JPH10197193A - Alloy tube for heat transfer tube of heat exchanger and its manufacture - Google Patents

Alloy tube for heat transfer tube of heat exchanger and its manufacture

Info

Publication number
JPH10197193A
JPH10197193A JP434197A JP434197A JPH10197193A JP H10197193 A JPH10197193 A JP H10197193A JP 434197 A JP434197 A JP 434197A JP 434197 A JP434197 A JP 434197A JP H10197193 A JPH10197193 A JP H10197193A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
alloy
pipe
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP434197A
Other languages
Japanese (ja)
Inventor
Kazutaka Okamoto
和孝 岡本
Yasuo Kondo
保夫 近藤
Akira Yoshinari
明 吉成
Junya Kaneda
潤也 金田
Yasuhisa Aono
泰久 青野
Hideyo Kodama
英世 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP434197A priority Critical patent/JPH10197193A/en
Publication of JPH10197193A publication Critical patent/JPH10197193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve resistance to corrosion, strength as well as heat conductivity and prolong the service life by a method wherein the inside part of a tube, which is constituted of an austenite-based stainless single-crystal steel, is inserted into the main body of the outside part of a tube, which is constituted of a copper alloy, to bond them through diffusion bonding. SOLUTION: A pipe 2, made of stainless steel, is inserted into the inside of another pipe 1, made of cooper alloy, to make a double pipe, then, the adhesion of both pipes is increased employing a mandrel mill. Subsequently, the other pipe 6, made of carbon steel, is welded to a part of welded section of an interface 5 between the copper alloy pipe 1 and the stainless steel pipe 2 at both end faces 3, 4 to degass the gas in the interface 5, then, the pipe 6 is sealed thereafter. Next, the double pipe is treated through HIP to bond the interface 5 through diffusion bonding and obtain a composite alloy tube. According to this method, strength, resistance to corrosion and resistance to pitting can be improved while the elongation of the life of the pipe can be contrived.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱交換器の伝熱管用
合金管及びその製造方法に関する。
The present invention relates to an alloy tube for a heat transfer tube of a heat exchanger and a method for producing the same.

【0002】[0002]

【従来の技術】従来、火力,原子力,石油,化学プラン
ト用熱交換器,産業用熱交換器,車載用熱交換器,民生
用熱交換器の伝熱管は、耐食性が良好であるため、銅合
金管が使用されている。しかし、銅合金製の伝熱管であ
っても、長期間使用すると腐食が進行し、冷却水が漏れ
ることがある。このため、各種のプラントに使用される
熱交換器では、冷却水中に第1鉄イオンを注入すること
により、伝熱管の内面に水酸化鉄または酸化鉄を主成分
とする保護皮膜を形成し、耐食性の改善が施されてい
る。
2. Description of the Related Art Conventionally, heat transfer tubes for thermal, nuclear, petroleum, and chemical plants, industrial heat exchangers, heat exchangers for vehicles, and heat exchangers for consumer use have good corrosion resistance, and therefore have a high corrosion resistance. Alloy tubes are used. However, even if the heat transfer tube is made of a copper alloy, if it is used for a long period of time, corrosion may progress and cooling water may leak. For this reason, in heat exchangers used in various plants, ferrous ions are injected into cooling water to form a protective film mainly composed of iron hydroxide or iron oxide on the inner surface of the heat transfer tube, Improvements in corrosion resistance have been made.

【0003】[0003]

【発明が解決しようとする課題】しかし、保護皮膜の形
成には長時間を要し、また通水初期段階においては保護
皮膜の厚みが薄く、耐食性は十分には得られず、さらに
冷却水中に第1鉄イオンを注入することは、自然環境に
対し好ましくない。
However, it takes a long time to form the protective film, and the thickness of the protective film is small at the initial stage of water penetration, the corrosion resistance is not sufficiently obtained, and the protective film is formed in cooling water. Implanting ferrous ions is undesirable for the natural environment.

【0004】本発明の目的は、耐食性が優れていると共
に、強度及び熱伝導性も優れ、長寿命を有する熱交換器
用伝熱管を提供することにある。
[0004] It is an object of the present invention to provide a heat exchanger tube for a heat exchanger having excellent corrosion resistance, excellent strength and thermal conductivity, and a long life.

【0005】[0005]

【課題を解決するための手段】本発明の熱交換器用伝熱
管は、銅合金からなる管外側部本体と、この管本体にオ
ーステナイト系ステンレス単結晶鋼からなる管内側部を
挿入し、拡散接合した複合材で構成され、放熱性及び耐
食性に優れることを特徴とする。
According to the heat transfer tube for a heat exchanger of the present invention, a tube outer portion made of a copper alloy and a tube inner portion made of austenitic stainless single crystal steel are inserted into the tube body, and diffusion bonding is performed. It is characterized by having excellent heat dissipation and corrosion resistance.

【0006】本発明は、無酸素銅からなる管外側部本体
及びオーステナイト系ステンレス単結晶鋼からなる管内
側部の複合材で構成され、放熱性及び耐食性に優れるこ
とを特徴とする熱交換器の伝熱管用合金管にある。
The present invention relates to a heat exchanger comprising a composite material of a tube outer portion made of oxygen-free copper and a tube inner portion made of austenitic stainless steel single crystal steel and having excellent heat dissipation and corrosion resistance. In alloy tubes for heat transfer tubes.

【0007】本発明は、銅合金からなる管外側部本体及
びオーステナイト系ステンレス単結晶鋼からなる管内側
部の複合材で構成され、放熱性及び耐食性に優れること
を特徴とする熱交換器の伝熱管用合金管にある。
The present invention is directed to a heat exchanger which comprises a composite material of a tube outer portion main body made of a copper alloy and a tube inner portion made of austenitic stainless steel single crystal steel, and is excellent in heat dissipation and corrosion resistance. In alloy tubes for heat pipes.

【0008】本発明は、銅合金からなる管外側部本体及
び重量でC:0.2%以下,N:0.5%以下,Si:1%
以下,P:0.040%以下,S:0.030%以下,M
n:2.0%以下,Mo:5.0%以下,Ni:9〜21
%及びCr:15〜26%を含有し、室温でオーステナ
イト単結晶相及び10%以下のフェライト相を有するオ
ーステナイト系ステンレス単結晶鋼からなる管内側部の
複合材で構成され、放熱性及び耐食性に優れることを特
徴とする熱交換器の伝熱管用合金管にある。
According to the present invention, an outer tube body made of a copper alloy and C: 0.2% or less, N: 0.5% or less, Si: 1% by weight.
Hereinafter, P: 0.040% or less, S: 0.030% or less, M
n: 2.0% or less, Mo: 5.0% or less, Ni: 9 to 21
% And Cr: 15 to 26%, and is composed of a composite material inside the tube made of austenitic stainless steel single crystal steel having an austenitic single crystal phase and a ferrite phase of 10% or less at room temperature. An alloy tube for a heat exchanger tube of a heat exchanger characterized by being excellent.

【0009】本発明は、円筒形状である銅合金の内側
に、円筒形状である鋼を挿入し、圧力下にて銅合金及び
鋼を拡散接合する放熱性及び耐食性に優れた熱交換器の
伝熱管用合金管の製造方法である。
According to the present invention, there is provided a heat exchanger having excellent heat dissipation and corrosion resistance in which a cylindrical steel is inserted into a cylindrical copper alloy, and the copper alloy and the steel are diffusion bonded under pressure. This is a method for manufacturing an alloy tube for a heat tube.

【0010】本発明は、円筒形状である銅合金の内側
に、インサート材及び円筒形状である鋼を挿入し、圧力
下にて銅合金及び鋼を拡散接合する放熱性及び耐食性に
優れた熱交換器の伝熱管用合金管の製造方法である。
According to the present invention, there is provided a heat exchange excellent in heat dissipation and corrosion resistance in which an insert material and a steel having a cylindrical shape are inserted into a copper alloy having a cylindrical shape and the copper alloy and the steel are diffusion-bonded under pressure. This is a method for manufacturing an alloy tube for a heat transfer tube of a vessel.

【0011】本発明が解決しようとする伝熱管の腐食
は、銅合金そのものの耐食性に原因があり、次に示すよ
うに本発明者らは、銅合金製の管外側部本体にオーステ
ナイト系ステンレス単結晶鋼製の管内側部を拡散接合し
複合材とすることにより、放熱性及び耐食性に優れてい
ることを発見した。
[0011] The corrosion of the heat transfer tube to be solved by the present invention is caused by the corrosion resistance of the copper alloy itself. As shown below, the present inventors set the austenitic stainless steel single piece on the copper alloy outer tube main body. It has been found that by diffusing the inside of the tube made of crystalline steel to form a composite material, the heat dissipation and corrosion resistance are excellent.

【0012】化学組成を調整し、内面粗さを0.1μm
以下とした銅合金製パイプの内側に、化学組成を調整
し、表面粗さを0.1μm 以下としたオーステナイト系
ステンレス単結晶鋼製パイプを挿入し二重パイプとした
後、接合圧力:30〜70MPa,接合温度:600〜
900℃で拡散接合する。このとき接合温度はステンレ
ス製パイプの再結晶温度以下の600〜800℃の温度
範囲が好ましい。また、銅合金製パイプとステンレス製
パイプの間に無酸素銅のインサート材を挿入すると、拡
散接合性が向上する。また、拡散接合の前工程として、
二重パイプの界面の密着製をマンドレルミルにより高め
ることも、拡散接合性を向上させる。
The chemical composition is adjusted so that the inner surface roughness is 0.1 μm.
An austenitic stainless steel single crystal steel pipe having a chemical composition adjusted to a surface roughness of 0.1 μm or less is inserted into a copper alloy pipe having a diameter of less than 0.1 μm to form a double pipe. 70MPa, joining temperature: 600 ~
Diffusion bonding is performed at 900 ° C. At this time, the joining temperature is preferably in the range of 600 to 800 ° C. which is lower than the recrystallization temperature of the stainless steel pipe. In addition, when an oxygen-free copper insert material is inserted between the copper alloy pipe and the stainless steel pipe, the diffusion bonding property is improved. Also, as a pre-process of diffusion bonding,
Increasing the adhesion at the interface of the double pipe with a mandrel mill also improves diffusion bonding.

【0013】以上のように、熱交換器用の銅合金製伝熱
管の内面をオーステナイト系ステンレス単結晶鋼とする
ことで、放熱性に優れ、さらに伝熱管の腐食を防止する
ことができる。
As described above, since the inner surface of the copper alloy heat transfer tube for the heat exchanger is made of austenitic stainless steel single crystal steel, the heat dissipation is excellent and the heat transfer tube can be prevented from being corroded.

【0014】次に本発明の伝熱管の内側部の鋼中合金元
素の含有量の限定理由を説明する。Crはステンレス鋼
表面に不動態皮膜を生成させて耐食性を向上させるうえ
で必要不可欠な元素であり、15%以上の添加が必要で
ある。しかし26%以上を越える多量のCrの添加は、
加工性が大きく低下し、さらにσ相が形成されるので、
材質が脆くなる。特に、オーステナイト相の安定化を考
慮し、Ni量に依存したオーステナイト相の安定化の範
囲内で15〜26%とし、特に、16〜25%が好まし
い。
Next, the reason for limiting the content of the alloy element in the steel inside the heat transfer tube of the present invention will be described. Cr is an indispensable element for forming a passivation film on the surface of stainless steel to improve corrosion resistance, and it is necessary to add 15% or more. However, the addition of a large amount of Cr exceeding 26% or more
Since the workability is greatly reduced and the σ phase is formed,
The material becomes brittle. In particular, in consideration of the stabilization of the austenite phase, the content is set to 15 to 26%, and particularly preferably 16 to 25%, within the range of stabilization of the austenite phase depending on the amount of Ni.

【0015】Niは、オーステナイト相を安定にし、さ
らに耐食性の向上に有効な元素であり、8%以上含有さ
せる。高Ni量は、例えば、原子炉炉内に本発明が使用
される時、同一の腐食環境下では化学組成が相違するこ
とで他の部材との接触部で電気化学反応が生じ、腐食を
促進させることになる。原子炉炉内に多く使用されるS
US304,SUS316及びそれらのL材を考慮し、Cr量
との関連から判断して重量で8〜22%とし、特に、9
〜21%が好ましい。
Ni is an element which stabilizes the austenite phase and is effective for improving the corrosion resistance, and is contained at 8% or more. High Ni content, for example, when the present invention is used in a nuclear reactor, under the same corrosive environment, due to the difference in chemical composition, an electrochemical reaction occurs at the contact portion with other members and accelerates corrosion Will be. S commonly used in nuclear reactors
Considering US 304, SUS 316 and their L materials, the weight is 8 to 22%, judging from the relation with the amount of Cr.
~ 21% is preferred.

【0016】Si,Mnは脱酸剤として添加される。ま
たMnは脱硫剤として添加される。市販SUS304,SUS316
及びそれらのL材に準じてSiは重量で1%以下、Mn
は重量で2%以下含有させる。特に、Siは0.05〜
0.6%が好ましい。Mnは0.01〜1.5%が好まし
い。
Si and Mn are added as deoxidizing agents. Mn is added as a desulfurizing agent. Commercially available SUS304, SUS316
And 1% or less by weight of Si according to their L materials, Mn
Is contained by 2% or less by weight. In particular, Si
0.6% is preferred. Mn is preferably 0.01 to 1.5%.

【0017】Moは一層の耐食性、特に耐孔食性の向上
に有効な元素であり、さらに固溶強化から必要な成分で
ある。しかし、5%を越える添加量は必要ではなく、そ
れ以上ではσ相の形成要因となりうる。
Mo is an element effective for improving corrosion resistance, particularly pitting corrosion resistance, and is a necessary component for solid solution strengthening. However, the addition amount exceeding 5% is not necessary, and if it is more than 5%, it may be a factor of forming the σ phase.

【0018】Cは、強度上昇に極めて有効な元素であ
り、伝熱管本体の銅合金製部分の強度を補ううえで必要
不可欠な元素であるが、0.2% 以上では過剰炭化物の
生成及び粗大化で強度が上昇し過ぎると共に、伸びの低
下等が問題となる。さらにCは、一般に耐食性にとって
有害であり、含有量は少ないほうがよい。
C is an extremely effective element for increasing the strength, and is an essential element for compensating the strength of the copper alloy portion of the heat transfer tube main body. In addition to the excessive increase in strength due to the formation, reduction in elongation and the like become problems. Further, C is generally detrimental to corrosion resistance, and the smaller the content, the better.

【0019】Nは、マトリックスに固溶し、強化に必要
であり、重量で0.5% 以下含むことができる。特に、
0.05〜0.3%が好ましい。しかしながら、Nの添加
量は、加工性を低下させる傾向があるため、本発明では
添加しなくてもよい。
N forms a solid solution in the matrix and is necessary for strengthening, and can contain up to 0.5% by weight. Especially,
0.05-0.3% is preferred. However, the addition amount of N does not need to be added in the present invention because the workability tends to decrease.

【0020】また、本発明の伝熱管内側鋼は、0.5%
以下の不可避不純物を含有する。
Further, the steel inside the heat transfer tube of the present invention is 0.5%
It contains the following unavoidable impurities.

【0021】オーステナイト相は、環境に対して安定な
組織であり、またオーステナイト相にフェライト相が1
0%以下存在することができるが、全オーステナイト相
とすることが望ましい。
The austenite phase has a structure that is stable to the environment.
Although it can be present in an amount of 0% or less, it is desirable to have the entire austenite phase.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例)本発明の熱交換器の伝熱管用合金管及びその
作製方法について、その一実施例として次に説明する。
表1には、本発明の伝熱管本体外側部である銅合金の化
学組成を、また表2には、内側部であるステンレス単結
晶鋼の化学組成をそれぞれ示す。
(Embodiment) An alloy tube for a heat exchanger tube of a heat exchanger according to the present invention and a method for manufacturing the same will be described below as an embodiment thereof.
Table 1 shows the chemical composition of the copper alloy which is the outer portion of the heat transfer tube main body of the present invention, and Table 2 shows the chemical composition of the stainless single crystal steel which is the inner portion.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】次に、銅合金D1及びD2,ステンレス単
結晶鋼S1及びS2を用い機械加工によりパイプ形状と
し、銅合金製パイプの内面粗さ及びステンレス製パイプ
の表面粗さを0.06μm 以下とした。このとき、銅合
金製パイプの内径とステンレス製パイプの外径を同じと
した。この後、図1に示すように銅合金製パイプ1の内
側にステンレス製パイプ2を挿入して二重パイプとし、
マンドレルミルを用いて両パイプの密着性を高めた。次
に、両単面3及び4の銅合金製パイプ1とステンレス製
パイプ2の界面5を溶接し、さらに界面3の溶接部の一
部に炭素鋼製のパイプ6を溶接し、界面5にあるガスを
脱気した後、パイプ6を封止した。次に、二重パイプを
HIPして、界面を拡散接合により接合し、複合合金管
とした。HIP条件は、温度が800℃,圧力が49M
Paで、加圧時間を60分とした。
Next, the copper alloys D1 and D2, stainless steel single crystal steels S1 and S2 were machined into a pipe shape, and the inner surface roughness of the copper alloy pipe and the surface roughness of the stainless steel pipe were reduced to 0.06 μm or less. did. At this time, the inner diameter of the copper alloy pipe and the outer diameter of the stainless steel pipe were the same. Thereafter, as shown in FIG. 1, a stainless steel pipe 2 is inserted inside the copper alloy pipe 1 to form a double pipe,
The adhesion of both pipes was increased using a mandrel mill. Next, the interface 5 between the copper alloy pipe 1 and the stainless steel pipe 2 on both surfaces 3 and 4 is welded, and a carbon steel pipe 6 is welded to a part of the welded portion of the interface 3 to form the interface 5. After degassing a certain gas, the pipe 6 was sealed. Next, the double pipe was HIPed, and the interface was bonded by diffusion bonding to obtain a composite alloy pipe. The HIP condition is as follows: temperature is 800 ° C., pressure is 49M.
At Pa, the pressurization time was 60 minutes.

【0026】表3は、界面3の接合強度を図2に示す引
張試験片を用いて、公称歪み速度0.2(/分)で室温
にて引張試験を行い評価した結果である。
Table 3 shows the results obtained by performing a tensile test at room temperature at a nominal strain rate of 0.2 (/ min) using the tensile test piece shown in FIG.

【0027】[0027]

【表3】 [Table 3]

【0028】次に、本発明合金管を用いて(A)アルカ
リSCC試験、(B)孔食試験を行った。
Next, (A) an alkaline SCC test and (B) a pitting corrosion test were performed using the alloy tube of the present invention.

【0029】(A)アルカリSCC試験 銅合金及びステンレス単結晶鋼から板を切り出し、それ
ぞれ表面粗さを0.06μm以下とした。つぎに銅合金板及
びステンレス板を拡散接合条件と同様の条件で接合し複
合板とした。次に、複合板から、厚さ2mm,幅10mm,
長さ50mmのSCC試験片を準備した。このとき、接合
界面は試験片の厚さ方向に対して90度とした。SCC
の試験方法として有用なCBB試験の方法を、図3に示
す。試験片21にすきまを付けるためのグラファイトフ
ァイバウール22とともにホルダ23間にはさみつけ、
ボルト穴24にボルトを挿入し、ホルダ23間にアール
をつけて締めつけ、オートクレーブ中で応力腐食割れ試
験に供した。試験条件は、350℃の脱気した50%の
NaOH水溶液中で1000時間浸漬した。その後試験
片を取り出し、試験片の断面観察から割れ発生の有無を
調べた結果、本発明の全ての試験片には全く割れは観察
されず、高い応力腐食割れ性を示した。
(A) Alkali SCC Test A plate was cut out from a copper alloy and a stainless steel single crystal steel, and each had a surface roughness of 0.06 μm or less. Next, a copper alloy plate and a stainless steel plate were joined under the same conditions as the diffusion joining conditions to obtain a composite plate. Next, from the composite board, thickness 2mm, width 10mm,
An SCC test piece having a length of 50 mm was prepared. At this time, the bonding interface was 90 degrees with respect to the thickness direction of the test piece. SCC
FIG. 3 shows a CBB test method that is useful as a test method for the test. With a graphite fiber wool 22 for providing a gap in the test piece 21, sandwiched between the holders 23,
A bolt was inserted into the bolt hole 24, a round was formed between the holders 23 and tightened, and subjected to a stress corrosion cracking test in an autoclave. The test conditions were immersion in a degassed 50% NaOH aqueous solution at 350 ° C. for 1000 hours. Thereafter, the test piece was taken out, and the presence or absence of cracks was examined by observing the cross section of the test piece. As a result, no crack was observed in any of the test pieces of the present invention, and high stress corrosion cracking property was exhibited.

【0030】(B)孔食試験 複合板から、厚さ2mm,幅30mm,長さ40mmの試験片
を準備し、エメリー紙で1500番まで研磨した後、5
00ppmの塩化物イオンを含む4%のNa2SO4脱気水溶
液中に1000時間浸漬した。その後試験片を取り出
し、試験片の表面観察から孔食発生の有無を調べた結
果、本発明の全ての試験片には孔食がわずかに観察され
るだけであり、耐孔食性は十分に得られた。
(B) Pitting corrosion test A test piece having a thickness of 2 mm, a width of 30 mm, and a length of 40 mm was prepared from the composite plate, polished to # 1500 with emery paper, and then polished.
It was immersed in a 4% Na 2 SO 4 degassed aqueous solution containing 00 ppm of chloride ions for 1000 hours. Thereafter, the test piece was taken out, and the presence or absence of pitting corrosion was examined by observing the surface of the test piece.As a result, only slight pitting was observed on all the test pieces of the present invention, and sufficient pitting corrosion resistance was obtained. Was done.

【0031】[0031]

【発明の効果】本発明の合金管は高い強度を示すと共
に、耐食性に優れる。また実施例からもわかる通り、耐
アルカリSCC性,耐孔食性にも優れたものであり、熱
交換器の伝熱管用合金管として長寿命化,耐自然環境性
が向上する。
The alloy pipe of the present invention has high strength and excellent corrosion resistance. Further, as can be seen from the examples, it is also excellent in alkali SCC resistance and pitting corrosion resistance, and has a long life and an improved natural environment resistance as a heat transfer tube alloy tube of a heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である銅合金製パイプの内側に
ステンレス製パイプを挿入した二重パイプを示す斜視
図。
FIG. 1 is a perspective view showing a double pipe in which a stainless steel pipe is inserted inside a copper alloy pipe according to an embodiment of the present invention.

【図2】本発明の実施例である複合合金管から採取した
引張試験片を示す斜視図。
FIG. 2 is a perspective view showing a tensile test piece collected from a composite alloy tube according to an example of the present invention.

【図3】応力腐食割れ試験方法を示す斜視図。FIG. 3 is a perspective view showing a stress corrosion cracking test method.

【符号の説明】[Explanation of symbols]

1…銅合金製パイプ、2…ステンレス製パイプ、3,4
…端面、5…界面、6…脱気用パイプ。
1: Copper alloy pipe, 2: Stainless steel pipe, 3, 4
... End face, 5 ... Interface, 6 ... Pipe for deaeration.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金田 潤也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 児玉 英世 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Junya Kaneda 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yasuhisa Aono 7-1 Omikacho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratories (72) Inventor Hideyo Kodama 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Ltd. Hitachi Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】熱交換器の伝熱管において、前記伝熱管は
無酸素銅からなる管外側部本体及びオーステナイト系ス
テンレス単結晶鋼からなる管内側部の複合材で構成さ
れ、放熱性及び耐食性に優れることを特徴とする熱交換
器の伝熱管用合金管。
1. A heat exchanger tube for a heat exchanger, wherein the heat exchanger tube is composed of a composite material of a tube outer portion body made of oxygen-free copper and a tube inner portion made of austenitic stainless steel single crystal steel. Alloy tube for heat exchanger tube of heat exchanger, characterized by excellent properties.
【請求項2】熱交換器の伝熱管において、前記伝熱管は
銅合金からなる管外側部本体及びオーステナイト系ステ
ンレス単結晶鋼からなる管内側部の複合材で構成され、
放熱性及び耐食性に優れることを特徴とする熱交換器の
伝熱管用合金管。
2. The heat exchanger tube of a heat exchanger, wherein the heat exchanger tube is composed of a composite material of a tube outer portion body made of a copper alloy and a tube inner portion made of austenitic stainless single crystal steel.
An alloy tube for a heat exchanger tube of a heat exchanger, which is excellent in heat dissipation and corrosion resistance.
【請求項3】熱交換器の伝熱管において、前記伝熱管は
銅合金からなる管外側部本体及び重量でC:0.2%以
下,N:0.5%以下,Si:1%以下,P:0.040
% 以下,S:0.030%以下,Mn:2.0%以下,
Mo:5.0%以下 ,Ni:9〜21%及びCr:15
〜26%を含有し、室温でオーステナイト単結晶相及び
10%以下のフェライト相を有するオーステナイト系ス
テンレス単結晶鋼からなる管内側部の複合材で構成さ
れ、放熱性及び耐食性に優れることを特徴とする熱交換
器の伝熱管用合金管。
3. The heat exchanger tube of a heat exchanger, wherein the heat exchanger tube is made of a copper alloy and has a tube outer body and a weight of C: 0.2% or less, N: 0.5% or less, Si: 1% or less, P: 0.040
%, S: 0.030% or less, Mn: 2.0% or less,
Mo: 5.0% or less, Ni: 9 to 21%, and Cr: 15
It is composed of an austenitic stainless steel single crystal steel having an austenitic single crystal phase and a ferrite phase of 10% or less at room temperature, and is composed of a composite material on the inner side of the tube, and has excellent heat dissipation and corrosion resistance. Alloy tubes for heat transfer tubes in heat exchangers.
【請求項4】請求項1,2または3において、円筒形状
である前記銅合金の内側に、円筒形状である前記鋼を挿
入し、圧力下にて前記銅合金及び前記鋼を拡散接合する
放熱性及び耐食性に優れた熱交換器の伝熱管用合金管の
製造方法。
4. The heat radiation according to claim 1, wherein said cylindrical steel is inserted inside said cylindrical copper alloy, and said copper alloy and said steel are diffusion bonded under pressure. Of manufacturing alloy tubes for heat transfer tubes of heat exchangers having excellent heat resistance and corrosion resistance.
【請求項5】請求項1,2または3において、円筒形状
である前記銅合金の内側に、インサート材及び円筒形状
である前記鋼を挿入し、圧力下にて前記銅合金及び前記
鋼を拡散接合する放熱性及び耐食性に優れた熱交換器の
伝熱管用合金管の製造方法。
5. The copper alloy according to claim 1, 2 or 3, wherein an insert material and the steel having a cylindrical shape are inserted into the copper alloy having a cylindrical shape, and the copper alloy and the steel are diffused under pressure. A method for manufacturing an alloy tube for a heat exchanger tube of a heat exchanger having excellent heat dissipation and corrosion resistance to be joined.
JP434197A 1997-01-14 1997-01-14 Alloy tube for heat transfer tube of heat exchanger and its manufacture Pending JPH10197193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP434197A JPH10197193A (en) 1997-01-14 1997-01-14 Alloy tube for heat transfer tube of heat exchanger and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP434197A JPH10197193A (en) 1997-01-14 1997-01-14 Alloy tube for heat transfer tube of heat exchanger and its manufacture

Publications (1)

Publication Number Publication Date
JPH10197193A true JPH10197193A (en) 1998-07-31

Family

ID=11581743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP434197A Pending JPH10197193A (en) 1997-01-14 1997-01-14 Alloy tube for heat transfer tube of heat exchanger and its manufacture

Country Status (1)

Country Link
JP (1) JPH10197193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041001A (en) * 2007-05-31 2014-03-06 Amerifab Inc Adjustable heat exchanger and use method
CN106440912A (en) * 2015-08-07 2017-02-22 江苏信换热器科技有限公司 Stainless steel high throughput pipe and manufacturing process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041001A (en) * 2007-05-31 2014-03-06 Amerifab Inc Adjustable heat exchanger and use method
CN106440912A (en) * 2015-08-07 2017-02-22 江苏信换热器科技有限公司 Stainless steel high throughput pipe and manufacturing process thereof

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
CN102245345B (en) Austenite-based weld and employ stress corrosion cracking preventive maintenance method and the grain boundary corrosion preventive maintenance method of this material
CA1099539A (en) Method of welding for exfoliation prevention of stainless steel weld-overlay
JP3888058B2 (en) Welded structures and welding materials made of low thermal expansion coefficient alloys
WO2011059030A1 (en) Duplex stainless steel having excellent alkali resistance
EP1717328B1 (en) Martensitic stainless steel tube
JP2003003243A (en) High-strength martensitic stainless steel with excellent resistance to carbon dioxide gas corrosion and sulfide stress corrosion cracking
JP2004276035A (en) Welded joint excellent in resistance to caulking of metallic composite pipe
JP3217088B2 (en) Stainless steel multiple winding pipe
US5275893A (en) Line pipe having good corrosion-resistance and weldability
JPH10197193A (en) Alloy tube for heat transfer tube of heat exchanger and its manufacture
JP4196755B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JP2012158798A (en) Cr-CONTAINING STEEL PIPE FOR LINE PIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELD HEAT-AFFECTED ZONE
CN109504916B (en) Copper-titanium-containing high-strength high-corrosion-resistance austenitic stainless steel and preparation method thereof
EP1026273A1 (en) Martensite stainless steel of high corrosion resistance
JP4026554B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
CN109504908A (en) A kind of cupric titanium high intensity high corrosion resistance stainless steel and preparation method thereof
CN109504826B (en) Copper-vanadium-containing high-strength high-corrosion-resistance stainless steel and preparation method thereof
JP6580757B1 (en) Stainless steel for fuel rail
JP5901229B2 (en) Aluminum alloy, joined body of aluminum alloy and stainless steel, and heat exchanger
JP4752571B2 (en) Ferritic stainless steel sheet for bellows tube and bellows tube
JPH0357181B2 (en)
JP2002069590A (en) High corrosion resistant clad steel
JP2006161114A (en) Austenitic stainless steel material and weld joint thereof
JP2000239740A (en) MANUFACTURE OF Fe-BASE ALLOY MEMBER EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE, AND Fe-BASE ALLOY MEMBER