following chemical formula (I).
You. Chemical composition formula (I): LixMyNzOTwo(M is the transition metal
N represents at least one of the non-transition metals
Represents the species,XYZAre 0.05 <X <1.10 and 0.8, respectively.
5 <Y <1.00, 0 ≦ Z <0.10. An oxide preferably used for the active material of the positive electrode of the present invention
The chemical composition formula Li xMyNzOTwo(M is cobalt, d
One of nickel, manganese and other transition metals, or
N represents less of Al, In and Sn.
Both represent a kind,XYZAre 0.05 <X <1.10.
0.85 <Y <1.00, 0 ≦ Z <0.10).
More preferably LiCoSnOTwo, LiNiSn
zOTwo, LiNiSnzOTwo, LiMnSnzOTwoAnd these
Is a mixture of (However, 0 ≦ Z <0.10
You. The inorganic compounds defined by the above chemical composition formula include Li
0.5MnOTwoIe, generally LiMnTwoOFourDescribed as
Also includes compounds of the composition. Z = 0, that is, Al, I
The case where n and Sn are not included is also within the scope of the present invention.

【0010】本発明に係る電極に用いる導電助剤の材質
としては、炭素であることが必須であるが、炭素の種類
に特に制限はなく、活性炭、各種のコークス、天然及び
人造の各種黒鉛等を用いることができる。これらの炭素
のうち、その電気伝導性が良好であることから天然及び
人造の各種黒鉛類が好ましい。本発明の導電助剤の形状
には特に制限はないが、球形、破砕状のものが好まし
い。
The material of the conductive additive used in the electrode according to the present invention is essentially carbon, but there is no particular limitation on the type of carbon. Activated carbon, various cokes, various natural and artificial graphites, etc. Can be used. Of these carbons, various natural and artificial graphites are preferred because of their good electrical conductivity. The shape of the conductive additive of the present invention is not particularly limited, but is preferably spherical or crushed.

【0011】尚、本発明で言う粒度分布は乾式レーザー
法により測定した値であり(使用機器:HELOS製乾
式粒度分布測定器)、平均粒子径とは50%体積粒径を
言う。 本発明の導電助剤自身の嵩密度には、特に制限
はないが、好ましくは、0.1g/cm3以上であり、
さらに好ましくは0.1〜0.3g/cm3、もっとも
好ましくは、0.1〜0.2g/cm3の範囲である。
導電助剤自身の嵩密度が小さすぎると、電極中の集電性
が悪くなりサイクル性が悪くなる。また導電助剤自身の
嵩密度が大きすぎると活物質自身の嵩密度が小さくなり
電池容量が低下する。
The particle size distribution referred to in the present invention is a value measured by a dry laser method (used equipment: HELOS dry particle size distribution measuring device), and the average particle size means a 50% volume particle size. The bulk density of the conductive additive itself of the present invention is not particularly limited, but is preferably 0.1 g / cm 3 or more,
More preferably, it is in the range of 0.1 to 0.3 g / cm 3 , most preferably, in the range of 0.1 to 0.2 g / cm 3 .
If the bulk density of the conductive additive itself is too small, the current collecting property in the electrode will be poor, and the cycle property will be poor. On the other hand, if the bulk density of the conductive additive itself is too large, the bulk density of the active material itself becomes small, and the battery capacity decreases.

【0012】本発明の電極の製造方法には、特に制限は
ないが種々の方法により活物質と導電助剤を気体中で混
合した後に、結着剤を含む液体に分散することでスラリ
ーを調製した後に塗布・乾燥する方法が推奨される。ス
ラリーを塗布する集電体には各種の処理をしたアルミニ
ウムを正極に用いるのが好ましい。結着剤としてはテフ
ロン、ポリエチレン、ニトリルゴム、ポリブタジエン、
ブチルゴム、ポリスチレン、スチレン/ブタジエンゴ
ム、多硫化ゴム、ニトロセルロース、シアノエチルセル
ロース、各種のラテックス及びアクリロニトリル、フッ
化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ
化クロロプレン等の重合体及びれらの混合体などが用い
られる。中でもフッ化ビニリデン、フッ化プロピレン、
フッ化クロロプレン等の重合体が好ましい。
The method for producing an electrode of the present invention is not particularly limited, but a slurry is prepared by mixing an active material and a conductive aid in a gas by various methods and then dispersing the mixture in a liquid containing a binder. After that, it is recommended to apply and dry. For the current collector to which the slurry is applied, it is preferable to use aluminum subjected to various treatments for the positive electrode. Teflon, polyethylene, nitrile rubber, polybutadiene,
Butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes and polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride and mixtures thereof Are used. Among them, vinylidene fluoride, propylene fluoride,
Polymers such as fluorinated chloroprene are preferred.

