JPH10189043A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10189043A
JPH10189043A JP8347102A JP34710296A JPH10189043A JP H10189043 A JPH10189043 A JP H10189043A JP 8347102 A JP8347102 A JP 8347102A JP 34710296 A JP34710296 A JP 34710296A JP H10189043 A JPH10189043 A JP H10189043A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
carbonate
lithium secondary
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8347102A
Other languages
Japanese (ja)
Inventor
Juichi Arai
寿一 新井
Hideaki Katayama
秀昭 片山
Yutaka Ito
伊藤  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8347102A priority Critical patent/JPH10189043A/en
Publication of JPH10189043A publication Critical patent/JPH10189043A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery incombustible and free from degradation of a battery function, and ensuring high safety by applying the constitution that an electrolyte is dissolved in an organic solvent made of chain carbonate blended with mono-halogenated or di-halogenated cyclic carbonate to a specific ratio for use as a nonaqueous electrolyte. SOLUTION: A negative electrode of graphitic carbon material capable of storing and releasing lithium, and a positive electrode of lithium transition metal composite oxide such as LiCoO2 are provided and a nonaqueous electrolyte formed out of an electrolyte such as LiPF6 dissolved in a nonaqueous solvent is used, thereby providing a lithium secondary battery. The nonaqueous solvent in this case is composed of 5wt% to 40wt% of the chain carbonate expressed by the formula II where R1 and R2 are an alkyl group having three or less carbons), blended with the mono-halogenated or di-halogenated cyclic carbonate expressed by the formula I where X1 to X4 are F, Cl, Br and H respectively, 1 and 2 thereof are halogen, and 2 and 3 are hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム2次電池に
係わり、特に、非水溶媒を工夫することにより安全性と
電池特性とを向上したリチウム2次電池に関する。
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having improved safety and battery characteristics by devising a non-aqueous solvent.

【0002】[0002]

【従来の技術】非水電解液を用いたリチウム2次電池
は、高電圧・高エネルギー密度を有し、かつ、貯蔵性能
や低温動作性に優れ、広く携帯用民生電気製品に利用さ
れている。また、この電池を大型化し、電気自動車用や
家庭用の夜間電力貯蔵装置として活用していくための研
究・開発が盛んに行われている。
2. Description of the Related Art A lithium secondary battery using a non-aqueous electrolyte has a high voltage and a high energy density, and has excellent storage performance and low-temperature operability, and is widely used in portable consumer electric products. . Also, research and development for increasing the size of this battery and utilizing it as a nighttime power storage device for electric vehicles and homes are being actively conducted.

【0003】しかし、これらに利用される溶媒の多くは
引火点が低く、燃焼性が高いため、過充電や加熱等によ
り発火,爆発等の危険性がある。そこで、最近ではこの
電池の安全性を確保するための提案が増加してきてい
る。例えば、特開平7−192762号公報では燃焼抑制効果
が期待できるハロゲン化ギ酸エステルを環状炭酸エステ
ルに混合することにより、燃焼性を低減でき、かつ、高
負荷特性,低温特性、及び、サイクル特性ともに十分な
特性が得られることが示されている。また、特開平8−4
5544号公報にはハロゲン化されたエステルを混合するこ
とが記されているが、ハロゲン化ギ酸エステルやハロゲ
ン化エステル類は、ハロゲン化していない環状カーボネ
ートよりも引火点が低い場合もあり、必ずしも十分な難
燃化が実現されたとは考え難い。また、特開平4−18437
0 号公報や特開平8−88023号公報では、自己消火作用が
期待されるリン酸エステルを電解液に含有することが記
されているが、サイクル特性が若干劣る傾向がある。
[0003] However, most of the solvents used in these methods have a low flash point and a high flammability, and there is a risk of ignition, explosion, and the like due to overcharging, heating and the like. Therefore, recently, proposals for ensuring the safety of the battery have been increasing. For example, in Japanese Patent Application Laid-Open No. 7-192762, by mixing a halogenated formate, which can be expected to have a combustion suppressing effect, with a cyclic carbonate, the combustibility can be reduced, and high load characteristics, low temperature characteristics, and cycle characteristics can be improved. It is shown that sufficient characteristics can be obtained. In addition, JP-A-8-4
No. 5544 discloses that a halogenated ester is mixed, but halogenated formate and halogenated esters may have a lower flash point than the non-halogenated cyclic carbonate, which is not always sufficient. It is difficult to imagine that the real flame retardancy was realized. Also, JP-A-4-18437
In Japanese Patent Publication No. 0 and JP-A-8-88023, it is described that a phosphate ester expected to have a self-extinguishing effect is contained in the electrolytic solution, but the cycle characteristics tend to be slightly inferior.

【0004】そこで、電解液難燃化の手段として、これ
までも電池のサイクル特性や低温特性を向上する目的で
幾つか提案されている環状カーボネートのハロゲン化が
考えられる。環状カーボネートのハロゲン化に関して
は、例えば、特開昭62−290072号公報,特開昭62−2175
67号公報および特開平7−240232 号公報では、サイク
ル,低温特性あるいは電流特性の改善のため、ハロゲン
化エチレンカーボネートの使用が提案されている。
[0004] As a means of making the electrolyte solution flame-retardant, halogenation of cyclic carbonate, which has been proposed for the purpose of improving the cycle characteristics and low-temperature characteristics of the battery, may be considered. Regarding the halogenation of cyclic carbonates, see, for example, JP-A-62-290072 and JP-A-62-2175.
JP-A-67-240232 and JP-A-7-240232 propose the use of halogenated ethylene carbonate for improving the cycle, low-temperature characteristics or current characteristics.

【0005】しかし、ハロゲン化エチレンカーボネート
を単独で用いた場合、電流特性が低い、あるいは、サイ
クル特性が十分ではないという欠点がある。混合して用
いた場合の難燃性はまだ考慮されていない。
However, when the halogenated ethylene carbonate is used alone, there is a drawback that the current characteristics are low or the cycle characteristics are not sufficient. Flame retardancy when used in combination has not yet been considered.

