JPH1019908A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JPH1019908A
JPH1019908A JP8167998A JP16799896A JPH1019908A JP H1019908 A JPH1019908 A JP H1019908A JP 8167998 A JP8167998 A JP 8167998A JP 16799896 A JP16799896 A JP 16799896A JP H1019908 A JPH1019908 A JP H1019908A
Authority
JP
Japan
Prior art keywords
humidity
sample
cell
scanning
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8167998A
Other languages
Japanese (ja)
Other versions
JP3108860B2 (en
Inventor
Masamichi Fujihira
正道 藤平
Masatoshi Yasutake
正敏 安武
Yasunori Hase
安規 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP08167998A priority Critical patent/JP3108860B2/en
Publication of JPH1019908A publication Critical patent/JPH1019908A/en
Application granted granted Critical
Publication of JP3108860B2 publication Critical patent/JP3108860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/16Vacuum environment

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine the hydrophilicity and hydrophobicity, along with the distribution thereof, on the entire surface and in the surface of a sample easily in a short time by controlling the ambient humidity of the sample accurately from a high vacuum state to a state saturated with steam. SOLUTION: Dry nitrogen is fed to a container A1 containing pure water in order to produce a gas saturated with steam which is then mixed with dry nitrogen at a predetermined ratio through a mixing valve A2 thus producing a gas having humidity of 0-100%. When the humidity is varied continuously, the mixing valve A2 may be feedback controlled such that a humidity sensor in a variable humidity cell O indicates a predetermined humidity. The gas having humidity of 0-100% is introduced through a flow-in port 11 into the variable humidity cell O and discharged through a discharge port 10. A temperature control heater 9 is wound around the variable humidity cell O and controlled such that the variable humidity cell O has a same temperature as a variable humidity unit A in order to prevent dew formation. A sample stage 5 is secured through a Teflon bellows to the variable humidity cell O and a sample heater 4 is embedded therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、試料を探針に対
して数ナノメートルに近づけた状態で走査し試料表面の
形状および物理情報を探針の変位として検出する走査型
プローブ顕微鏡に関し、特に試料表面の親水性疎水性の
分布をナノメーターの分解能で測定する装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope which scans a sample with the probe approaching a few nanometers with respect to the probe and detects the shape and physical information of the sample surface as displacement of the probe. The present invention relates to an apparatus for measuring the distribution of hydrophilicity and hydrophobicity on a sample surface with a resolution of nanometer.

【0002】[0002]

【従来技術】試料表面の親水性疎水性を測定する手段と
して試料表面に水滴を乗せその水滴の接触角を測定して
いた。この測定方法は、試料表面の親水性疎水性の分布
をナノメーターの分解能で測定することは不可能であ
る。一方、水分層11が形成された試料表面一点での吸
着力を走査型プローブ顕微鏡のフォースカーブモード
(図1参照)を使用して測定し、この測定を順番に多点
で行ない画像化する試みは、安江らによって行なわれて
いる(第54回応用物理学会術講演会予稿集第2分冊47
9 1993)。図1(a)はフォースカーブモードを
使用した測定方法示す。図1(a)において、試料表面
にカンチレバーを押しつけた後引き離す。この時、カン
チレバーにより試料面に作用する力をFcan 、水の吸着
層による吸着力をFad、試料面に働く全ての力をFenl
とするとFenl =Fcan +Fadと表される。図1(b)
はフォースカーブモードを使用した測定例を表す。図1
(b)において、実線はSi(シリコン:親水性)を示
し、破線はHC(ハイドロカーボン単分子膜:疎水性)
を示す。しかしこの方法は測定の各点でフォースカーブ
モードをとるため測定速度が遅く又探針が何回も試料表
面と衝突するため探針の寿命は短い。
2. Description of the Related Art As means for measuring the hydrophilicity / hydrophobicity of a sample surface, a water drop was placed on the sample surface and the contact angle of the water drop was measured. With this measuring method, it is impossible to measure the hydrophilic / hydrophobic distribution of the sample surface with a resolution of nanometer. On the other hand, the adsorption force at one point on the surface of the sample on which the water layer 11 is formed is measured by using a force curve mode (see FIG. 1) of a scanning probe microscope, and the measurement is sequentially performed at multiple points to produce an image. Was conducted by Yasue et al. (The 54th Symposium of the Japan Society of Applied Physics 2
9 1993). FIG. 1A shows a measurement method using the force curve mode. In FIG. 1A, the cantilever is pressed against the sample surface and then separated. At this time, the force acting on the sample surface by the cantilever is Fcan, the adsorption force by the water adsorption layer is Fad, and all the forces acting on the sample surface are Fenl.
Then, it is expressed as Fenl = Fcan + Fad. FIG. 1 (b)
Represents a measurement example using the force curve mode. FIG.
In (b), the solid line indicates Si (silicon: hydrophilic), and the broken line indicates HC (hydrocarbon monomolecular film: hydrophobic).
Is shown. However, this method takes a force curve mode at each point of measurement, so that the measurement speed is slow, and the life of the probe is short because the probe collides with the sample surface many times.

【0003】一方走査型プローブ顕微鏡は、試料の表面
形状と同時に探針のねじれ角を検出することにより摩擦
力の分布も高分解能で測定することができる.これらの
顕微鏡は、フリクションフォース顕微鏡(FFM)としてた
とえばC.M.Mate, G.M. Mcclelland らによって記述され
ている(C.M.Mate, G.M. Mcclelland,R.Erlandsson and
S.Chiang,Phys. Rev, Lett,59,1942 (1987)) 。
On the other hand, a scanning probe microscope can measure the distribution of frictional force with high resolution by detecting the torsion angle of the probe at the same time as the surface shape of the sample. These microscopes are described, for example, by Friction Force Microscopy (FFM) by CMMate, GM Mcclelland et al. (CMMate, GM Mcclelland, R. Erlandsson and
S. Chiang, Phys. Rev, Lett, 59, 1942 (1987)).

【0004】FFMの装置構成は、図2に示すように試
料の表面に微小な板ばね(カンチレバー22)を接触さ
せ、カンチレバー22の変位を検出するためにレーザー
ダイード21からカンチレバー22の背面にレーザー光
21を照射させ、カンチレバー22からの反射光を4 分
割の検出器で受ける構成となっている。従って4 分割の
検出器23の上下方向の検出器の差よりカンチレバー2
2の上下の変位を、また左右方向の検出器の差よりカン
チレバーのねじれ角を検出している。装置の構成例とし
てたとえば R.M. Overney et al., Nature, 359,133
(1992) の論文等多数ある。
[0004] As shown in FIG. 2, the FFM apparatus is configured such that a minute leaf spring (cantilever 22) is brought into contact with the surface of a sample, and a laser diode 21 is attached to the back of the cantilever 22 to detect the displacement of the cantilever 22. The laser beam 21 is irradiated, and the reflected light from the cantilever 22 is received by a four-divided detector. Therefore, the cantilever 2 is determined from the difference between the detectors in the vertical direction of the four-part detector 23.
The torsion angle of the cantilever is detected from the vertical displacement of 2 and the difference between the left and right detectors. For example, RM Overney et al., Nature, 359, 133
There are many papers (1992).

【0005】FFMは、表面形状と同時に,探針のねじ
れ角を検出することにより摩擦力の分布も高分解能で測
定することができるが、試料表面の吸着力の主原因とな
る試料の親水性疎水性の知見は得られない。
The FFM can measure the distribution of frictional force at a high resolution by detecting the torsion angle of the probe at the same time as the surface shape, but the hydrophilicity of the sample, which is the main cause of the attraction force on the sample surface, can be measured. No knowledge of hydrophobicity is obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記フリク
ションフォース顕微鏡(FFM)を用いて試料表面の吸着力
の主原因となる試料の親水性疎水性の知見を短い測定時
間で得ようと言うものである。また従来のFFM 測定では
探針のねじれ角を試料の摩擦力と定義していたが,探針
は試料表面からの力と試料表面に吸着した水分の吸着力
を受けているため.実際には二つの力を合わせたものが
測定される.本発明は上記問題点を解決し,一つは水分
の影響をなくし真の摩擦力を測定することと,新たに親
水性表面と疎水性表面の水分の吸着力の差から試料表面
の親水性の分布を測定することを目的としている。
SUMMARY OF THE INVENTION The present invention aims to obtain in a short measurement time the knowledge of hydrophilicity / hydrophobicity of a sample, which is the main cause of the adsorption force on the sample surface, using the above-mentioned friction force microscope (FFM). Things. In the conventional FFM measurement, the torsion angle of the probe was defined as the frictional force of the sample. However, the probe receives the force from the sample surface and the adsorption force of the moisture adsorbed on the sample surface. In practice, the sum of the two forces is measured. The present invention solves the above problems. One is to eliminate the influence of moisture and measure the true frictional force. The other is to newly measure the hydrophilicity of the hydrophilic surface and the hydrophobic surface. It is intended to measure the distribution of

【0007】[0007]

【課題を解決する手段】上記問題点を解決するため,こ
の発明の走査型プローブ顕微鏡は試料周囲の湿度を高真
空状態から飽和水蒸気量になるまでを含めて正確に制御
できるようにしたことを特徴とする。
In order to solve the above-mentioned problems, the scanning probe microscope of the present invention is designed so that the humidity around a sample can be accurately controlled from a high vacuum state to a saturated vapor amount. Features.