【0013】本発明の電極のプレス方法には、特に制限
はないが加圧ロールプレス法により行うことが好まし
い。ロールプレスの温度は特に制限はないが、嵩密度を
効率よくあげるためには、使用しているバインダーの融
点付近、好ましくは融点+20℃〜融点−20℃の範
囲、より好ましくは融点−20℃の温度条件が好まし
い。
The method for pressing an electrode of the present invention is not particularly limited, but is preferably performed by a pressure roll press method. The temperature of the roll press is not particularly limited, but in order to increase the bulk density efficiently, it is around the melting point of the binder used, preferably in the range of + 20 ° C to -20 ° C, more preferably -20 ° C. Temperature conditions are preferred.

【0014】[0014]

【発明の実施の形態】以下、実施例、比較例により本発
明を詳細に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to examples and comparative examples.

【0015】[0015]

【実施例1】平均粒径18μmのLiCoO2100重
量部に平均粒子径2.25μmの炭素材料を2重量部添
加しサンプルミルで5分間撹拌した。出来上がったコン
パウンドを6g計量し面積2cm2の筒に入れ上と下か
ら金属棒で押し圧200kg/fで押さえ込みサンプル
の嵩密度を3.0g/cm3に保った状態で100Hz
でのインピーダンスを測定する。そのときのインピーダ
ンス、導電助剤中の1μm未満の微粉含有率を表1に示
す。
Example 1 2 parts by weight of a carbon material having an average particle size of 2.25 μm was added to 100 parts by weight of LiCoO 2 having an average particle size of 18 μm, and the mixture was stirred with a sample mill for 5 minutes. 6 g of the completed compound is weighed, put into a cylinder having an area of 2 cm 2 , and pressed with a metal rod from above and below at a pressure of 200 kg / f, and the sample is maintained at a bulk density of 3.0 g / cm 3 at 100 Hz.
Measure the impedance at. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0016】[0016]

【実施例2】平均粒径18μmのLiCoO2100重
量部に平均粒径2.25μmの炭素材料を4重量部添加
した以外は実施例1と同様の操作を行った。そのときの
インピーダンス、導電助剤中の1μm未満の微粉含有率
を表1に示す。
Example 2 The same operation as in Example 1 was performed, except that 4 parts by weight of a carbon material having an average particle size of 2.25 μm was added to 100 parts by weight of LiCoO 2 having an average particle size of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0017】[0017]

【実施例3】平均粒径18μmのLiCoO2100重
量部に平均粒径2.25μmの炭素材料を6重量部添加
した以外は実施例1と同様の操作を行った。そのときの
インピーダンス、導電助剤中の1μm未満の微粉含有率
を表1に示す。
Example 3 The same operation as in Example 1 was performed except that 6 parts by weight of a carbon material having an average particle size of 2.25 μm was added to 100 parts by weight of LiCoO 2 having an average particle size of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0018】[0018]

【実施例4】平均粒径18μmのLiCoO2100重
量部に平均粒径3.6μmの炭素材料を4重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に示す。
Example 4 The same operation as in Example 1 was performed except that 4 parts by weight of a carbon material having an average particle size of 3.6 μm was added to 100 parts by weight of LiCoO 2 having an average particle size of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0019】[0019]

【実施例5】平均粒径18μmのLiCoO2100重
量部に平均粒径3.6μmの炭素材料を6重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に示す。
Example 5 The same operation as in Example 1 was performed except that 6 parts by weight of a carbon material having an average particle diameter of 3.6 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0020】[0020]

【実施例6】平均粒径18μmのLiCoO2100重
量部に平均粒径6.0μmの炭素材料を4重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に示す。
Example 6 The same operation as in Example 1 was carried out except that 4 parts by weight of a carbon material having an average particle diameter of 6.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0021】[0021]

【実施例7】平均粒径18μmのLiCoO2100重
量部に平均粒径6.0μmの炭素材料を6重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に示す。
Example 7 The same operation as in Example 1 was performed except that 6 parts by weight of a carbon material having an average particle diameter of 6.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0022】[0022]

【実施例8】平均粒径18μmのLiCoO2100重
量部に平均粒径7.0μmの炭素材料を4重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に記す。
Example 8 The same operation as in Example 1 was performed except that 4 parts by weight of a carbon material having an average particle diameter of 7.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0023】[0023]

【実施例9】平均粒径18μmのLiCoO2100重
量部に平均粒径7.0μmの炭素材料を6重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に示す。
Example 9 The same operation as in Example 1 was carried out except that 6 parts by weight of a carbon material having an average particle diameter of 7.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0024】[0024]

【実施例10】平均粒径18μmのLiCoO2100
重量部に平均粒径9.0μmの炭素材料を6重量部添加
した以外は実施例1と同様の操作を行った。そのときの
インピーダンス、導電助剤中の1μm未満の微粉含有率
を表1に示す。
Example 10 LiCoO 2 100 having an average particle size of 18 μm
The same operation as in Example 1 was performed except that 6 parts by weight of a carbon material having an average particle size of 9.0 μm was added to parts by weight. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0025】[0025]

【実施例11】平均粒径18μmのLiCoO2100
重量部に平均粒径17μmの炭素材料を8重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に示す。
Example 11 LiCoO 2 100 having an average particle size of 18 μm
The same operation as in Example 1 was performed except that 8 parts by weight of a carbon material having an average particle size of 17 μm was added to parts by weight. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0026】[0026]

【実施例12】平均粒径12μmのLiCoO2100
重量部に平均粒径12μmの炭素材料を6重量部添加し
た以外は実施例1と同様の操作を行った。そのときのイ
ンピーダンス、導電助剤中の1μm未満の微粉含有率を
表1に示す。
Example 12 LiCoO 2 100 having an average particle size of 12 μm
The same operation as in Example 1 was performed except that 6 parts by weight of a carbon material having an average particle size of 12 μm was added to parts by weight. Table 1 shows the impedance at that time and the content of fine powder of less than 1 μm in the conductive additive.

【0027】[0027]

【比較例1】平均粒径18μmのLiCoO2100重
量部に平均粒径1.5μmの炭素材料を2重量部添加し
た以外は実施例1と同様の操作を行った。その際、嵩密
度3.0を達成することはできなかった。
Comparative Example 1 The same operation as in Example 1 was performed except that 100 parts by weight of LiCoO 2 having an average particle size of 18 μm and 2 parts by weight of a carbon material having an average particle size of 1.5 μm were added. At that time, a bulk density of 3.0 could not be achieved.

【0028】[0028]

【比較例2】平均粒径18μmのLiCoO2100重
量部に平均粒径2.25μmの炭素材料を10重量部添
加した以外は実施例1と同様の操作を行った。その際、
嵩密度3.0を達成することはできなかった。
Comparative Example 2 The same operation as in Example 1 was performed, except that 10 parts by weight of a carbon material having an average particle size of 2.25 μm was added to 100 parts by weight of LiCoO 2 having an average particle size of 18 μm. that time,
A bulk density of 3.0 could not be achieved.

【0029】[0029]

【比較例3】平均粒径18μmのLiCoO2100重
量部に平均粒径3.6μmの炭素材料を1.8重量部添
加した以外は実施例1と同様の操作を行った。そのとき
のインピーダンスを表1に示す。
Comparative Example 3 The same operation as in Example 1 was performed except that 1.8 parts by weight of a carbon material having an average particle diameter of 3.6 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time.

【0030】[0030]

【比較例4】平均粒径18μmのLiCoO2100重
量部に平均粒径6.0μmの炭素材料を1.8重量部添
加した以外は実施例1と同様の操作を行った。そのとき
のインピーダンスを表1に示す。
Comparative Example 4 The same operation as in Example 1 was performed except that 1.8 parts by weight of a carbon material having an average particle diameter of 6.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time.

【0031】[0031]

【比較例5】平均粒径18μmのLiCoO2100重
量部に平均粒径7.0μmの炭素材料を1.8重量部添
加した以外は実施例1と同様の操作を行った。そのとき
のインピーダンスを表1に示す。
Comparative Example 5 The same operation as in Example 1 was performed except that 1.8 parts by weight of a carbon material having an average particle diameter of 7.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time.

【0032】[0032]

【比較例6】平均粒径18μmのLiCoO2100重
量部に平均粒径9.0μmの炭素材料を1.8重量部添
加した以外は実施例1と同様の操作を行った。そのとき
のインピーダンスを表1に示す。
Comparative Example 6 The same operation as in Example 1 was performed except that 1.8 parts by weight of a carbon material having an average particle size of 9.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle size of 18 μm. Table 1 shows the impedance at that time.

【0033】[0033]

【比較例7】平均粒径18μmのLiCoO2100重
量部に平均粒径27.0μmの炭素材料を1.8重量部
添加した以外は実施例1と同様の操作を行った。そのと
きのインピーダンスを表1に示す。
Comparative Example 7 The same operation as in Example 1 was performed except that 1.8 parts by weight of a carbon material having an average particle diameter of 27.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle diameter of 18 μm. Table 1 shows the impedance at that time.

【0034】[0034]

【比較例8】平均粒径18μmのLiCoO2100重
量部に平均粒径9.0μmの炭素材料を12重量部添加
した以外は実施例1と同様の操作を行った。その際、嵩
密度3.0を達成することはできなかった。
Comparative Example 8 The same operation as in Example 1 was performed, except that 12 parts by weight of a carbon material having an average particle size of 9.0 μm was added to 100 parts by weight of LiCoO 2 having an average particle size of 18 μm. At that time, a bulk density of 3.0 could not be achieved.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明は、リチウム二次電池用電極のイ
ンピーダンスを低くすることができるため、集電性及び
電池容量が高まる効果を有する。
According to the present invention, since the impedance of the electrode for a lithium secondary battery can be reduced, the current collecting property and the battery capacity are improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムの吸蔵放出が可能で平均粒子径
10〜20μmの正極活物質と導電助剤とからなるリチ
ウム二次電池用電極であって、正極活物質に対する導電
助剤の平均粒子径比が0.1〜1.0であり、該導電助
剤を正極活物質に対し2.0〜10重量%添加する事を
特徴とするリチウム二次電池用電極。
1. An electrode for a lithium secondary battery comprising a positive electrode active material capable of inserting and extracting lithium and having an average particle diameter of 10 to 20 μm, and a conductive auxiliary, wherein the average particle size of the conductive auxiliary with respect to the positive electrode active material is An electrode for a lithium secondary battery having a ratio of 0.1 to 1.0 and adding the conductive additive in an amount of 2.0 to 10% by weight based on the positive electrode active material.
【請求項2】 導電助剤は、その粒度分布において1μ
m未満の粒子の含有率が5%未満であることを特徴とす
る請求項1記載のリチウム二次電池用電極。
2. The conductive additive has a particle size distribution of 1 μm.
2. The electrode for a lithium secondary battery according to claim 1, wherein the content of particles having a particle size of less than m is less than 5%.
JP9005747A 1997-01-16 1997-01-16 Electrode for lithium secondary battery Withdrawn JPH10199507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9005747A JPH10199507A (en) 1997-01-16 1997-01-16 Electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9005747A JPH10199507A (en) 1997-01-16 1997-01-16 Electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10199507A true JPH10199507A (en) 1998-07-31

Family

ID=11619709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9005747A Withdrawn JPH10199507A (en) 1997-01-16 1997-01-16 Electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10199507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503946A (en) * 2015-01-13 2018-02-08 エルジー・ケム・リミテッド Method for producing positive electrode forming composition for lithium secondary battery, and positive electrode and lithium secondary battery produced using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503946A (en) * 2015-01-13 2018-02-08 エルジー・ケム・リミテッド Method for producing positive electrode forming composition for lithium secondary battery, and positive electrode and lithium secondary battery produced using the same
US10290859B2 (en) 2015-01-13 2019-05-14 Lg Chem, Ltd. Method of preparing composition for forming positive electrode of lithium secondary battery, and positive electrode and lithium secondary battery manufactured by using the composition

Similar Documents

Publication Publication Date Title
WO2017128983A1 (en) Positive electrode composite material for all-solid-state lithium ion battery and preparation method and application therefor
US20070190422A1 (en) Carbon nanotube lithium metal powder battery
WO2016202169A2 (en) High energy density lithium ion battery
EP0845158A1 (en) Rechargeable lithium battery having improved reversible capacity
JP5354893B2 (en) Lithium battery
JP2003100298A (en) Secondary battery and binder composition for electrode thereof
KR100313633B1 (en) Secondary battery
JP3615472B2 (en) Non-aqueous electrolyte battery
JP3399614B2 (en) Positive electrode mixture and battery using the same
JPH11213989A (en) Manufacture of positive electrode material for lithium secondary battery
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JP7484790B2 (en) All-solid-state battery
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JPH10199507A (en) Electrode for lithium secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP3621031B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2020053154A (en) Negative electrode mixture material
JP2003077478A (en) Lithium ion secondary battery
JPH1140139A (en) Positive electrode for battery and nonaqueous electrolyte secondary battery
JPH08138678A (en) Positive electrode mix
JPH02239572A (en) Polyaniline battery
JP2003217665A (en) Method of manufacturing solid electrolyte battery
JP2000306601A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406