【0006】[0006]

【発明が解決しようとする課題】電解液の難燃性を損な
わない、また、電池性能を低下させない範囲で、ハロゲ
ン化エチレンカーボネートへの鎖状のカーボネートの混
合量を規定し、安全性の高いリチウム2次電池を提供す
ることである。
The mixing amount of the chain carbonate to the halogenated ethylene carbonate is defined as long as the flame retardancy of the electrolytic solution is not impaired and the performance of the battery is not deteriorated. An object of the present invention is to provide a lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】モノハロゲン化またはジ
ハロゲン化環状カーボネートを溶媒とした電池の電流特
性やサイクル特性等の電池性能は、意外にも5重量%以
上の少量の鎖状のカーボネートの添加によって、改善で
きることが分かった。また、40重量%の鎖状カーボネ
ートの混合までは、燃焼性を抑制する効果があることが
分かった。従って、この範囲、即ち、5重量%から40
重量%の範囲で1種または数種の鎖状カーボネートを添
加した、モノハロゲン化またはジハロゲン化環状カーボ
ネートの混合溶媒を非水電解液の溶媒とすることで、電
池特性を損なうことなく、電解液の難燃化が達成でき、
安全性の高いリチウム2次電池を提供できる。
The battery performance such as current characteristics and cycle characteristics of a battery using a monohalogenated or dihalogenated cyclic carbonate as a solvent is surprisingly improved by adding a small amount of a chain carbonate of 5% by weight or more. It has been found that can be improved. Further, it was found that up to the mixing of 40% by weight of the chain carbonate, there was an effect of suppressing flammability. Therefore, in this range, from 5% by weight to 40%
By using a mixed solvent of a monohalogenated or dihalogenated cyclic carbonate to which one or several kinds of chain carbonates are added in a range of weight% as a solvent of the non-aqueous electrolyte, the electrolytic solution can be obtained without impairing the battery characteristics. Can achieve flame retardancy,
A highly safe lithium secondary battery can be provided.

【0008】但し、鎖状カーボネートは電池の充放電過
程で(化3)
[0008] However, the chain carbonate is formed in the process of charging and discharging the battery (Chemical Formula 3).

【0009】[0009]

【化3】 Embedded image

【0010】(式中、R1,R2は炭素数3以下のアルキ
ル基を表す。)に示すエステル交換反応を起こすため、
式に示す様に対称な構造をもつ2種類の分子を添加して
も非対称な構造の分子が生成し、電池作製時の電解液組
成と異なってくる。しかし、幾度かの充放電サイクル後
に、過充電や電池加熱等の安全性試験を行ったが、その
効果は十分維持されており、本発明における鎖状カーボ
ネートの化学構造は電池作製時の組成に限定する必要は
ない。即ち、本発明における難燃性電解液中の鎖状カー
ボネートとは、(化2)
(Wherein R 1 and R 2 each represent an alkyl group having 3 or less carbon atoms).
Even if two types of molecules having a symmetrical structure are added as shown in the formula, molecules having an asymmetrical structure are generated, which differs from the electrolyte composition at the time of battery production. However, after several charge / discharge cycles, safety tests such as overcharging and battery heating were performed, but the effects were sufficiently maintained, and the chemical structure of the chain carbonate according to the present invention was determined by the composition at the time of battery fabrication. There is no need to limit. That is, the chain carbonate in the flame-retardant electrolytic solution in the present invention is represented by (Chemical Formula 2)

【0011】[0011]

【化2】 Embedded image

【0012】(式中、R1,R2は炭素数3以下のアルキ
ル基を表す。)で表される対称、及び、非対称な構造の
混合組成物である。
(Wherein, R 1 and R 2 each represent an alkyl group having 3 or less carbon atoms). This is a mixed composition having a symmetric and asymmetric structure.

【0013】モノハロゲン化またはジハロゲン化環状カ
ーボネートとしては、(化4)から(化24)
As the monohalogenated or dihalogenated cyclic carbonate, (Chemical Formula 4) to (Chemical Formula 24)

【0014】[0014]

【化4】 Embedded image

【0015】[0015]

【化5】 Embedded image

【0016】[0016]

【化6】 Embedded image

【0017】[0017]

【化7】 Embedded image

【0018】[0018]

【化8】 Embedded image

【0019】[0019]

【化9】 Embedded image

【0020】[0020]

【化10】 Embedded image

【0021】[0021]

【化11】 Embedded image

【0022】[0022]

【化12】 Embedded image

【0023】[0023]

【化13】 Embedded image

【0024】[0024]

【化14】 Embedded image

【0025】[0025]

【化15】 Embedded image

【0026】[0026]

【化16】 Embedded image

【0027】[0027]

【化17】 Embedded image

【0028】[0028]

【化18】 Embedded image

【0029】[0029]

【化19】 Embedded image

【0030】[0030]

【化20】 Embedded image

【0031】[0031]

【化21】 Embedded image

【0032】[0032]

【化22】 Embedded image

【0033】[0033]

【化23】 Embedded image

【0034】[0034]

【化24】 Embedded image

【0035】に示す構造の化合物を用いることができ
る。分子軌道計算によれば、環状カーボネートはハロゲ
ン化することにより分子軌道エネルギーが変化すること
が分かる。耐酸化性の尺度である最高被占軌道のエネル
ギー(HOMO)は、フッ素の置換数を増加すると高く
なり、塩素及び臭素では大きな変動はないことが分かっ
た。また、耐還元性の尺度である最低空軌道のエネルギ
ー(LUMO)は、どのハロゲン原子を導入しても低下
する傾向があることが分かった。従って、上記化合物の
うちフッ素を含むものが好ましく、また、ハロゲンの数
は1つの方が好ましい。
Compounds having the structures shown below can be used. According to the molecular orbital calculation, it is understood that the molecular orbital energy changes due to the halogenation of the cyclic carbonate. It was found that the energy of the highest occupied orbital (HOMO), which is a measure of oxidation resistance, increased as the number of substituted fluorine atoms increased, and there was no significant change in chlorine and bromine. In addition, it was found that the energy of the lowest unoccupied orbit (LUMO), which is a measure of reduction resistance, tends to decrease regardless of which halogen atom is introduced. Therefore, of the above compounds, those containing fluorine are preferable, and the number of halogens is preferably one.

【0036】さらに、ハロゲンの置換数を増すと難燃性
は向上するが、電極との親和性が低下するため、界面抵
抗が大きくなり電流特性が悪くなる傾向がある。この点
からも、モノハロゲン化またはジハロゲン化環状カーボ
ネートが好ましい。
Further, when the number of halogen substitutions is increased, the flame retardancy is improved, but the affinity with the electrode is reduced, so that the interface resistance is increased and the current characteristics tend to be deteriorated. From this viewpoint, monohalogenated or dihalogenated cyclic carbonates are preferred.

【0037】鎖状カーボネートとしては、ジメチルカー
ボネート,エチルメチルカーボネート,ジエチルカーボ
ネート,メチルプロピルカーボネート,エチルプロピル
カーボネート,ジプロピルカーボネートを用いることが
できる。電解質であるリチウム塩には、LiPF6,L
iBF4が好適であり、これらを単一で用いても、ま
た、混合して用いても良い。また、LiSO3CF3,L
iN(SO2CF3)2,LiC(SO2CF3)3,Li3PO
4,Li2(CH)3PO4,Li(CH3)2PO4,Li2(C2
5)PO4,Li(C25)2PO4を混合して用いても良
い。
As the chain carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate and dipropyl carbonate can be used. The lithium salt as the electrolyte includes LiPF 6 , L
iBF 4 is preferable, and these may be used alone or as a mixture. LiSO 3 CF 3 , L
iN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , Li 3 PO
4 , Li 2 (CH) 3 PO 4 , Li (CH 3 ) 2 PO 4 , Li 2 (C 2
H 5) PO 4, Li ( C 2 H 5) 2 PO 4 may be mixed and used.

【0038】負極材料のうち、リチウムを吸蔵放出可能
な炭素材料の種類は黒鉛であっても、難黒鉛であっても
良い。また、これら炭素材料に混合して用いる金属もし
くはIV族元素の酸化物としては、銅,銀,錫,ゲルマニ
ウム,硅素などが好ましい。正極材料としては、コバル
ト酸リチウム,ニッケル酸リチウム,マンガン酸リチウ
ム、または、一部がコバルトあるいはアルミニウムで置
換されたニッケル酸リチウムもしくはマンガン酸リチウ
ムを用いることができる。
Among the negative electrode materials, the type of carbon material capable of inserting and extracting lithium may be graphite or non-graphite. Further, as a metal or an oxide of a group IV element to be mixed with these carbon materials, copper, silver, tin, germanium, silicon and the like are preferable. As the positive electrode material, lithium cobaltate, lithium nickelate, lithium manganate, or lithium nickelate or lithium manganate partially substituted with cobalt or aluminum can be used.

【0039】本発明の電池形状は、特に限定する必要は
なく、円筒型,角型,コイン型,ボタン型等の種々の形
状にすることができる。
The shape of the battery of the present invention does not need to be particularly limited, and may be various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape.

【0040】鎖状カーボネートによる電池特性の改善効
果の要因は、未だ十分解明されていないが、混合量によ
る溶液構造の変化が関係していると考えられる。図1
に、モノクロロエチレンカーボネート(4−クロロ−
1,3−ジオキソラン−2−オン;以下CLEC1と略
記)とジメチルカーボネートと(以下DMCと略記)の
混合溶媒とし、LiPF6 を塩とした電解液のカルボニ
ル炭素のNMR(核磁気共鳴スペクトル)で評価した溶
媒和シフトの変化を示す。リチウムイオンは正電荷を有
するので、カルボニル炭素の溶媒和シフトはこのイオン
への溶媒和量が増えれば大きくなる(低磁場を正に表示
した)が、図1に示す様にCLEC1の溶媒和シフトは
鎖状カーボネートの混合量に対して直線的な変化を示さ
ない。これは、環状カーボネートであるCLEC1と鎖
状カーボネートであるDMCとが相互作用していること
を示唆するものである。本発明で規定した鎖状カーボネ
ートの混合量5〜40重量%では、CLEC1の溶媒和
シフトは減少し、DMCのそれはほぼ横這いになってお
り、これらの間の相互作用が強く、リチウムイオンとの
溶媒和が弱まった状態にあると考えられる。そのため、
電極でのリチウムイオンの授受が容易になり、電池特性
が向上するものと考えられる。また、ハロゲン化環状カ
ーボネートと鎖状カーボネートとが強い相互作用をした
状態にあるため、ハロゲン化環状カーボネートにより鎖
状カーボネートの燃焼性が低下するのではないかと考え
る。
Although the cause of the effect of improving the battery characteristics by the chain carbonate has not been sufficiently elucidated yet, it is considered that the change in the solution structure depending on the mixing amount is involved. FIG.
In addition, monochloroethylene carbonate (4-chloro-
1,3-dioxolan-2-one; a mixed solvent of dimethyl carbonate and dimethyl carbonate (hereinafter abbreviated as DMC), and a carbonyl carbon NMR (nuclear magnetic resonance spectrum) of an electrolyte containing LiPF 6 as a salt. The change in the evaluated solvation shift is shown. Since the lithium ion has a positive charge, the solvation shift of the carbonyl carbon increases as the amount of solvation to this ion increases (the low magnetic field is indicated as positive), but as shown in FIG. Shows no linear change with respect to the mixing amount of the chain carbonate. This suggests that the cyclic carbonate CLEC1 interacts with the chain carbonate DMC. When the mixed amount of the chain carbonate specified in the present invention is 5 to 40% by weight, the solvation shift of CLEC1 is reduced, that of DMC is almost flat, the interaction between these is strong, and the interaction with lithium ion is strong. It is considered that the solvation is in a weakened state. for that reason,
It is considered that lithium ions can be easily exchanged at the electrode, and battery characteristics are improved. Further, since the halogenated cyclic carbonate and the chain carbonate are in a state of strong interaction, it is considered that the flammability of the chain carbonate may be reduced by the halogenated cyclic carbonate.

【0041】[0041]

【発明の実施の形態】以下、この発明を実施例により具
体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples.

【0042】(実施例1)環状カーボネートとしてCL
EC1を、鎖状カーボネートとしてDMCを用い、鎖状
カーボネートの混合量を25重量%とし、リチウム塩と
してLiPF6 を1M(1モル/リッター)溶解し、実
施例1の電解液を調製した。
Example 1 CL was used as a cyclic carbonate.
EC1 was prepared by using DMC as a chain carbonate, adjusting the mixing amount of the chain carbonate to 25% by weight, and dissolving 1 M (1 mol / liter) of LiPF 6 as a lithium salt to prepare an electrolyte solution of Example 1.

【0043】電池性能及び電池の安全性試験のため、図
2に示す構造(高さ63mm,外径18mm)の円筒型電池
を作製した。負極は、負極活物質である難黒鉛炭素と結
着剤であるポリビニリデンフロライド(以下PVDFと
略記)とをN−メチルピロリドン(以下NMPと略記)
に溶解したペーストを厚さ20μmの銅箔の集電体両面
に塗布,加熱・加圧成型して得た。正極は、正極活物質
であるLiCoO2と、PVDFと導電助剤であるグラ
ファイト系炭素剤とをNMPに溶解したペーストを厚さ
20μmのアルミ箔の集電体両面に塗布,加熱・加圧成
型して得た。これら負極及び正極の間に、厚さ25μm
のポリエチレン製セパレータを挟み、捲回して電極群を
形成し、各電極の端子を電池缶及び電池蓋にスポット熔
接した後、電解液を注入して実施例1のリチウム2次電
池を得た。
For battery performance and battery safety tests, a cylindrical battery having the structure shown in FIG. 2 (height 63 mm, outer diameter 18 mm) was manufactured. For the negative electrode, N-methylpyrrolidone (hereinafter abbreviated as NMP) is obtained by combining non-graphite carbon as the negative electrode active material and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder.
Was applied to both sides of a current collector made of a copper foil having a thickness of 20 μm, and heated and pressed to obtain a paste. For the positive electrode, a paste obtained by dissolving LiCoO 2 as a positive electrode active material, PVDF and a graphite-based carbon agent as a conductive additive in NMP is applied to both surfaces of a 20 μm-thick aluminum foil current collector, and heated and pressed. I got it. Between these negative and positive electrodes, a thickness of 25 μm
After the polyethylene separator was sandwiched and wound to form an electrode group, the terminals of each electrode were spot-welded to a battery can and a battery lid, and then an electrolyte was injected to obtain a lithium secondary battery of Example 1.

【0044】(実施例2〜4,比較例1,2)電解液と
して表1
(Examples 2 to 4, Comparative Examples 1 and 2)

【0045】[0045]

【表1】 [Table 1]

【0046】に示すDMCの混合量の溶媒を用いて、実
施例2〜4の電池、及び、比較例1,2の電池を作製し
た。
The batteries of Examples 2 to 4 and the batteries of Comparative Examples 1 and 2 were prepared using the solvent in the mixed amount of DMC shown in FIG.

【0047】(電池初期容量の評価)作製した電池を定
電流(0.2C=280mA)・定電圧(4.2V)で充電
し、0.2C 定電流で放電した際の初期の充電容量、及
び、放電容量を表1に比較した。比較例1の結果から明
らかな様に、CLEC1が100重量%、即ち、CLE
C1単独を溶媒とした電解液では充電容量,放電容量と
もに極めて低く、十分な電池特性が得られないことが分
かる。また、初期充放電容量は図1に示したCLEC1
の溶媒和シフトが最も小さくなったDMCの混合量25
重量%の点で最も良くなっていることが分かる。
(Evaluation of Initial Battery Capacity) The initial charge capacity when the manufactured battery was charged at a constant current (0.2 C = 280 mA) and a constant voltage (4.2 V) and discharged at a constant current of 0.2 C, Table 1 compares the discharge capacities. As is clear from the results of Comparative Example 1, CLEC1 was 100% by weight, that is, CLE1.
In the case of the electrolytic solution using C1 alone as the solvent, both the charge capacity and the discharge capacity were extremely low, indicating that sufficient battery characteristics could not be obtained. The initial charge / discharge capacity is CLEC1 shown in FIG.
Of DMC which minimized solvation shift of 25
It can be seen that it is best in terms of weight%.

【0048】(電解液難燃性の評価)実施例1〜4及び
比較例1,2の電解液に関して、麻袋を幅1cm,長さ3
0cmに切り出し、それぞれの電解液を重量で3g含浸さ
せて金網上に置き、この試料の一端にガスライターの炎
を接触させ燃焼性を調べた。その結果、表1に示す様に
DMCを75重量%混合した電解液では引火・燃焼が確
認された。従って、難燃性の観点から許容できるDMC
の混合量は75重量%よりも少なくする必要があり、電
池容量の点からDMCを40重量%以上にしても大きな
効果がないので、安全設計の観点からDMCの混合量は
40重量%以下で十分である。
(Evaluation of Flame Retardancy of Electrolyte) Regarding the electrolytes of Examples 1 to 4 and Comparative Examples 1 and 2, a hemp bag was 1 cm wide and 3 cm long.
Each sample was cut into 0 cm, impregnated with 3 g by weight of each of the electrolytes, placed on a wire net, and one end of the sample was brought into contact with a flame of a gas lighter to examine flammability. As a result, as shown in Table 1, ignition and combustion were confirmed in the electrolytic solution containing 75% by weight of DMC. Therefore, DMC that is acceptable from the viewpoint of flame retardancy
Is required to be less than 75% by weight, and if DMC is more than 40% by weight from the viewpoint of battery capacity, there is no great effect. Therefore, from the viewpoint of safety design, the amount of DMC is less than 40% by weight. It is enough.

【0049】(溶媒の混合割合に対する難燃性)リチウ
ム塩を含む電解液は、燃焼しにくくなるのでC1EC系
に関し、溶媒のみの燃焼性を上記と同じ方法で評価し
た。その結果を図3に示す。図3から明らかな様に、D
MCが重量%で40、容量%で30を超えると電解液溶
媒の燃焼性は燃焼長,燃焼速度ともに急激に高くなって
いる。
(Flame Retardancy to Mixing Ratio of Solvent) Since the electrolyte containing a lithium salt is difficult to burn, the flammability of the solvent alone was evaluated for the C1EC system in the same manner as described above. The result is shown in FIG. As is apparent from FIG.
When MC exceeds 40 in weight% and 30 in volume%, the flammability of the electrolyte solvent sharply increases in both the burning length and the burning speed.

【0050】(比較例3)電解液の溶媒をプロピレンカ
ーボネート(50重量%)とDMC(50重量%)の混合
組成として、比較例3の電池を作製した。
(Comparative Example 3) A battery of Comparative Example 3 was prepared by using a solvent for the electrolytic solution as a mixed composition of propylene carbonate (50% by weight) and DMC (50% by weight).

【0051】(バーナー加熱試験)これら電池の安全性
を評価するため、電池をそれぞれの初期容量まで充電し
た後、電池を横倒しに置き、下からバーナーの直火で電
池の中央部を加熱し、変化を観察した。バーナーの炎の
温度は約700℃であった。この結果を表2
(Burner Heating Test) In order to evaluate the safety of these batteries, after charging the batteries to their respective initial capacities, the batteries were placed on their sides, and the central part of the batteries was heated from below with the burner direct fire. Changes were observed. The burner flame temperature was about 700 ° C. Table 2 shows the results.

【0052】[0052]

【表2】 [Table 2]

【0053】に示す。C1EC1を含む電解液の電池は
電池蓋のカシメ部が破れ、気化した電解液が白煙状にな
って発散したのみであった。しかし、ハロゲンを含まな
い電解液を用いた比較例3の電池はカシメ部が破裂して
破れ、そこから発火して、電解液が燃焼した。
Are shown in FIG. In the battery of the electrolytic solution containing C1EC1, the swaged portion of the battery cover was torn, and the vaporized electrolytic solution was only emitted as white smoke. However, in the battery of Comparative Example 3 using an electrolyte containing no halogen, the crimped portion burst and was torn, and fired from there to burn the electrolyte.

【0054】(過充電試験)これら電池をそれぞれの初
期容量まで充電した後、15Vの直流電源に繋ぎ、28
00mAh(2.0C)の充電電流を30分間通じ、変化
を観察した。その結果を表2に示す。C1EC1を含む
電解液の電池は電池缶の膨れは観測されたが、破裂・爆
発等は生じなかった。これに対し、ハロゲンを含まない
比較例3の電池は爆発してしまった。
(Overcharge test) After charging these batteries to their respective initial capacities, they were connected to a 15 V DC power supply and
A change current was observed by passing a charging current of 00 mAh (2.0 C) for 30 minutes. Table 2 shows the results. For the battery of the electrolytic solution containing C1EC1, swelling of the battery can was observed, but no rupture or explosion occurred. In contrast, the battery of Comparative Example 3 containing no halogen exploded.

【0055】(サイクル試験)これらの電池を0.2C
定電流・4.2V 定電圧で充電し、10分保持し、0.
2C 定電流で放電し、10分保持する充放電の繰り返
しを1サイクルとするサイクル試験を実施した。100
サイクル目の放電容量を表2に示す。C1EC1 とDMCの
混合電解液を用いた電池はほぼ同程度の保持量にあった
が、DMCの混合量が多いものの方が保持率は高かっ
た。また、C1EC1が100%の比較例1の電池では
サイクルを繰り返すことにより若干の容量の上昇が見ら
れた。これは、おそらく通電によりC1EC1の一部が
反応して電極界面が改質されたため、充放電の効率が上
がったのではないかと考える。
(Cycle test) These batteries were tested at 0.2C
Charge at constant current, 4.2V constant voltage, hold for 10 minutes, and
A cycle test was performed in which the discharge was performed at a constant current of 2C and held for 10 minutes, and the repetition of charge and discharge was defined as one cycle. 100
Table 2 shows the discharge capacity at the cycle. The batteries using the mixed electrolytic solution of C1EC1 and DMC had almost the same holding amount, but the holding ratio was higher when the mixing amount of DMC was larger. Further, in the battery of Comparative Example 1 in which C1EC1 was 100%, a slight increase in capacity was observed by repeating the cycle. This is presumably because charging / discharging efficiency was increased, possibly because part of C1EC1 reacted due to energization and the electrode interface was modified.

【0056】以上の様に、電解液にハロゲンを含む分子
を混合した電解液では、加熱や過充電等の異常な使用に
対しても安全であることが分かった。また、鎖状カーボ
ネートと混合することによって、電池特性が飛躍的に改
善できることも分かった。
As described above, it has been found that an electrolytic solution obtained by mixing a molecule containing a halogen with the electrolytic solution is safe against abnormal use such as heating or overcharging. It was also found that by mixing with a chain carbonate, battery characteristics could be dramatically improved.

【0057】(実施例5,6)実施例1と同じ電解液,
正極材料を用い、負極活物質を燐片状黒鉛材料とした実
施例5の電池、また、この炭素材料に錫酸化物を5重量
%添加した材料を負極とした実施例6の電池を作製し
た。実施例5の電池を、実施例1と同条件の0.2C定電
流・4.2V 定電圧で充電した初期充電容量は1450
mAhであった。また、0.2C 定電流条件での初期放
電容量は1200mAhであった。また、実施例6の電
池を同条件で充電した初期充電容量は1500mAhで
あり、0.2C定電流条件での初期放電容量は1300m
Ahであった。この様に黒鉛負極では不可逆な容量が大
きくなるが、この電解液が負極炭素材料の種類によらず
使用可能であり、金属酸化物を添加すると電池容量を向
上できることがわかった。
(Examples 5 and 6) The same electrolytic solution as in Example 1,
A battery of Example 5 in which a negative electrode active material was used as a flaky graphite material using a positive electrode material, and a battery of Example 6 in which a material obtained by adding 5% by weight of tin oxide to this carbon material was used as a negative electrode were produced. . The battery of Example 5 was charged at a constant voltage of 0.2 C and a constant voltage of 4.2 V under the same conditions as in Example 1, and the initial charge capacity was 1450.
mAh. The initial discharge capacity under a constant current condition of 0.2 C was 1200 mAh. The initial charge capacity of the battery of Example 6 charged under the same conditions was 1500 mAh, and the initial discharge capacity under 0.2 C constant current conditions was 1300 mh.
Ah. As described above, the irreversible capacity of the graphite negative electrode increases. However, it has been found that this electrolytic solution can be used regardless of the type of the negative electrode carbon material, and that the addition of a metal oxide can improve the battery capacity.

【0058】(実施例7,8,9)実施例1と同じ溶媒
組成で、リチウム塩をLiPF6が0.75MとLiBF
4が0.25M の混合とした電解液を用い、実施例1と
同じ電極材料を用いた実施例7の電池、また、実施例1
と同じ溶媒組成で、リチウム塩をLiPF6 が0.90Mと
Li3PO4が0.10M の混合とした電解液を用い、実
施例1と同じ電極材料を用いた実施例8の電池、また、
実施例1と同じ溶媒組成で、リチウム塩をLiPF6
0.70M とLiBF4 が0.20M とLi3PO4
0.10M の混合とした電解液を用い、実施例1と同じ
電極材料を用いた実施例9の電池を作製した。
(Examples 7, 8, 9) With the same solvent composition as in Example 1, the lithium salt was made up of 0.75M LiPF 6 and LiBF
The battery of Example 7 using the same electrode material as in Example 1 using an electrolyte solution in which 4 was mixed with 0.25M, and the battery of Example 1
A battery of Example 8 using the same solvent composition as in Example 1, using an electrolyte solution in which a lithium salt was a mixture of 0.90 M LiPF 6 and 0.10 M Li 3 PO 4 , and using the same electrode material as in Example 1,
The same electrode material as in Example 1 was used, using the same solvent composition as in Example 1, and using an electrolyte in which the lithium salt was a mixture of 0.70 M of LiPF 6 , 0.20 M of LiBF 4 and 0.10 M of Li 3 PO 4. The battery of Example 9 using the above was produced.

【0059】これら電池の初期容量とサイクル試験の結
果を表3
Table 3 shows the initial capacity of these batteries and the results of the cycle test.

【0060】[0060]

【表3】 [Table 3]

【0061】に示す。リチウム塩をLiPF6 とLiB
4 との混合組成としても、電池特性に変化はなかっ
た。さらに、Li3PO4を混合すると電池特性に若干の
改善があった。また、これらの電解液は電解液難燃性評
価においてすべて引火しなかった。
Shown in FIG. LiPF 6 and LiB
Even mixed composition with F 4, there was no change in the battery characteristics. Further, when Li 3 PO 4 was mixed, there was a slight improvement in battery characteristics. Further, none of these electrolytes ignited in the evaluation of the flame retardancy of the electrolyte.

【0062】[0062]

【発明の効果】以上の様に、電解液の溶媒をモノハロゲ
ン化またはジハロゲン化した環状カーボネートと5〜4
0重量%の鎖状カーボネートとの混合溶媒とし、リチウ
ム塩をLiPF6,LiBF4の一方もしくは両方を含
み、または、これらにLi3PO4,Li2(CH3)P
4,Li(CH3)2PO4,Li2(C25)PO4,Li(C2H
5)2PO4の少なくとも1つを混合した電解液組成とするこ
とにより、電解液の難燃化が達成でき、かつ、リチウム
2次電池の電池特性を維持した高安全型リチウム2次電
池を提供することができる。
As described above, the solvent of the electrolytic solution is mixed with the monohalogenated or dihalogenated cyclic carbonate and 5 to 4
A mixed solvent with 0% by weight of a chain carbonate and a lithium salt containing one or both of LiPF 6 and LiBF 4 , or Li 3 PO 4 and Li 2 (CH 3 ) P
O 4 , Li (CH 3 ) 2 PO 4 , Li 2 (C 2 H 5 ) PO 4 , Li (C 2 H
5 ) By using an electrolyte composition containing at least one of 2 PO 4 , a highly safe lithium secondary battery that can achieve flame retardancy of the electrolyte and maintain the battery characteristics of the lithium secondary battery can be obtained. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解液の溶液状態の変化の説明図であ
る。
FIG. 1 is an explanatory diagram of a change in a solution state of an electrolytic solution of the present invention.

【図2】本発明のリチウム2次電池の一実施例を示す縦
断面図である。
FIG. 2 is a longitudinal sectional view showing one embodiment of a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…正極リード端子、4…負極リ
ード端子、5…セパレータ、6…電池容器、7…電池封
口板、8…パッキン、9,10…絶縁板、11…電流遮
断用薄板。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Positive electrode lead terminal, 4 ... Negative electrode lead terminal, 5 ... Separator, 6 ... Battery container, 7 ... Battery sealing plate, 8 ... Packing, 9, 10 ... Insulating plate, 11 ... Current interruption For thin plates.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵放出可能な材料から成る負
荷と、リチウム遷移金属複合酸化物から成る正極と、非
水溶媒に電解質が溶解されて成る非水電解液とを備える
リチウム2次電池において、非水溶媒が(化1) 【化1】 (式中、X1,X2,X3およびX4はフッ素,塩素,臭素
または水素を表し、これらの何れか1つまたは2つがハ
ロゲン元素であり、2つまたは3つが水素である。)で
表されるモノハロゲン化またはジハロゲン化環状カーボ
ネートと、(化2) 【化2】 (式中、R1,R2は炭素数3以下のアルキル基を表
す。)で表される鎖状カーボネート1種以上から成り、
鎖状カーボネートの全溶媒中に占める割合が5〜40重
量%であることを特徴とするリチウム2次電池。
1. A lithium secondary battery comprising a load made of a material capable of inserting and extracting lithium, a positive electrode made of a lithium transition metal composite oxide, and a non-aqueous electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent. , The non-aqueous solvent is (Chem. 1) (In the formula, X 1 , X 2 , X 3 and X 4 represent fluorine, chlorine, bromine or hydrogen, any one or two of which are halogen elements, and two or three of which are hydrogen.) A monohalogenated or dihalogenated cyclic carbonate represented by the formula: (Wherein, R 1 and R 2 each represent an alkyl group having 3 or less carbon atoms).
A lithium secondary battery, wherein the proportion of the chain carbonate in the total solvent is 5 to 40% by weight.
【請求項2】負極が黒鉛系または難黒鉛系炭素材料、ま
たは、これら炭素材料と金属もしくはIV族元素の酸化物
との混合物であることを特徴とする請求項1記載のリチ
ウム2次電池。
2. The lithium secondary battery according to claim 1, wherein the negative electrode is a graphite-based or non-graphite-based carbon material, or a mixture of such a carbon material and an oxide of a metal or a group IV element.
【請求項3】正極がコバルト酸リチウム,ニッケル酸リ
チウム,マンガン酸リチウム、または、一部がコバルト
あるいはアルミニウムで置換されたニッケル酸リチウム
もしくはマンガン酸リチウムであることを特徴とする請
求項1記載のリチウム2次電池。
3. The method according to claim 1, wherein the positive electrode is lithium cobaltate, lithium nickelate, lithium manganate, or lithium nickelate or lithium manganate partially substituted with cobalt or aluminum. Lithium secondary battery.
【請求項4】環状カーボネートが4−クロロ−1,3−
ジオキソラン−2−オンであり、鎖状カーボネートがジ
メチルカーボネート,エチルメチルカーボネート,ジエ
チルカーボネートから選ばれたいずれか1種類以上であ
ることを特徴とする請求項1記載のリチウム2次電池。
4. The cyclic carbonate is 4-chloro-1,3-
2. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is dioxolan-2-one, and the chain carbonate is at least one selected from dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
【請求項5】非水電解液が電解質としてLiPF6,L
iBF4の一方もしくは両方を含むことを特徴とする請
求項1または4記載のリチウム2次電池。
5. The method according to claim 1, wherein the non-aqueous electrolyte is LiPF 6 , L
One or lithium secondary battery according to claim 1 or 4, wherein the containing both iBF 4.
【請求項6】非水電解液が電解質としてLiPF6,L
iBF4の一方もしくは両方と、Li3PO4,Li2(O
H)3PO4,Li(CH3)2PO4,Li2(C25)PO4
Li(C25)2PO4の少なくとも1つを含むことを特徴
とする請求項1または4記載のリチウム2次電池。
6. A non-aqueous electrolyte comprising LiPF 6 , L
One or both of iBF 4 and Li 3 PO 4 , Li 2 (O
H) 3 PO 4 , Li (CH 3 ) 2 PO 4 , Li 2 (C 2 H 5 ) PO 4 ,
Li (C 2 H 5) rechargeable lithium battery according to claim 1 or 4 further characterized in that at least one of 2 PO 4.
【請求項7】負極が黒鉛材料からなり、正極がコバルト
を含むニッケル酸リチウムからなり、非水電解液の溶媒
が環状カーボネートが4−クロロ−1,3−ジオキソラ
ン−2−オンと、ジメチルカーボネート,エチルメチル
カーボネート,ジエチルカーボネートの3種の鎖状カー
ボネートを請求項1記載の範囲で混合したものからな
り、非水電解液の電解質が、LiPF6,LiBF4,L
2(OH)3PO4 からなることを特徴とする請求項1か
ら6記載のリチウム2次電池。
7. The negative electrode is made of a graphite material, the positive electrode is made of lithium nickelate containing cobalt, and the solvent of the non-aqueous electrolyte is cyclic carbonate of 4-chloro-1,3-dioxolan-2-one and dimethyl carbonate. , Ethyl methyl carbonate, diethyl carbonate, and a mixture of three types of linear carbonates in the range described in claim 1, wherein the electrolyte of the non-aqueous electrolyte is LiPF 6 , LiBF 4 , L
7. The lithium secondary battery according to claim 1, comprising i 2 (OH) 3 PO 4 .
JP8347102A 1996-12-26 1996-12-26 Lithium secondary battery Pending JPH10189043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8347102A JPH10189043A (en) 1996-12-26 1996-12-26 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8347102A JPH10189043A (en) 1996-12-26 1996-12-26 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10189043A true JPH10189043A (en) 1998-07-21

Family

ID=18387930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8347102A Pending JPH10189043A (en) 1996-12-26 1996-12-26 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10189043A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012806A (en) * 2004-06-21 2006-01-12 Samsung Sdi Co Ltd Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this
WO2006033358A1 (en) * 2004-09-22 2006-03-30 Sony Corporation Electrolyte solution and battery
JP2007027008A (en) * 2005-07-20 2007-02-01 Sony Corp Battery
US7223500B2 (en) 2003-03-24 2007-05-29 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
US7491471B2 (en) 2003-07-15 2009-02-17 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2009123463A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode for lithium-ion secondary battery, method of manufacturing the same, and lithium-ion secondary battery
JP2009164053A (en) * 2008-01-09 2009-07-23 Sony Corp Battery
JPWO2008084846A1 (en) * 2007-01-12 2010-05-06 ダイキン工業株式会社 Electric double layer capacitor
US7718322B2 (en) 2003-08-20 2010-05-18 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7846588B2 (en) 2004-06-30 2010-12-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2011103290A (en) * 2009-11-10 2011-05-26 Samsung Sdi Co Ltd Lithium secondary battery
US8026394B2 (en) 2006-12-05 2011-09-27 Toyota Jidosha Kabushiki Kaisha Lithium salt and method for producing thereof
KR101219612B1 (en) * 2004-06-21 2013-01-08 소니 가부시키가이샤 Battery
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
JP2014112550A (en) * 2004-01-20 2014-06-19 Sony Corp Secondary battery, method of charging and discharging the same, and charge-discharge control element for the same
US9029021B2 (en) 2004-01-20 2015-05-12 Sony Corporation Battery, method of charging and discharging the battery and charge-discharge control device for the battery
US9455474B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrolytic solution
CN114204122A (en) * 2021-11-30 2022-03-18 华中科技大学 Lithium ion battery flame-retardant electrolyte and preparation method and application thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223500B2 (en) 2003-03-24 2007-05-29 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
EP1463143A3 (en) * 2003-03-24 2008-04-16 Samsung SDI Co., Ltd. A non-aqoeous electrolyte and a lithium secondary battery comprising the same
US7491471B2 (en) 2003-07-15 2009-02-17 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7718322B2 (en) 2003-08-20 2010-05-18 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2014112550A (en) * 2004-01-20 2014-06-19 Sony Corp Secondary battery, method of charging and discharging the same, and charge-discharge control element for the same
US9029021B2 (en) 2004-01-20 2015-05-12 Sony Corporation Battery, method of charging and discharging the battery and charge-discharge control device for the battery
KR101219612B1 (en) * 2004-06-21 2013-01-08 소니 가부시키가이샤 Battery
JP2006012806A (en) * 2004-06-21 2006-01-12 Samsung Sdi Co Ltd Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this
JP4527605B2 (en) * 2004-06-21 2010-08-18 三星エスディアイ株式会社 Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
US7846588B2 (en) 2004-06-30 2010-12-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JPWO2006033358A1 (en) * 2004-09-22 2008-05-15 ソニー株式会社 Electrolyte and battery
US9548516B2 (en) 2004-09-22 2017-01-17 Sony Corporation Electrolytic solution and battery
US8715864B2 (en) 2004-09-22 2014-05-06 Sony Corporation Electrolytic solution and battery
JP5103903B2 (en) * 2004-09-22 2012-12-19 ソニー株式会社 Secondary battery electrolyte and secondary battery
WO2006033358A1 (en) * 2004-09-22 2006-03-30 Sony Corporation Electrolyte solution and battery
JP2007027008A (en) * 2005-07-20 2007-02-01 Sony Corp Battery
US8026394B2 (en) 2006-12-05 2011-09-27 Toyota Jidosha Kabushiki Kaisha Lithium salt and method for producing thereof
JPWO2008084846A1 (en) * 2007-01-12 2010-05-06 ダイキン工業株式会社 Electric double layer capacitor
US8236191B2 (en) 2007-01-12 2012-08-07 Daikin Industries, Ltd. Electrical double layer capacitor
JP2009123463A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode for lithium-ion secondary battery, method of manufacturing the same, and lithium-ion secondary battery
US8486566B2 (en) 2007-11-14 2013-07-16 Sony Corporation Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
JP2009164053A (en) * 2008-01-09 2009-07-23 Sony Corp Battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
JP4715848B2 (en) * 2008-01-09 2011-07-06 ソニー株式会社 battery
US9054375B2 (en) 2009-11-10 2015-06-09 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP2011103290A (en) * 2009-11-10 2011-05-26 Samsung Sdi Co Ltd Lithium secondary battery
US9455474B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrolytic solution
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
US9923240B2 (en) 2012-09-28 2018-03-20 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium battery, and module
CN114204122A (en) * 2021-11-30 2022-03-18 华中科技大学 Lithium ion battery flame-retardant electrolyte and preparation method and application thereof
CN114204122B (en) * 2021-11-30 2024-03-19 华中科技大学 Lithium ion battery flame-retardant electrolyte and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP7232359B2 (en) SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
US7833661B2 (en) Electrolytes for lithium ion secondary batteries
CN100452520C (en) Non-inflammable non aqueous electrolyte and lithium-ion battery containing the same
US8758945B2 (en) Overcharge protection by coupling redox shuttle chemistry with radical polymerization additives
KR101073228B1 (en) Nonaqueous Electrolyte Secondary Battery
JPH10189043A (en) Lithium secondary battery
JP6198684B2 (en) Lithium secondary battery
US20130209870A1 (en) Non-Aqueous Electrolyte Battery
JPH11195429A (en) Nonaqueous electrolytic solution secondary battery
JPH11176469A (en) Nonaqueous battery
KR100635704B1 (en) Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
BR112021015393A2 (en) RECHARGEABLE BATTERY CELL WITH ACTIVE ELECTRODE DEPOLARIZER
JPH1040956A (en) Usage of boron oxide additive in rechargeable non-aqueous lithium battery
JP4190672B2 (en) Battery electrolyte and non-aqueous electrolyte secondary battery
US20040214092A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2005116424A (en) Nonaqueous electrolyte secondary battery
JP2002110230A (en) Non-acqueous electrolyte lithium secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2000215909A (en) Nonaqueous electrolyte secondary battery
KR101130726B1 (en) Electrolyte for lithium-ion battery and lithium-ion battery comprising the same
KR100826084B1 (en) Additives for lithium secondarty battery
JP2004214139A (en) Electrolyte and battery using the same
JP2000188132A5 (en)
WO2022163061A1 (en) Power storage element and method for using power storage element
JP3402233B2 (en) Non-aqueous electrolyte secondary battery