【0008】この時の作用を以下に説明する。フリクシ
ョンフォース顕微鏡(FFM)を用いて、疎水性の探針が試
料表面をカンチレバーと直角方向に走査しているとき、
カンチレバーのねじれ角α=DK μ(Fad+Fcan)(式
(1))になる。ここでD はカンチレバーの形状ファク
ター、ここでK は光てこの装置定数、μは摩擦係数、Fa
d は、試料表面の吸着力、Fcanは、カンチレバーのばね
が試料表面に作用している力である。今試料の周囲が高
真空状態つまり湿度0%に近いときは水分の吸着力Fad
が小さくなり、Fcan、D 、K は既知なため、式(1)よ
りμ摩擦係数のみが測定される.ここで試料周囲の湿度
を上げると、親水性の表面では湿度を上げていくに従い
表面の水分層の厚みが増加するため、吸着力Fad も大き
くなり、式(1)よりカンチレバーのねじれ角αが大き
くなる。疎水性の表面では、湿度を上げても吸着力Fad
に変化がないことからカンチレバーのねじれ角αは一定
であり、親水性表面と疎水性の表面では試料周囲の湿度
の変化について異なった応答を示す。図3 に親水性表面
と疎水性の表面において試料周囲の湿度を変化させたと
きの摩擦力の変化をしめす。従って図3 より試料周囲の
湿度を変化させながらカンチレバーのねじれ角をFFM で
測定することにより親水性表面と疎水性の表面の分布が
求められる.
The operation at this time will be described below. Using a friction force microscope (FFM), when a hydrophobic probe scans the sample surface at right angles to the cantilever,
The torsion angle α of the cantilever α = DK μ (Fad + Fcan) (Equation (1)). Where D is the shape factor of the cantilever, where K is the device constant of the optical lever, μ is the coefficient of friction, Fa
d is the adsorption force on the sample surface, and Fcan is the force acting on the sample surface by the cantilever spring. When the surroundings of the sample are in a high vacuum state, that is, when the humidity is close to 0%, the adsorbing power of water Fad
Becomes smaller and Fcan, D, and K are known, so that only the μ friction coefficient is measured from equation (1). Here, when the humidity around the sample is increased, as the humidity increases on the hydrophilic surface, the thickness of the water layer on the surface increases, so that the adsorption force Fad also increases, and the torsion angle α of the cantilever is calculated from Equation (1). growing. Adsorption power Fad on hydrophobic surfaces even when humidity increases
Is constant, the torsion angle α of the cantilever is constant, and the hydrophilic surface and the hydrophobic surface show different responses to changes in humidity around the sample. Figure 3 shows the change in friction force when the humidity around the sample is changed on the hydrophilic surface and the hydrophobic surface. Therefore, the distribution of the hydrophilic surface and the hydrophobic surface can be obtained by measuring the torsion angle of the cantilever with FFM while changing the humidity around the sample from Fig. 3.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施例1]図4 に実施例1 を示す。図4において、0
は湿度可変用セル、1はカンチレバー、2はカンチレバ
ーホルダー、3は試料、4は試料加熱ヒーター、5は試
料台(下部は鉄板5’が取り付けられている)、6はテ
フロン膜、7は上蓋、8はガラス板、9は湿度可変用セ
ル加熱ヒーター、10は排出口、11は流入口、12は
クラッチ機構(マグネット)、13はピエゾキャナー、
Aは湿度可変装置、A1は飽和水蒸気発生容器、A2は
混合バルブである。構成は、従来のAFM 装置のピエゾス
キャナー(13)の上に湿度可変用セルを取りつけ湿度可
変装置(A)につないでいる。
Embodiment 1 FIG. 4 shows Embodiment 1. In FIG.
Is a humidity variable cell, 1 is a cantilever, 2 is a cantilever holder, 3 is a sample, 4 is a sample heating heater, 5 is a sample stage (a steel plate 5 'is attached at the bottom), 6 is a Teflon film, 7 is an upper lid. , 8 is a glass plate, 9 is a cell heater for varying humidity, 10 is an outlet, 11 is an inlet, 12 is a clutch mechanism (magnet), 13 is a piezo canner,
A is a humidity variable device, A1 is a saturated steam generating vessel, and A2 is a mixing valve. The configuration is such that a variable humidity cell is mounted on a piezo scanner (13) of a conventional AFM device and connected to the variable humidity device (A).

【0010】湿度可変装置(A)は、純水の入っている
容器(A1) にたとえば乾燥窒素等を流入させ、水蒸気で
飽和した気体をつくる。この飽和水蒸気気体に前記の乾
燥窒素等を混合バルプ(A2) を用い一定の比率で混合さ
せ、湿度0 %-100%の気体を作成する。また湿度を連続
的に可変させる場合は、湿度可変セル(0)内に湿度セ
ンサーを入れ(図には示されていない)湿度可変セル
(0)内の湿度が所定の湿度になるように混合バルプ(A
2) をフィードバック制御してもよい。
The variable humidity device (A) allows, for example, dry nitrogen or the like to flow into a container (A1) containing pure water to produce a gas saturated with water vapor. The saturated steam gas is mixed with the above-mentioned dry nitrogen or the like at a fixed ratio using a mixed valve (A2) to produce a gas having a humidity of 0% to 100%. To change the humidity continuously, put a humidity sensor in the humidity variable cell (0) (not shown) and mix it so that the humidity in the humidity variable cell (0) becomes the specified humidity. Valp (A
2) may be feedback controlled.

【0011】つぎに湿度可変セル(0)を説明する。前
記の湿度0 %−100%の気体は、流入口(11)より湿
度可変セル(0)に導かれ排出口(10)より排出され
る。湿度可変セル(0)の周囲には温度制御用のヒータ
ー(9)がまかれ前記湿度可変装置(A)と等温になるよ
うに制御され露結を防止している。測定試料(3 )は、
試料台(5)に取りつけられ試料の下部には試料加熱用
のヒーター(4)が埋め込まれている。また試料台
(5)は、下部にうすい鉄板(5’)が取りつけられピ
エゾスキャナー(13)の上部に取りつけられたマグネ
ット(12)ともにクラッチ機構を構成し、ピエゾスキ
ャナー(13)と湿度可変セル(0) が、容易に脱着でき
るように構成されている。マグネットによるにクラッチ
機構は、磁気閉ループを構成し、外部に漏洩磁界がでな
いように構成されている。
Next, the variable humidity cell (0) will be described. The gas having a humidity of 0% to 100% is guided from the inflow port (11) to the variable humidity cell (0) and discharged from the discharge port (10). A heater (9) for temperature control is provided around the variable humidity cell (0) to control the temperature to be equal to that of the variable humidity device (A) to prevent condensation. The measurement sample (3)
A heater (4) for heating the sample is embedded in the lower part of the sample attached to the sample stage (5). The sample stage (5) has a thin iron plate (5 ') mounted on the lower part and a magnet (12) mounted on the upper part of the piezo scanner (13) to constitute a clutch mechanism. The piezo scanner (13) and the humidity variable cell (0) is configured to be easily detachable. The clutch mechanism is formed by a magnet so as to form a magnetic closed loop so that no leakage magnetic field exists outside.

【0012】また前記試料台(5)はアルミニュウム等
の重量の小さいもので構成され、テフロンの蛇腹状の幕
によって湿度可変セル(0)に固定されている。これら
の構成により、、ピエゾスキャナー(13)の走査速度
の劣下は少ない。湿度可変セル(0)の上部には上蓋
(7)にガラス板(8 )が取りつけられ、カンチレバー
ホルダー(2)に取り付けられたカンチレバー(1)を
上部からレーザー光を照射することにより、図2 で示す
光てこを構成し、セル外部に置かれている4 分割検出器
によりカンチレバー(1)の縦方向変位とねじれ角を検
出している。
The sample stage (5) is made of a small material such as aluminum, and is fixed to the humidity variable cell (0) by a bellows-like curtain of Teflon. With these configurations, the scanning speed of the piezo scanner (13) is less likely to deteriorate. A glass plate (8) is attached to the upper lid (7) on the upper part of the humidity variable cell (0), and the cantilever (1) attached to the cantilever holder (2) is irradiated with laser light from above to obtain a structure shown in FIG. The vertical displacement and the torsion angle of the cantilever (1) are detected by a four-segment detector placed outside the cell.

【0013】つぎに試料表面の疎水性親水性の分布をマ
ッピングする測定の手順を示す。まず測定試料(3)を
上蓋(7)をはずし試料台(5)上におく。カンチレバ
ー(1)上にレーザー光を照射し光てこを調整する。測
定試料(3)が変質しない程度の温度で試料加熱用のヒ
ーター(4)を制御し、また湿度可変装置(A)より乾燥
気体を流し試料面と探針先端部の水分を蒸発させる。測
定に使用するカンチレバー先端の探針は、疎水性のたと
えばシリコンナイトライド(Si3N4)が望ましい。充分に
針先および試料面の水分が蒸発した後試料加熱用のヒー
ター(4)をオフし、前記のFFM モードで試料の摩擦力
像を測定する。この画像A1(xi,yi, αi1) を画像メモリ
ーに記録する。ここでxi,yi,は画面の位置座標、αi1は
その座標位置でのカンチレバーのねじれ角に対応する。
つぎに湿度可変セル(0 )より湿度h %(通常は40−60
%程度)の気体を流入させる。この過程で作用の項で説
明したように試料表面中の親水性表面により多くの水分
が凝縮する。再び同一表面をFFM モードで試料の摩擦力
像を測定する。この画像A2(xi,yi, αi2) を画像メモリ
ーに記録する。2 回目の測定では、親水性表面は疎水性
表面に比較して表面により多くの水分が凝縮しているた
め探針の負荷が増加しその結果カンチレバーのねじれ角
が増大する。(αi2>αi1)従って画像A1と画像A2を比
較すると、親水性表面では疎水性表面に比較して像のコ
ントラストが増加し、容易に親水性表面と疎水性表面が
判別できる。また画像メモリー上でA2-A1 の演算を行い
(xi,yi,Δαi=αi2- αi1)このΔαi があるしきい値
(たとえば, Δαi >αi1)より大きいか判定すること
により親水性表面の分布がもとまる。
Next, a measurement procedure for mapping the distribution of hydrophobicity and hydrophilicity on the sample surface will be described. First, the measurement sample (3) is placed on the sample stage (5) by removing the upper lid (7). The cantilever (1) is irradiated with laser light to adjust the optical lever. The heater (4) for heating the sample is controlled at a temperature at which the sample (3) does not deteriorate, and a dry gas is flowed from the humidity variable device (A) to evaporate the water on the sample surface and the tip of the probe. The tip of the tip of the cantilever used for measurement is desirably hydrophobic, for example, silicon nitride (Si 3 N 4 ). After the water on the needle tip and the sample surface is sufficiently evaporated, the heater (4) for heating the sample is turned off, and the frictional force image of the sample is measured in the FFM mode. This image A1 (xi, yi, αi1) is recorded in the image memory. Here, xi, yi, correspond to the position coordinates of the screen, and αi1 corresponds to the torsion angle of the cantilever at the coordinate position.
Next, from the variable humidity cell (0), the humidity h% (normally 40-60
%) Of gas. In this process, more water condenses on the hydrophilic surface in the sample surface as explained in the section of action. Measure the frictional force image of the sample again on the same surface in FFM mode. This image A2 (xi, yi, αi2) is recorded in the image memory. In the second measurement, the hydrophilic surface has more moisture condensed on the surface than the hydrophobic surface, increasing the load on the probe and consequently increasing the torsion angle of the cantilever. (Αi2> αi1) Therefore, when comparing the image A1 and the image A2, the contrast of the image is increased on the hydrophilic surface as compared with the hydrophobic surface, and the hydrophilic surface and the hydrophobic surface can be easily distinguished. The calculation of A2-A1 is performed on the image memory (xi, yi, Δαi = αi2-αi1), and it is determined whether Δαi is larger than a certain threshold value (for example, Δαi> αi1). I get it.

【0014】この量Δαi を湿度h とカンチレバーの形
状ファクターD と光てこの装置定数K で規格化した量ρ
i=Δαi/(hDK )は試料表面の親水性の尺度を表わす。
より正確には、ある試料表面上の一点を中心として針先
を左右に微小量往復し各点でのカンチレバーのねじれ角
を測定(フリクショナル- カーブの測定)しながら、セ
ル内の湿度を低い方から高い方に可変し、湿度h と針先
を左右に微小量往復し左右でのカンチレバーのねじれ角
の差(Δ2αi)の1/2をプロットしその傾きよりΔα
i/h を求め、カンチレバーの形状ファクターD および光
てこの装置定数K で規格化しρi を求めることができ
る。親水性表面では左右往復に対するカンチレバーのね
じれ角は増大し疎水性表面では左右往復に対するカンチ
レバーのねじれ角は一定である。したがってフリクショ
ナルカーブを測定しながらセル内の湿度を可変すること
により容易に親水性表面および疎水性表面の判別が可能
となる。又ρは親水性表面に固有なパラメータとなり、
個々の親水性表面の尺度となる。
This quantity Δαi is defined as the quantity ρ normalized by the humidity h, the shape factor D of the cantilever, and the device constant K.
i = Δαi / (hDK) represents a measure of the hydrophilicity of the sample surface.
More precisely, the needle tip is reciprocated a small amount to the left and right around a point on a certain sample surface, and the torsion angle of the cantilever is measured at each point (measurement of the frictional curve) while the humidity in the cell is kept low. The needle is reciprocated a small amount back and forth between the humidity h and the needle tip, and the half of the difference in the twist angle of the cantilever (Δ2αi) is plotted.
i / h is obtained, and ρi can be obtained by normalizing with the cantilever shape factor D and the optical lever constant K. On a hydrophilic surface, the torsion angle of the cantilever with respect to the left and right reciprocation increases, and on a hydrophobic surface, the torsion angle of the cantilever with respect to the left and right reciprocation is constant. Therefore, the hydrophilic surface and the hydrophobic surface can be easily distinguished by varying the humidity in the cell while measuring the frictional curve. Ρ is a parameter unique to the hydrophilic surface,
It is a measure of the individual hydrophilic surface.

【0015】[実施例2]より正確な湿度の制御のため
に試料とAFM のスキャナー全体を真空容器のなかにいれ
装置内を真空排気する。この時実施例1 同様試料加熱ヒ
ーターを使用して試料表面の水分を蒸発させてもよい。
真空排気後FFM モードで試料の摩擦力像を測定する。つ
ぎに前記の湿度可変装置(A1)より湿度を制御された気体
をバリアブルリークバルプ等を使用して真空容器内に流
入する。その後再び実施例1 同様にFFM モードで試料の
摩擦力像を測定し、2 つの画像を比較し親水性表面およ
び疎水性表面の判別行う。
Embodiment 2 For more accurate humidity control, the sample and the entire AFM scanner are placed in a vacuum vessel and the inside of the apparatus is evacuated. At this time, moisture on the surface of the sample may be evaporated using a sample heater as in the first embodiment.
After evacuation, measure the frictional force image of the sample in FFM mode. Next, a gas whose humidity is controlled by the humidity variable device (A1) flows into the vacuum vessel using a variable leak valve or the like. Then, the frictional force image of the sample is measured again in the FFM mode as in Example 1, and the two images are compared to determine the hydrophilic surface and the hydrophobic surface.

【0016】この装置を用いると実施例1 に記したセル
に比較して気体の置換が迅速に行なえ測定時間が短縮す
る。また真空排気することにより試料と探針表面の水分
を実施例1 に比較してより減少でき、水分のない場合の
摩擦力分布をより正確に求めることができる。
When this apparatus is used, gas can be quickly replaced and the measurement time can be shortened as compared with the cell described in the first embodiment. Further, by evacuating, the moisture on the sample and the probe surface can be reduced more than in Example 1, and the frictional force distribution in the absence of moisture can be obtained more accurately.

【0017】[0017]

【発明の効果】本発明により、今まで困難であったナノ
メータースケールでの試料表面全体および表面内の親水
性および疎水性の判別またその分布が容易に短時間で求
められるようになった。また、試料表面がどの程度の親
水性であるかの尺度が得られ試料間の比較が容易になっ
た。
According to the present invention, the determination of the hydrophilicity and the hydrophobicity on the entire surface of a sample and the hydrophilicity on the surface and the distribution thereof on the nanometer scale, which have been difficult until now, can be easily obtained in a short time. Also, a measure of the degree of hydrophilicity of the sample surface was obtained, facilitating comparison between samples.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はフォースカーブモードを使用した測定
方法を示す概念図、(b)はフォースカーブモードを使
用した測定例である。
FIG. 1A is a conceptual diagram illustrating a measurement method using a force curve mode, and FIG. 1B is a measurement example using a force curve mode.

【図2】FFMの装置構成を示す概念図である。FIG. 2 is a conceptual diagram showing an apparatus configuration of an FFM.

【図3】親水性表面と疎水性表面で湿度を変化させた時
の摩擦力の変化を示す図である。
FIG. 3 is a diagram showing a change in friction force when humidity is changed between a hydrophilic surface and a hydrophobic surface.

【図4】湿度可変セルを使用した走査型プローブ顕微鏡
の説明図である。
FIG. 4 is an explanatory diagram of a scanning probe microscope using a variable humidity cell.

【符号の説明】[Explanation of symbols]

1 カンチレバー 4 試料加熱ヒーター 6 テフロン膜 8 ガラス板 9 湿度可変用セル加熱ヒーター 12 クラッチ機構 13 ピエゾスキャナー DESCRIPTION OF SYMBOLS 1 Cantilever 4 Sample heater 6 Teflon film 8 Glass plate 9 Humidity variable cell heater 12 Clutch mechanism 13 Piezo scanner

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 試料を探針に対して近づける手段と,試
料を探針に対して走査する手段と試料の表面情報を探針
の変位として検出する検出手段とを具備する走査型プロ
ーブ顕微鏡において,試料周囲の湿度を高真空状態から
飽和水蒸気量になるまでを含めて制御できるようにし、
低湿度の状態で測定した摩擦力像と同一場所で高湿度の
状態で測定した摩擦力像を比較することによって、この
試料表面の親水性疎水性の分布を測定することを特徴と
する走査型プローブ顕微鏡。
1. A scanning probe microscope comprising: means for bringing a sample closer to a probe; means for scanning the sample with respect to the probe; and detection means for detecting surface information of the sample as displacement of the probe. , So that the humidity around the sample can be controlled from high vacuum to saturated water vapor,
The scanning type is characterized by measuring the distribution of hydrophilicity / hydrophobicity of the sample surface by comparing the frictional force image measured in the same place with the frictional force image measured in a low humidity state. Probe microscope.
【請求項2】 走査型プローブ顕微鏡のピエゾスキャナ
ーの上に湿度を一定に制御できるセルを構成し湿度可変
装置と接続し、測定試料および探針付板ばね(カンチレ
バー)をセル内にいれたことを特徴とする請求項1 記載
の走査型プローブ顕微鏡。
2. A cell capable of controlling humidity constant on a piezo scanner of a scanning probe microscope, connected to a humidity variable device, and a measurement sample and a leaf spring with a probe (cantilever) are placed in the cell. The scanning probe microscope according to claim 1, wherein:
【請求項3】 請求項2のセル内において試料台に加熱
用のヒーターと、セル外部には湿度可変装置と等温にな
るように外部ヒーターを持つことを特徴とする請求項1
に記載の走査型プローブ顕微鏡。
3. The cell according to claim 2, further comprising a heater for heating the sample stage, and an external heater outside the cell so as to have an equal temperature with the humidity variable device.
2. A scanning probe microscope according to claim 1.
【請求項4】 請求項2のセルにおいて試料台は、ピエ
ゾスキャナーの走査を妨げないようにテフロン等の蛇腹
でセルに固定され、セルとピエゾスキャナーの脱着にマ
グネット等のクラッチ機構を有することを特徴とする請
求項1 に記載の走査型プローブ顕微鏡。
4. The cell according to claim 2, wherein the sample stage is fixed to the cell with a bellows such as Teflon so as not to hinder the scanning of the piezo scanner, and has a clutch mechanism such as a magnet for attaching and detaching the cell and the piezo scanner. The scanning probe microscope according to claim 1, wherein
【請求項5】 探針変位検出部を真空容器の外に構成
し,真空容器内の試料周囲の湿度を高真空状態から飽和
水蒸気量になるまでを含めて正確に制御できることを特
徴とする請求項1 記載の走査型プローブ顕微鏡。
5. The method according to claim 1, wherein the probe displacement detecting section is provided outside the vacuum vessel, and the humidity around the sample in the vacuum vessel can be accurately controlled from a high vacuum state to a saturated water vapor amount. Item 1. A scanning probe microscope according to Item 1.
JP08167998A 1996-06-27 1996-06-27 Scanning probe microscope Expired - Fee Related JP3108860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08167998A JP3108860B2 (en) 1996-06-27 1996-06-27 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08167998A JP3108860B2 (en) 1996-06-27 1996-06-27 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JPH1019908A true JPH1019908A (en) 1998-01-23
JP3108860B2 JP3108860B2 (en) 2000-11-13

Family

ID=15859913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08167998A Expired - Fee Related JP3108860B2 (en) 1996-06-27 1996-06-27 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3108860B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781788B2 (en) * 2001-03-21 2004-08-24 Orion Electric Co., Ltd. Video recorder housing having main-and-auxiliary pivoting gate assembly
JP2006284343A (en) * 2005-03-31 2006-10-19 National Institute For Materials Science Humidity sensor utilizing stress change resulting from volume expansion of polymer film
JP2007017388A (en) * 2005-07-11 2007-01-25 Jeol Ltd Scanned probe microscope
JP2008111735A (en) * 2006-10-31 2008-05-15 Sii Nanotechnology Inc Sample operation apparatus
JP2008122325A (en) * 2006-11-15 2008-05-29 Jeol Ltd Scanning probe microscope
JP2008232983A (en) * 2007-03-23 2008-10-02 Jeol Ltd Spm and spm-measuring method
CN111257596A (en) * 2020-02-25 2020-06-09 西南交通大学 Scanning probe microscope narrow and small experiment chamber environment atmosphere accurate control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781788B2 (en) * 2001-03-21 2004-08-24 Orion Electric Co., Ltd. Video recorder housing having main-and-auxiliary pivoting gate assembly
JP2006284343A (en) * 2005-03-31 2006-10-19 National Institute For Materials Science Humidity sensor utilizing stress change resulting from volume expansion of polymer film
JP4665144B2 (en) * 2005-03-31 2011-04-06 独立行政法人物質・材料研究機構 Humidity sensor using stress change with volume expansion of polymer film
JP2007017388A (en) * 2005-07-11 2007-01-25 Jeol Ltd Scanned probe microscope
JP2008111735A (en) * 2006-10-31 2008-05-15 Sii Nanotechnology Inc Sample operation apparatus
JP2008122325A (en) * 2006-11-15 2008-05-29 Jeol Ltd Scanning probe microscope
JP2008232983A (en) * 2007-03-23 2008-10-02 Jeol Ltd Spm and spm-measuring method
CN111257596A (en) * 2020-02-25 2020-06-09 西南交通大学 Scanning probe microscope narrow and small experiment chamber environment atmosphere accurate control device
CN111257596B (en) * 2020-02-25 2021-09-14 西南交通大学 Scanning probe microscope narrow and small experiment chamber environment atmosphere accurate control device

Also Published As

Publication number Publication date
JP3108860B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
US7017398B2 (en) Active probe for an atomic force microscope and method for use thereof
US6134955A (en) Magnetic modulation of force sensor for AC detection in an atomic force microscope
US7574903B2 (en) Method and apparatus of driving torsional resonance mode of a probe-based instrument
Tamayo et al. Piconewton regime dynamic force microscopy in liquid
US20190195910A1 (en) Material Property Measurements Using Multiple Frequency Atomic Force Microscopy
US5612491A (en) Formation of a magnetic film on an atomic force microscope cantilever
US10556793B2 (en) Thermal measurements using multiple frequency atomic force microscopy
US7204131B2 (en) Dynamic activation for an atomic force microscope and method of use thereof
US9696342B2 (en) Quantitative measurements using multiple frequency atomic force microscopy
US5700953A (en) Method for mapping mechanical property of a material using a scanning force microscope
US8156568B2 (en) Hybrid contact mode scanning cantilever system
JP3108860B2 (en) Scanning probe microscope
Stahl et al. Atomic force microscope using piezoresistive cantilevers and combined with a scanning electron microscope
US5838000A (en) Method device and system for optical near-field scanning microscopy of test specimens in liquids
An et al. Atomic force microscopy of proteins
Rangelow Scanning proximity probes for nanoscience and nanofabrication
Schiener et al. Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control
Stukalov et al. Relative humidity control for atomic force microscopes
Jarvis et al. Alternative method for the activation and measurement of lateral forces using magnetically controlled atomic force microscopy
Meier et al. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
WO2008156722A1 (en) Material property measurements using multiple frequency atomic forece microsocopy
Wessels et al. Imaging pulsed laser deposition oxide growth by in situ atomic force microscopy
TWM380334U (en) A constant vertical deflection feedback control system device for a contact mode microcantilever sensor
Sappat et al. DETERMINATION OF VIBRIO CHOLERAE O1 BASED ON MICROCANTILEVER BIOSENSOR USING DYNAMIC FORCE MICROSCOPY
Mechler Characterization and Analysis of Biomimetic Membranes

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees