JPH10189828A - Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic - Google Patents

Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic

Info

Publication number
JPH10189828A
JPH10189828A JP8350072A JP35007296A JPH10189828A JP H10189828 A JPH10189828 A JP H10189828A JP 8350072 A JP8350072 A JP 8350072A JP 35007296 A JP35007296 A JP 35007296A JP H10189828 A JPH10189828 A JP H10189828A
Authority
JP
Japan
Prior art keywords
low
composition
sio
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8350072A
Other languages
Japanese (ja)
Other versions
JP3527818B2 (en
Inventor
Yoshitake Terashi
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP35007296A priority Critical patent/JP3527818B2/en
Priority to US08/999,484 priority patent/US5916834A/en
Publication of JPH10189828A publication Critical patent/JPH10189828A/en
Application granted granted Critical
Publication of JP3527818B2 publication Critical patent/JP3527818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-temperature baked ceramic composition having low dielectric constant and dielectric loss tangent within a high-frequency region exceeding 30GHz, capable of being baked at 800-1000 deg.C. SOLUTION: A dielectric ceramic composition to be manufactured contains at least Zn and Si and in the case of representing the atomic ratio composition of these metals to be Zn.xSi, after the formation of the composition in a specific shape made of glass 0.5-20wt.% containing compound oxide 85-99.9wt.%, B2 O3 0.1-15wt.% or the compound oxide 80-99.5wt.%, SiO2 and B2 O3 , satisfying 0.3<=x<=6, to be baked at 800 deg.C-1000 deg.C in the oxidizing or non-oxidizing atmosphere, the dielectric constant (εr) in the millimeter wave region (30-60GHz), including willemite crystalline phase 1 and/or SiO2 base crystalline base 3, containing Zn and Si not exceeding 6 and the dielectric loss tangent also not exceeding 15×10<-4> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層回路基板にお
ける絶縁基板として有用な低温焼成磁器組成物と、低温
焼成磁器の製造方法に関するものであり、例えば集積回
路(IC)や電子部品を多層に積層し、焼成してなる銅
配線可能な特に高周波用の低誘電率、低誘電損失を備え
た低温焼成磁器組成物および低温焼成磁器の製造方法の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature fired porcelain composition useful as an insulating substrate in a multilayer circuit board and a method for producing a low-temperature fired porcelain. For example, an integrated circuit (IC) or an electronic component is formed into a multilayer. The present invention relates to a low-temperature fired porcelain composition having a low dielectric constant and a low dielectric loss, particularly for high frequencies, which can be laminated and fired for copper wiring, and to an improvement in a method of manufacturing the low-temperature fired porcelain.

【0002】[0002]

【従来技術】従来より、セラミック配線基板としては、
絶縁基板がアルミナなどのセラミックスからなるアルミ
ナ質配線基板が多用されているが、近年、高度情報化時
代を迎え、半導体素子はより高速化、高集積化、実装の
より高密度化が進み、誘電率の大きなアルミナ基板(3
GHzでの比誘電率は9〜9.5)は高周波回路基板等
には不適切である。つまり、信号を高速で伝搬させるた
めには絶縁基板材料には、より低い誘電率が要求されて
いる。また、マイクロ波、ミリ波対応として低損失化も
要求されている。
2. Description of the Related Art Conventionally, as a ceramic wiring board,
Alumina wiring boards made of ceramics such as alumina are widely used as the insulating substrate. High alumina substrate (3
The relative dielectric constant of 9 to 9.5 at GHz is not suitable for a high-frequency circuit board or the like. That is, in order to propagate a signal at a high speed, an insulating substrate material is required to have a lower dielectric constant. In addition, low loss is required for microwave and millimeter wave applications.

【0003】さらに、多層回路基板に種々の電子部品や
入出力端子等を接続する工程上で基板に加わる応力から
基板が破壊したり、欠けを生じたりすることを防止する
為に材料の機械的強度が高いことも要求されている。
Further, in order to prevent the substrate from being broken or chipped due to stress applied to the substrate in the process of connecting various electronic components, input / output terminals, etc. to the multilayer circuit board, the material is mechanically controlled. High strength is also required.

【0004】そこで、上述した低誘電率化に対応し得る
セラミック材料として、例えば、ガラスと無機質フィラ
ーとの混合物を成形、焼成してなる、いわゆるガラスセ
ラミックスは、誘電率が3〜7程度と低いことから、高
周波用絶縁基板として注目されている。
Therefore, as a ceramic material capable of coping with the above-mentioned low dielectric constant, for example, a so-called glass ceramic obtained by molding and firing a mixture of glass and an inorganic filler has a low dielectric constant of about 3 to 7. For this reason, it has attracted attention as a high-frequency insulating substrate.

【0005】また、このガラスセラミックスは、800
〜1000℃の低温で焼成することができることから、
配線用導体として、銅、金、銀などの低抵抗金属を使用
できるという長所を有する。
[0005] Further, this glass ceramic is 800
Because it can be fired at a low temperature of ~ 1000 ° C,
An advantage is that a low-resistance metal such as copper, gold, or silver can be used as the wiring conductor.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
ガラスセラミックス材料は、誘電率が低いものの、信号
の周波数が10GHz以上のマイクロ波に対して、その
誘電損失が20×10-4以上と高く、このような高周波
用としては実用化し得るに十分な特性を有していないも
のであった。しかも、このガラスセラミックスは、ガラ
スを用いることからアルミナなどのセラミックスに比較
して、強度が低く抗折強度が100〜150MPaと低
く、その取扱いや応力が付加されるような過酷な使用環
境下では使用できないという問題もあった。
However, although the conventional glass ceramic material has a low dielectric constant, its dielectric loss is as high as 20 × 10 -4 or more with respect to a microwave having a signal frequency of 10 GHz or more. Such a high-frequency device does not have characteristics sufficient for practical use. Moreover, this glass ceramic has a low strength and a low bending strength of 100 to 150 MPa as compared with ceramics such as alumina due to the use of glass, and in a severe use environment where handling and stress are added. There was also a problem that it could not be used.

【0007】従って、本発明は、銅、金、銀等の低抵抗
金属と同時焼成が可能であり、しかも低誘電率および高
周波領域で低誘電正接を有し、且つ高強度の低温焼成磁
器組成物と低温焼成磁器の製造方法を提供することを目
的とするものである。
Accordingly, the present invention provides a low-temperature fired porcelain composition which can be fired simultaneously with a low-resistance metal such as copper, gold or silver, has a low dielectric constant and a low dielectric loss tangent in a high-frequency region, and has a high strength. It is an object of the present invention to provide a method for manufacturing an article and a low-temperature fired porcelain.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記問題点
を鋭意検討した結果、Zn,Siを特定比率で含有する
複合酸化物に対して、B2 3 、あるいは少なくともS
iO2 とB2 3 とを含むガラスを添加することにより
複合酸化物中から生成するZnを主とする液相とB2
3 中のB(ホウ素)成分による液相反応が生じ僅かなB
2 3 により、800〜1000℃以下の温度で焼成で
き、しかもを焼成によって、結晶相として、少なくとも
Zn、およびSiを含むウイレマイト結晶相やSiO2
系結晶相を析出させることにより、低い比誘電率と低い
誘電正接を得ることができることを知見し、本発明に至
った。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventor has found that B 2 O 3 , or at least S 2 O 3 , can be added to a composite oxide containing Zn and Si at a specific ratio.
A liquid phase mainly composed of Zn generated from a composite oxide by adding a glass containing iO 2 and B 2 O 3 and B 2 O
Liquid phase reaction by B (boron) component in 3
By using 2 O 3 , it can be fired at a temperature of 800 to 1000 ° C. or lower, and by firing, a willemite crystal phase containing at least Zn and Si or SiO 2
The present inventors have found that a low relative dielectric constant and a low dielectric loss tangent can be obtained by precipitating a system crystal phase, and have reached the present invention.

【0009】即ち、本発明の低温焼成磁器組成物は、少
なくともZnとSiとを含み、該金属の原子比による組
成を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を8
5〜99.9重量%と、B2 3 を0.1〜15重量%
とからなることを特徴とするもの、または、少なくとも
ZnとSiとを含み、該金属の原子比による組成を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を8
0〜99.5重量%と、少なくともSiO2 およびB2
3 を含有するガラス0.5〜20重量%とからなるこ
とを特徴とするものであり、かかる両組成物中には、少
なくともZnおよびSiを含むウイレマイト結晶相およ
び/またはSiO2 系結晶相を含むことを特徴とし、3
0〜60GHzでの誘電率(εr)が6以下、誘電損失
が15×10-4以下の特性を具備することを特徴とする
ものである。
That is, the low-temperature fired porcelain composition of the present invention contains at least Zn and Si, and when the composition according to the atomic ratio of the metal is represented by Zn.xSi, a composite satisfying 0.3 ≦ x ≦ 6. 8 oxide
5 to 99.9 wt% and, B 2 O 3 and 0.1 to 15 wt%
Or a composite oxide that contains at least Zn and Si and that satisfies 0.3 ≦ x ≦ 6 when the composition according to the atomic ratio of the metal is represented by Zn · xSi. 8
0-99.5% by weight and at least SiO 2 and B 2
And 0.5 to 20% by weight of a glass containing O 3 , and in both compositions, a willemite crystal phase containing at least Zn and Si and / or a SiO 2 -based crystal phase Is characterized by including 3
It has a characteristic that the dielectric constant (εr) at 0 to 60 GHz is 6 or less and the dielectric loss is 15 × 10 −4 or less.

【0010】また、低温焼成磁器の製造方法としては、
少なくともZnとSiとを含み、該金属の原子比による
組成を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を8
5〜99.9重量%と、B2 3 を0.1〜15重量%
とからなる組成物、または上記複合酸化物を80〜9
9.5重量%と、少なくともSiO2 とB2 3 とを含
むガラスを0.5〜20重量%とからなる組成物を所定
形状に成形後、酸化あるいは非酸化性雰囲気中、800
℃〜1000℃で焼成することを特徴とするものであ
る。
[0010] Further, as a method for producing low-temperature fired porcelain,
When the composition according to the atomic ratio of the metal is at least Zn.xSi containing at least Zn and Si, a composite oxide satisfying 0.3 ≦ x ≦ 6 is expressed as 8
5 to 99.9 wt% and, B 2 O 3 and 0.1 to 15 wt%
Or the composite oxide described above in the range of 80 to 9
And 9.5 wt%, after molding a composition comprising 0.5 to 20 wt% of glass containing at least SiO 2 and B 2 O 3 into a predetermined shape in an oxidizing or non-oxidizing atmosphere, 800
It is characterized in that it is fired at a temperature of from 1000C to 1000C.

【0011】[0011]

【発明の実施の形態】本発明の低温焼成磁器組成物は、
少なくとも金属元素としてZnとSiとを含む複合酸化
物であり、該複合酸化物を構成する金属の原子比を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を主
成分とするものである。この主成分組成を上記の範囲に
限定したのは、x値がy<0.3ではZnO相が過剰と
なり誘電特性が劣化する。一方y>6ではSiO2 相が
過剰となり焼結性が劣化しB2 3 量を20重量%以上
添加しないと磁器が緻密化しなくなるためである。x値
の望ましい範囲は、0.5≦x≦2である。
BEST MODE FOR CARRYING OUT THE INVENTION The low-temperature fired porcelain composition of the present invention comprises:
A composite oxide containing at least Zn and Si as metal elements, and when the atomic ratio of the metal constituting the composite oxide is represented by Zn · xSi, a composite oxide satisfying 0.3 ≦ x ≦ 6 is obtained. It is the main component. The reason why the main component composition is limited to the above range is that when the x value is y <0.3, the ZnO phase becomes excessive and the dielectric characteristics deteriorate. On the other hand, if y> 6, the SiO 2 phase becomes excessive and the sinterability deteriorates, and the porcelain cannot be densified unless the amount of B 2 O 3 is added to 20% by weight or more. A desirable range of the x value is 0.5 ≦ x ≦ 2.

【0012】本発明の第1の態様によれば、上記主成分
85〜99.9重量%に対してB23 を0.1〜15
重量%の割合で配合する。ここで、組成を上記のように
限定したのは、B2 3 量が0.1重量%より少ない
か、言い換えれば、少なくともZnとSiとを含む複合
酸化物の量が99.9重量%より多いと、800〜10
00℃の温度で磁器が十分に緻密化することができな
い。一方、B2 3 の量が15重量%より多いか、言い
換えれば、ZnおよびSiを含む複合酸化物量が85重
量%より少ないと、700℃以下の低温で液相が流失し
磁器の形状を損ない製品形状を保てず、また磁器特性の
点から30〜60GHzの高周波領域における誘電正接
が15×10-4以上と高くなる。上記組成物の望ましい
範囲は、上記ZnおよびSiを含む複合酸化物からなる
主成分が90〜99重量%と、B2 3 が1〜10重量
%の割合で存在することが望ましい。
According to the first aspect of the present invention, B 2 O 3 is contained in an amount of 0.1 to 15 with respect to 85 to 99.9% by weight of the main component.
It is blended in a ratio of weight%. The reason for limiting the composition as described above is that the amount of B 2 O 3 is less than 0.1% by weight, in other words, the amount of the composite oxide containing at least Zn and Si is 99.9% by weight. More than 800-10
At a temperature of 00 ° C., the porcelain cannot be sufficiently densified. On the other hand, if the amount of B 2 O 3 is more than 15% by weight, in other words, if the amount of the composite oxide containing Zn and Si is less than 85% by weight, the liquid phase flows away at a low temperature of 700 ° C. or less, and the shape of the porcelain is reduced. In terms of porcelain characteristics, the dielectric loss tangent in a high frequency range of 30 to 60 GHz is increased to 15 × 10 −4 or more from the viewpoint of porcelain characteristics. Desired range of the composition, and the main component is 90 to 99 wt% of a composite oxide containing the Zn and Si, it is desirable that B 2 O 3 is present in a proportion of 1-10 wt%.

【0013】また、本発明の第2の態様によれば、本発
明の低温焼成磁器組成物は、上記主成分80〜99.5
重量%に対して、少なくともSiO2 およびB2 3
含有するガラスを0.5〜20重量%の割合で配合す
る。ここで、組成を上記のように限定したのは、上記ガ
ラス量が0.5重量%より少ないか、言い換えれば、少
なくともZnとSiとを含む複合酸化物の量が99.5
重量%より多いと、800〜1000℃の温度で磁器が
十分に緻密化することができない。一方、ガラス量が2
0重量%より多いか、言い換えれば、ZnおよびSiを
含む複合酸化物量が80重量%より少ないと、700℃
以下の低温で液相が流失し磁器の形状を損ない製品形状
を保てず、また磁器特性の点から30〜60GHzの高
周波領域における誘電正接が15×10-4以上と高くな
る。上記組成物の望ましい範囲は、上記ZnおよびSi
を含む複合酸化物からなる主成分が90〜99重量%
と、少なくともSiO2 とB2 3 を含有するガラスが
1〜10重量%の割合で存在することが望ましい。
According to a second aspect of the present invention, the low-temperature fired porcelain composition of the present invention comprises the above-mentioned main component of 80 to 99.5.
By weight%, blending at least a glass containing SiO 2 and B 2 O 3 in a proportion of 0.5 to 20 wt%. Here, the composition was limited as described above because the amount of the glass was less than 0.5% by weight, in other words, the amount of the composite oxide containing at least Zn and Si was 99.5.
If the amount is more than the weight percentage, the porcelain cannot be sufficiently densified at a temperature of 800 to 1000 ° C. On the other hand, when the amount of glass is 2
If the amount is more than 0% by weight, in other words, if the amount of the composite oxide containing Zn and Si is less than 80% by weight, 700 ° C.
At the following low temperature, the liquid phase is lost, the shape of the porcelain is damaged, and the product shape cannot be maintained. In addition, the dielectric loss tangent in the high frequency region of 30 to 60 GHz is increased to 15 × 10 −4 or more from the viewpoint of porcelain characteristics. The desirable range of the composition is the above Zn and Si
90 to 99% by weight of a main component composed of a composite oxide containing
It is desirable that glass containing at least SiO 2 and B 2 O 3 be present in a proportion of 1 to 10% by weight.

【0014】また、上記第1および第2の態様の磁器組
成物は、いずれも800〜1000℃の温度範囲での焼
成によって相対密度95%以上まで緻密化することがで
き、これによって形成される磁器は、図1の磁器組織の
概略図に示すように、それぞれ、少なくともZn、およ
びSiを含むウイレマイト結晶相を主体とする結晶相1
と、Zn、BおよびSiを含有する非晶質の粒界相2と
から構成され、さらには、SiO2 系結晶相3が含まれ
る場合もある。
Further, the porcelain compositions of the first and second embodiments can be densified to a relative density of 95% or more by firing in a temperature range of 800 to 1000 ° C., and thus formed. As shown in the schematic diagram of the porcelain structure in FIG. 1, the porcelain has a crystal phase 1 mainly composed of a willemite crystal phase containing at least Zn and Si.
And an amorphous grain boundary phase 2 containing Zn, B and Si, and may further include a SiO 2 -based crystal phase 3.

【0015】このように本発明によれば、磁器中に、少
なくともZnとSiを含むウイレマイト結晶相や、Si
2 系結晶相を析出させることにより比誘電率を6以下
に制御できるとともに、低い誘電正接を得ることができ
るのである。
As described above, according to the present invention, in a porcelain, a willemite crystal phase containing at least Zn and Si,
By precipitating the O 2 -based crystal phase, the relative dielectric constant can be controlled to 6 or less, and a low dielectric loss tangent can be obtained.

【0016】なお、本発明の第2の態様において用いる
SiO2 、B2 3 を含むガラスとしては、一般にホウ
ケイ酸系ガラス、ホウケイ酸亜鉛系ガラス、ホウケイ酸
鉛系ガラスなどが挙げられるが、特にSiO2 を5〜8
0重量%、B2 3 を4〜50重量%の割合でそれぞれ
含み、他の成分としてAl2 3 を30重量%以下、ア
ルカリ金属酸化物を20重量%以下の割合で含むものが
好適に使用され、これらの酸化物成分を所定割合で配合
したものを溶融、冷却し、ガラス化したものが使用され
る。
As the glass containing SiO 2 and B 2 O 3 used in the second embodiment of the present invention, borosilicate glass, zinc borosilicate glass, lead borosilicate glass and the like are generally mentioned. Especially 5 to 8 of SiO 2
0 wt%, B a 2 O 3 comprise each at a ratio of 4-50 wt%, the Al 2 O 3 30 wt% or less other components, preferably those containing alkali metal oxides in a proportion of 20 wt% or less A mixture of these oxide components at a predetermined ratio is melted, cooled, and vitrified.

【0017】また、本発明の低温焼成磁器の製造方法に
よれば、主成分原料として、Zn2SiO4 や、SiO
2 とZnOとの様々な組み合わせによる化合物が使用さ
れる。また、かかる主成分原料に対して、B2 3 また
はSiO2 とB2 3 を含むガラスを添加混合する。な
お、出発原料としては、各金属の酸化物粉末のほかに、
焼結過程で酸化物を形成し得る炭酸塩、酢酸塩、硝酸塩
等の形態で添加できる。なお、調合組成において、B2
3 、Zn2 SiO4 、SiO2 、ZnOの酸化物原料
粉末は分散性を高め高い誘電率や低い誘電正接を得るた
めに2.0μm以下、特に1.0μm以下の微粉末であ
ることが望ましい。
According to the method for producing a low-temperature fired porcelain of the present invention, Zn 2 SiO 4 or SiO 2
Compounds with various combinations of 2 and ZnO are used. Further, B 2 O 3 or glass containing SiO 2 and B 2 O 3 is added to and mixed with such a main component material. As starting materials, in addition to the oxide powder of each metal,
It can be added in the form of carbonate, acetate, nitrate, etc., which can form an oxide during the sintering process. In the composition, B 2
The oxide raw material powder of O 3 , Zn 2 SiO 4 , SiO 2 , and ZnO may be a fine powder of 2.0 μm or less, particularly 1.0 μm or less in order to improve dispersibility and obtain a high dielectric constant and a low dielectric loss tangent. desirable.

【0018】本発明の第1の形態に基づくと、上記の主
成分原料に対して、焼結助剤としてB2 3 粉末あるい
は焼結過程で酸化物を形成し得るB2 3 、H2 BO3
等をB2 3 として、主成分原料85〜99.9重量
%、B2 3 0.1〜15重量%となるように添加混合
する。
According to the first aspect of the present invention, B 2 O 3 powder or B 2 S 3 , H which can form an oxide during the sintering process is used as a sintering aid for the above-mentioned main component materials. 2 BO 3
Such as B 2 O 3, and main component material 85 to 99.9 wt%, B 2 O 3 0.1 to 15 is added mixed so that weight percent.

【0019】また、本発明の第2の形態に基づくと、上
記の主成分原料に対して、焼結助剤として前述したよう
なSiO2 、B2 3 を含むガラス粉末を、主成分原料
80〜99.5重量%、SiO2 、B2 3 を含むガラ
ス0.5〜20重量%となるように添加混合する。
Further, according to the second aspect of the present invention, a glass powder containing SiO 2 and B 2 O 3 as a sintering aid as described above is added to the above-mentioned main component material. 80 to 99.5% by weight, admixed so that the glass 0.5 to 20 wt% containing SiO 2, B 2 O 3.

【0020】上記のような割合で添加混合した混合粉末
に適宜バインダ−を添加した後、例えば、金型プレス、
冷間静水圧プレス、押し出し成形、ドクターブレード
法、圧延法等により任意の形状に成形後、酸化雰囲気中
または、N2 ,Ar等の非酸化性雰囲気中において80
0℃〜1000℃、特に900〜1000℃の温度で
0.1〜5時間焼成することにより相対密度95%以上
に緻密化することができる。この時の焼成温度が800
℃より低いと、磁器が十分に緻密化せず、1000℃を
越えると緻密化は可能であるが、銅導体を用いることが
出来なくなるためである。
After appropriately adding a binder to the mixed powder added and mixed at the above ratio, for example, a mold press,
After being formed into an arbitrary shape by cold isostatic pressing, extrusion molding, doctor blade method, rolling method, or the like, 80 in an oxidizing atmosphere or a non-oxidizing atmosphere such as N 2 , Ar, etc.
By baking at a temperature of 0 ° C. to 1000 ° C., particularly 900 ° C. to 1000 ° C. for 0.1 to 5 hours, the relative density can be increased to 95% or more. The firing temperature at this time is 800
When the temperature is lower than ℃, the porcelain is not sufficiently densified, and when the temperature exceeds 1000 ℃, densification is possible, but a copper conductor cannot be used.

【0021】次に、上記のような割合で添加混合した混
合粉末に適宜バインダ−を添加した後、例えば、金型プ
レス、冷間静水圧プレス、押し出し成形、ドクターブレ
ード法、圧延法等により任意の形状に成形後、N2 、A
r等の非酸化性雰囲気中、または空気中などの酸化性雰
囲気中で800℃〜1000℃、特に900〜1000
℃の温度で0.1〜5時間焼成することにより相対密度
95%以上に緻密化することができる。この時の焼成温
度が800℃より低いと、磁器が十分に緻密化せず、1
000℃を越えると緻密化は可能であるが、銅、銀など
の導体と同時焼成ができなくなる。因みに、同時焼成時
に、導体として銅を用いる場合には非酸化性雰囲気と
し、銀を用いる場合には非酸化性または酸化性雰囲気で
焼成することが必要である。
Next, after a binder is appropriately added to the mixed powder added and mixed in the above ratio, the mixture is arbitrarily formed by, for example, a die press, a cold isostatic press, an extrusion molding, a doctor blade method, a rolling method, or the like. N 2 , A
800 ° C. to 1000 ° C., particularly 900 to 1000 ° C. in a non-oxidizing atmosphere such as r or an oxidizing atmosphere such as air.
By sintering at a temperature of ° C for 0.1 to 5 hours, it is possible to densify to a relative density of 95% or more. If the firing temperature at this time is lower than 800 ° C., the porcelain will not be sufficiently densified and
If the temperature exceeds 000 ° C., densification is possible, but simultaneous sintering with a conductor such as copper or silver becomes impossible. Incidentally, at the time of simultaneous firing, it is necessary to fire in a non-oxidizing atmosphere when copper is used as the conductor and in a non-oxidizing or oxidizing atmosphere when using silver as the conductor.

【0022】本発明の上記方法によれば、ZnおよびS
iからなる複合酸化物とB2 3 、またはSiO2 、B
2 3 を含むガラスを組み合わせることにより、複合酸
化物から生成するZnを主とする液相とB2 3 中また
はガラス中のB(ホウ素)成分のより活性な液相反応が
生じる結果、少ない焼結助剤量で磁器を緻密化すること
ができる。そのために、誘電正接を増大させる要因とな
る粒界の非晶質相の量を最小限に押さえることができ
る。このため高周波領域においてより低い誘電正接を得
ることができるのである。
According to the above method of the present invention, Zn and S
i and B 2 O 3 , or SiO 2 , B
By combining the glass containing 2 O 3 , a more active liquid phase reaction between the liquid phase mainly composed of Zn generated from the composite oxide and the B (boron) component in B 2 O 3 or glass occurs, Porcelain can be densified with a small amount of sintering aid. For this reason, the amount of the amorphous phase at the grain boundary, which causes an increase in the dielectric loss tangent, can be minimized. Therefore, a lower dielectric loss tangent can be obtained in a high frequency region.

【0023】また、本発明における磁器組成物は、80
0〜1000℃で焼成可能であることから、特に銅、
金、銀などを配線する配線基板の絶縁基板として用いる
ことができる。かかる磁器組成物を用いて配線基板を作
製する場合には、例えば、上記のようにして調合した混
合粉末を公知のテープ成形法、例えばドクターブレード
法、圧延法等に従い、絶縁層形成用のグリーンシートを
作製した後、そのシートの表面に配線回路層用として、
銅、金および銀のうちの少なくとも1種の金属、特に、
銅粉末を含む導体ペーストを用いて、グリーンシート表
面に配線パターンにスクリーン印刷法、グラビア印刷法
等によって回路パターン状に印刷し、場合によってはシ
ートにスルーホールやビアホール形成後、上記導体ペー
ストを充填する。その後、複数のグリーンシートを積層
圧着した後、上述した条件で焼成することにより、配線
層と絶縁層とを同時に焼成することができる。
The porcelain composition according to the present invention comprises
Since it can be fired at 0 to 1000 ° C., particularly copper,
It can be used as an insulating substrate of a wiring board for wiring gold, silver, and the like. In the case of manufacturing a wiring board using such a porcelain composition, for example, according to a known tape forming method, for example, a doctor blade method, a rolling method, or the like, the mixed powder prepared as described above is used to form an insulating layer forming green. After making the sheet, on the surface of the sheet for the wiring circuit layer,
At least one metal of copper, gold and silver, especially
Using a conductive paste containing copper powder, print the wiring pattern on the surface of the green sheet in a circuit pattern by screen printing, gravure printing, etc. In some cases, fill the above conductive paste after forming through holes and via holes in the sheet I do. After that, a plurality of green sheets are stacked and pressed, and then fired under the above-described conditions, whereby the wiring layer and the insulating layer can be fired simultaneously.

【0024】[0024]

【実施例】【Example】

実施例1 平均粒径が1μm以下のZn2 SiO4 、ZnO、Si
2 、B2 3 を表1の組成に従い混合した。そして、
この混合物に有機バインダー、可塑剤、トルエンを添加
し、ドクターブレード法により厚さ300μmのグリー
ンシートを作製した。そして、このグリーンシートを5
枚積層し、50℃の温度で100kg/cm2 の圧力を
加えて熱圧着した。得られた積層体を水蒸気含有/窒素
雰囲気中で、700℃で脱バインダーした後、乾燥窒素
中で表1の条件において焼成して多層基板用磁器を得
た。
Example 1 Zn 2 SiO 4 , ZnO, Si having an average particle size of 1 μm or less
O 2 and B 2 O 3 were mixed according to the composition shown in Table 1. And
An organic binder, a plasticizer, and toluene were added to this mixture, and a green sheet having a thickness of 300 μm was prepared by a doctor blade method. And this green sheet is 5
The sheets were laminated and subjected to thermocompression bonding at a temperature of 50 ° C. while applying a pressure of 100 kg / cm 2 . After debinding the obtained laminate in a steam-containing / nitrogen atmosphere at 700 ° C., it was fired in dry nitrogen under the conditions shown in Table 1 to obtain a ceramic for a multilayer substrate.

【0025】得られた焼結体について誘電率、誘電正接
を以下の方法で評価した。測定は、形状直径1〜5m
m、厚み2〜3mmの試料を切り出し、60GHzにて
ネットワークアナライザー、シンセサイズドスイーパー
を用いて誘電体円柱共振器法により行った。測定では、
NRDガイド(非放射性誘電体線路)で、誘電体共振器
の励起を行い、TE021,TE031モードの共振特
性より誘電率、誘電正接を算出した。測定の結果は表1
に示した。また、X線回折測定から、磁器の構成相を同
定し、試料No.4についてX線回折チャートを図2に示
した。
The dielectric constant and dielectric loss tangent of the obtained sintered body were evaluated by the following methods. The measurement is 1-5m in shape diameter
A sample having a thickness of m and a thickness of 2 to 3 mm was cut out and subjected to a dielectric cylinder resonator method at 60 GHz using a network analyzer and a synthesized sweeper. In the measurement,
The dielectric resonator was excited by the NRD guide (non-radiative dielectric line), and the dielectric constant and the dielectric loss tangent were calculated from the resonance characteristics of the TE021 and TE031 modes. Table 1 shows the measurement results.
It was shown to. The constituent phases of the porcelain were identified from the X-ray diffraction measurement, and the X-ray diffraction chart of Sample No. 4 is shown in FIG.

【0026】また、比較例として、Zn2 SiO4 、S
iO2 に代わり、MgSiO3 、CaSiO3 を用いて
同様に焼結体を作製し評価した(試料No.9、10)。
As a comparative example, Zn 2 SiO 4 , S
Similarly, sintered bodies were prepared using MgSiO 3 and CaSiO 3 instead of iO 2 and evaluated (samples Nos. 9 and 10).

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から明らかなように、結晶相と
して、ウイレマイト結晶相(Zn2SiO4 )、SiO
2 系結晶相が主として析出した本発明の磁器は、いずれ
も誘電率が6以下、60GHzでの誘電正接が15×1
-4以下の優れた値を示した。
As is evident from the results in Table 1, the crystal phases were willemite crystal phase (Zn 2 SiO 4 ), SiO 2
The porcelain of the present invention in which the second crystal phase is mainly deposited has a dielectric constant of 6 or less and a dielectric loss tangent at 60 GHz of 15 × 1.
Excellent values of 0 -4 or less were shown.

【0029】これに対して、B2 3 量が0.5重量%
未満である試料No.1では、焼成温度を1400℃まで
高めないと緻密化することができず、本発明の目的に適
さないものであった。一方、B2 3 量が15重量%を
越える試料No.8は液相量が多いため焼成温度も低く、
誘電損失が増大し60GHzにおいて誘電特性が評価で
きなかった。
On the other hand, the content of B 2 O 3 is 0.5% by weight.
In Sample No. 1, which was less than 1, the densification was not possible unless the firing temperature was raised to 1400 ° C., which was not suitable for the purpose of the present invention. On the other hand, sample No. 8 in which the amount of B 2 O 3 exceeds 15% by weight has a low firing temperature due to a large amount of liquid phase,
The dielectric loss increased, and the dielectric characteristics could not be evaluated at 60 GHz.

【0030】なお、本発明品の磁器の液相に対して、X
線マイクロアナライザーによって分析した結果、いずれ
も液相中からZn、Bおよび少量のSi元素が検出され
た。
The liquid phase of the porcelain of the present invention is represented by X
As a result of analysis by a line microanalyzer, Zn and B and a small amount of Si element were detected in the liquid phase in each case.

【0031】Znに対してSiの比率が少ない(y<
0.3)試料No.11では過剰なZnO相が析出し、こ
のため誘電損失が増大し60GHzにおいて誘電特性が
評価できなかった。
The ratio of Si to Zn is small (y <
0.3) In sample No. 11, an excessive ZnO phase was precipitated, which increased the dielectric loss, and the dielectric properties could not be evaluated at 60 GHz.

【0032】一方、Znに対してSiの比率が多い(y
>6)試料No.18では過剰なSiO2相が析出し、ま
たZn量が不十分であるため、B2 3 中のB成分と液
相を形成することが困難となり、B2 3 を15重量%
以上添加しなければ磁器が緻密化しない。、B2 3
15重量%以上添加したこの系では、誘電特性が劣化し
た。
On the other hand, the ratio of Si to Zn is large (y
> 6) to precipitate the sample No.18 in excess SiO2 phase, and because the amount of Zn is insufficient, it becomes difficult to form a B 2 O 3 in the B component and the liquid phase, the B 2 O 3 15% by weight
If not added, the porcelain will not be densified. In this system to which B 2 O 3 was added in an amount of 15% by weight or more, the dielectric properties deteriorated.

【0033】また、比較例として、MgSiO3 やCa
SiO3 を用いた試料No.9,10では、B2 3 量を
15重量%以上添加しないと緻密化しないため十分な誘
電特性が得られず、本発明の目的に適さないものであっ
た。
As comparative examples, MgSiO 3 and Ca
In Samples Nos. 9 and 10 using SiO 3 , if the amount of B 2 O 3 was not more than 15% by weight, densification would not be achieved, and sufficient dielectric properties could not be obtained, which was not suitable for the purpose of the present invention. .

【0034】実施例2 表2の組成からなるガラス粉末と平均粒径が1μm以下
のZn2 SiO4 、SiO2 を用いて表3の組成になる
ように混合した。そして、この混合物に有機バインダ
ー、可塑剤、トルエンを添加し、ドクターブレード法に
より厚さ300μmのグリーンシートを作製した。そし
て、このグリーンシートを5枚積層し、50℃の温度で
100kg/cm2 の圧力を加えて熱圧着した。得られ
た積層体を水蒸気含有/窒素雰囲気中で、700℃で脱
バインダーした後、乾燥窒素中で表1の条件において焼
成して多層基板用磁器を得た。
Example 2 Glass powder having the composition shown in Table 2 was mixed with Zn 2 SiO 4 and SiO 2 having an average particle diameter of 1 μm or less so as to obtain the composition shown in Table 3. Then, an organic binder, a plasticizer, and toluene were added to the mixture, and a green sheet having a thickness of 300 μm was prepared by a doctor blade method. Then, five green sheets were laminated and thermocompression-bonded at a temperature of 50 ° C. by applying a pressure of 100 kg / cm 2 . After debinding the obtained laminate in a steam-containing / nitrogen atmosphere at 700 ° C., it was fired in dry nitrogen under the conditions shown in Table 1 to obtain a ceramic for a multilayer substrate.

【0035】得られた焼結体について誘電率、誘電正接
および結晶相の同定を実施例1と同様な方法で測定評価
した。測定の結果は表1に示した。また、X線回折測定
から、また、試料No.43についてX線回折チャートを
図3に示した。
With respect to the obtained sintered body, the dielectric constant, dielectric loss tangent, and identification of the crystal phase were measured and evaluated in the same manner as in Example 1. The results of the measurement are shown in Table 1. FIG. 3 shows an X-ray diffraction chart of the sample No. 43 from the X-ray diffraction measurement.

【0036】また、比較例として、Zn2 SiO4 、S
iO2 に代わり、MgSiO3 、CaSiO3 を用いて
同様に焼結体を作製し評価した(試料No.38、3
9)。
As a comparative example, Zn 2 SiO 4 , S
Similarly, sintered bodies were prepared and evaluated using MgSiO 3 and CaSiO 3 instead of iO 2 (Sample Nos. 38, 3).
9).

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】表2、表3の結果から明らかなように、結
晶相として、ウイレマイト結晶相(Zn2 SiO4 結晶
相やSiO2 系結晶が主として析出した本発明の磁器
は、いずれも誘電率が6以下、60GHzでの誘電正接
が15×10-4以下の優れた値を示した。
As is clear from the results shown in Tables 2 and 3, the porcelain of the present invention in which a willemite crystal phase (a Zn 2 SiO 4 crystal phase or a SiO 2 crystal is mainly precipitated) as a crystal phase has a dielectric constant. The dielectric loss tangent at 6 GHz or less and 60 GHz showed an excellent value of 15 × 10 −4 or less.

【0040】これに対して、少なくともSiO2 、B2
3 を含むガラス量が0.5重量%未満である試料No.
19では、焼成温度を1400℃まで高めないと緻密化
することができず、本発明の目的に適さないものであっ
た。一方、少なくともSiO2 、B2 3 を含むガラス
量が20重量%を越える試料No.27は液相量が多いた
め焼成温度も低く、誘電損失が増大し60GHzにおい
て誘電特性が評価できなかった。
On the other hand, at least SiO 2 , B 2
Sample No. having an amount of glass containing O 3 of less than 0.5% by weight.
In No. 19, densification was not possible unless the firing temperature was raised to 1400 ° C., which was not suitable for the purpose of the present invention. On the other hand, the sample No. 27 containing at least 20% by weight of glass containing at least SiO 2 and B 2 O 3 has a large amount of liquid phase, so the firing temperature is low, the dielectric loss increases, and the dielectric properties could not be evaluated at 60 GHz. .

【0041】なお、本発明品の磁器の液相に対して、X
線マイクロアナライザーによって分析した結果、いずれ
も液相中からZn、Bおよび少量のSi元素が検出され
た。
The liquid phase of the porcelain of the present invention is expressed by X
As a result of analysis by a line microanalyzer, Zn and B and a small amount of Si element were detected in the liquid phase in each case.

【0042】Znに対してSiの比率が少ない(x<
0.3)試料No.40では過剰なZnO相が析出し、こ
のため誘電損失が増大し60GHzにおいて誘電特性が
評価できなかった。Znに対してSiの比率が多い(x
>6)試料No.47では過剰なSiO2 相が析出し、ま
たZn量が不十分であるため、ガラス中のB成分と液相
を形成することが困難となり、ガラスを20重量%以上
添加しなければ磁器が緻密化しない。ガラスを20重量
%を越えて添加した系では、誘電特性が劣化した。
The ratio of Si to Zn is small (x <
0.3) In sample No. 40, an excessive ZnO phase was precipitated, which increased the dielectric loss, and the dielectric properties could not be evaluated at 60 GHz. The ratio of Si to Zn is large (x
> 6) In sample No. 47, an excessive SiO 2 phase was precipitated and the Zn content was insufficient, so that it was difficult to form a liquid phase with the B component in the glass, and the glass was added in an amount of 20% by weight or more. Otherwise, the porcelain will not densify. In a system in which glass was added in excess of 20% by weight, the dielectric properties deteriorated.

【0043】また、比較例として、MgSiO3 やCa
SiO3 を用いた試料No.38、39では、ガラス量を
20重量%以上添加しないと緻密化しないため十分な誘
電特性が得られず、本発明の目的に適さないものであっ
た。
As comparative examples, MgSiO 3 and Ca
In Samples Nos. 38 and 39 using SiO 3 , if the amount of glass was not more than 20% by weight, densification was not achieved and sufficient dielectric properties could not be obtained, which was not suitable for the purpose of the present invention.

【0044】実施例3 上記実施例1中のNo.4および実施例2のNo.43の磁
器を用いて、直径1〜30mm、厚み2〜15mmの円
柱サンプル)を作製した()。また比較として汎用
品のコージェライト系ガラスセラミックス(硼珪酸ガラ
ス75重量%、Al2 3 25重量%)、汎用の低純
度アルミナ(Al2 3 95重量%、CaO、MgO5
重量%)を用い同様にしてサンプルを作製した。作製
したサンプルを1GHz、10GHz、20GHz、3
0GHz、60GHzの高周波、マイクロ波、ミリ波領
域において、誘電体円柱共振器法により誘電率と誘電正
接を測定した。結果を図4、5にそれぞれ示した。汎用
品のコージェライト系ガラスセラミックスは誘電率が5
と低く、汎用の低純度アルミナは誘電率は9と低いこと
がわかる。これに対して、本発明品はいずれも誘電率が
5と低い値であった。汎用品のガラスセラミックスは低
周波領域において誘電正接は7×10-4と低いが、高周
波領域になるに従い特性が劣化してしまい20GHz以
上では20×10-4以上になってしまう。また、汎用の
低純度アルミナは60GHzで40×10-4と高くなっ
た。一方、本発明品は、60GHzでの高周波領域にお
いても誘電正接は15×10-4以下と低いものであっ
た。
Example 3 A cylindrical sample having a diameter of 1 to 30 mm and a thickness of 2 to 15 mm was prepared using the porcelain of No. 4 in Example 1 and No. 43 of Example 2. For comparison, general-purpose cordierite-based glass ceramics (75% by weight of borosilicate glass, 25% by weight of Al 2 O 3 ), general-purpose low-purity alumina (95% by weight of Al 2 O 3 , CaO, MgO 5)
(% By weight) to prepare a sample in the same manner. The prepared samples were 1 GHz, 10 GHz, 20 GHz, 3
The dielectric constant and the dielectric loss tangent were measured by a dielectric cylinder resonator method in a high frequency range of 0 GHz, 60 GHz, microwaves and millimeter waves. The results are shown in FIGS. General-purpose cordierite glass ceramics have a dielectric constant of 5
It can be seen that the dielectric constant of general-purpose low-purity alumina is as low as 9. On the other hand, each of the products of the present invention had a low dielectric constant of 5, which was a low value. The dielectric loss tangent of a general-purpose glass ceramic is as low as 7 × 10 −4 in the low frequency region, but the characteristics are degraded as the frequency becomes higher, and the dielectric loss tangent becomes 20 × 10 −4 or more at 20 GHz or higher. In addition, general-purpose low-purity alumina was as high as 40 × 10 −4 at 60 GHz. On the other hand, the product of the present invention had a low dielectric loss tangent of 15 × 10 −4 or less even in a high frequency region at 60 GHz.

【0045】[0045]

【発明の効果】以上詳述した通り、本発明の低温焼成磁
器組成物は、誘電率が低く、30GHz以上の高周波に
おいても誘電正接が小さいので、高周波用途のマイクロ
波用回路素子等において最適である。さらに、基板材料
の高強度化により入出力端子部に施すリードの接合や実
装における基板の信頼性を向上できる。しかも、800
〜1000℃で焼成されるため、Cu、Au、Ag等に
よる配線を同時焼成により形成することができる。
As described above in detail, the low-temperature fired porcelain composition of the present invention has a low dielectric constant and a small dielectric loss tangent even at a high frequency of 30 GHz or more. is there. Further, by increasing the strength of the substrate material, it is possible to improve the reliability of the substrate in bonding and mounting leads applied to the input / output terminals. And 800
Since the sintering is performed at a temperature of up to 1000 ° C., a wiring made of Cu, Au, Ag, or the like can be formed by simultaneous sintering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体磁器の組織の概略図である。FIG. 1 is a schematic view of a structure of a dielectric porcelain of the present invention.

【図2】本発明の誘電体磁器(試料No.4)のX線回折
チャート図である。
FIG. 2 is an X-ray diffraction chart of a dielectric ceramic (sample No. 4) of the present invention.

【図3】本発明の誘電体磁器(試料No.43)のX線回
折チャート図である。
FIG. 3 is an X-ray diffraction chart of a dielectric ceramic (sample No. 43) of the present invention.

【図4】本発明品および従来品の誘電率の測定周波数と
の関係を示した図である。
FIG. 4 is a diagram showing a relationship between a dielectric constant of a product of the present invention and a conventional product and a measurement frequency.

【図5】本発明品および従来品の誘電正接の測定周波数
との関係を示した図である。
FIG. 5 is a diagram showing the relationship between the product of the present invention and the conventional product with respect to the measured frequency of dielectric loss tangent.

【符号の説明】[Explanation of symbols]

1 ウイレマイト結晶相(W) 2 非晶質相(G) 3 SiO2 相(S)1 Willemite crystal phase (W) 2 Amorphous phase (G) 3 SiO 2 phase (S)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/46 C04B 35/16 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 3/46 C04B 35/16 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくともZnとSiとを含み、該金属の
原子比による組成を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を8
5〜99.9重量%と、B2 3 を0.1〜15重量%
とからなることを特徴とする低温焼成磁器組成物。
1. A composite oxide containing at least Zn and Si, wherein the composition according to the atomic ratio of the metal is represented by Zn · xSi, satisfying 0.3 ≦ x ≦ 6.
5 to 99.9 wt% and, B 2 O 3 and 0.1 to 15 wt%
A low-temperature fired porcelain composition comprising:
【請求項2】少なくともZnとSiとを含み、該金属の
原子比による組成を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を8
0〜99.5重量%と、少なくともSiO2 およびB2
3 を含有するガラス0.5〜20重量%とからなるこ
とを特徴とする低温焼成磁器組成物。
2. A composite oxide containing at least Zn and Si, and wherein the composition according to the atomic ratio of the metal is represented by Zn.xSi, 8 is a complex oxide satisfying 0.3 ≦ x ≦ 6.
0-99.5% by weight and at least SiO 2 and B 2
Low temperature sintering ceramic composition characterized by comprising a glass 0.5 to 20% by weight containing O 3.
【請求項3】少なくともZnおよびSiを含むウイレマ
イト結晶相および/またはSiO2 系結晶相を含むこと
を特徴とする請求項1または請求項2記載の低温焼成磁
器組成物。
3. The low-temperature fired porcelain composition according to claim 1, which comprises a willemite crystal phase containing at least Zn and Si and / or a SiO 2 -based crystal phase.
【請求項4】30〜60GHzでの誘電率(εr)が6
以下、誘電損失が15×10-4以下であることを特徴と
する請求項1乃至3記載のいずれか記載の低温焼成磁器
組成物。
4. The dielectric constant (εr) at 30 to 60 GHz is 6
The low-temperature fired porcelain composition according to any one of claims 1 to 3, wherein the dielectric loss is 15 10-4 or less.
【請求項5】少なくともZnとSiとを含み、該金属の
原子比による組成を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を8
5〜99.9重量%と、B2 3 を0.1〜15重量%
とからなる組成物を所定形状に成形後、酸化あるいは非
酸化性雰囲気中、800℃〜1000℃で焼成すること
を特徴とする低温焼成磁器の製造方法。
5. A composite oxide containing at least Zn and Si, and wherein the composition according to the atomic ratio of the metal is represented by Zn.xSi, 8 is a complex oxide satisfying 0.3 ≦ x ≦ 6.
5 to 99.9 wt% and, B 2 O 3 and 0.1 to 15 wt%
A method for producing a low-temperature fired porcelain, comprising forming a composition comprising the following into a predetermined shape, and firing the composition at 800 ° C. to 1000 ° C. in an oxidizing or non-oxidizing atmosphere.
【請求項6】少なくともZnとSiとを含み、該金属の
原子比による組成を Zn・xSi と表した時、0.3≦x≦6を満足する複合酸化物を8
0〜99.5重量%と、少なくともSiO2 およびB2
3 を含有するガラスを0.5〜20重量%とからなる
組成物を所定形状に成形後、酸化あるいは非酸化性雰囲
気中、800℃〜1000℃で焼成することを特徴とす
る低温焼成磁器の製造方法。
6. A composite oxide which contains at least Zn and Si, and which satisfies 0.3 ≦ x ≦ 6 when the composition according to the atomic ratio of the metal is represented by Zn · xSi.
0-99.5% by weight and at least SiO 2 and B 2
After molding the glass containing O 3 composition comprising 0.5 to 20% by weight into a predetermined shape in an oxidizing or non-oxidizing atmosphere, low-temperature firing porcelain and firing at 800 ° C. to 1000 ° C. Manufacturing method.
JP35007296A 1996-12-27 1996-12-27 Low-temperature firing porcelain and method of manufacturing the same Expired - Fee Related JP3527818B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35007296A JP3527818B2 (en) 1996-12-27 1996-12-27 Low-temperature firing porcelain and method of manufacturing the same
US08/999,484 US5916834A (en) 1996-12-27 1997-12-29 Dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35007296A JP3527818B2 (en) 1996-12-27 1996-12-27 Low-temperature firing porcelain and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10189828A true JPH10189828A (en) 1998-07-21
JP3527818B2 JP3527818B2 (en) 2004-05-17

Family

ID=18408045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35007296A Expired - Fee Related JP3527818B2 (en) 1996-12-27 1996-12-27 Low-temperature firing porcelain and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3527818B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055425A1 (en) * 1997-06-03 1998-12-10 Tdk Corporation Nonmagnetic ceramic and laminated ceramic parts
JP5134819B2 (en) * 2004-10-12 2013-01-30 株式会社ヤスフクセラミックス High frequency dielectric ceramics
CN110171962A (en) * 2019-01-04 2019-08-27 南京汇聚新材料科技有限公司 A kind of low-temperature co-fired ceramics microwave and millimeter wave material
EP3802446A4 (en) * 2018-07-11 2022-03-23 Ferro Corporation High q ltcc dielectric compositions and devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055425A1 (en) * 1997-06-03 1998-12-10 Tdk Corporation Nonmagnetic ceramic and laminated ceramic parts
US6008151A (en) * 1997-06-03 1999-12-28 Tdk Corporation Non-magnetic ceramics and ceramic multilayer parts
JP5134819B2 (en) * 2004-10-12 2013-01-30 株式会社ヤスフクセラミックス High frequency dielectric ceramics
EP3802446A4 (en) * 2018-07-11 2022-03-23 Ferro Corporation High q ltcc dielectric compositions and devices
CN110171962A (en) * 2019-01-04 2019-08-27 南京汇聚新材料科技有限公司 A kind of low-temperature co-fired ceramics microwave and millimeter wave material
CN110171962B (en) * 2019-01-04 2021-09-28 南京汇聚新材料科技有限公司 Low-temperature co-fired ceramic microwave and millimeter wave material

Also Published As

Publication number Publication date
JP3527818B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP3297569B2 (en) Low temperature firing porcelain composition
JP3860687B2 (en) Dielectric porcelain and laminate
JP2004115295A (en) Low temperature sinterable ceramic composition for high frequency and method of producing the same
JP3550270B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP3527818B2 (en) Low-temperature firing porcelain and method of manufacturing the same
JP4580923B2 (en) Low-frequency fired porcelain composition for high frequency, its manufacturing method and electronic component
JP3377898B2 (en) Low temperature firing porcelain composition
JP3754798B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP4202117B2 (en) Low-frequency fired porcelain composition for high frequency and manufacturing method thereof
JP3101970B2 (en) Glass-ceramic sintered body and method for producing the same
JP3311924B2 (en) Porcelain composition and method for producing porcelain
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JP3628146B2 (en) Low temperature fired ceramic composition and low temperature fired ceramic
JP3754778B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2003238235A (en) Low temperature-firable porcelain composition for high frequency use and production method therefor
JP3833383B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP3363299B2 (en) Low temperature firing porcelain composition
JPH09208298A (en) Porcelain composition fired at a low temperature
JP3754782B2 (en) High frequency wiring board and manufacturing method thereof
JP3631580B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP3441940B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP3833340B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain and method for producing low-temperature fired porcelain
JP3936164B2 (en) Low temperature sintered ceramic composition for high frequency and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees