JPH10188980A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10188980A
JPH10188980A JP8347101A JP34710196A JPH10188980A JP H10188980 A JPH10188980 A JP H10188980A JP 8347101 A JP8347101 A JP 8347101A JP 34710196 A JP34710196 A JP 34710196A JP H10188980 A JPH10188980 A JP H10188980A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
aqueous electrolyte
electrolyte secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8347101A
Other languages
Japanese (ja)
Inventor
Toshinori Dosono
利徳 堂園
Michiko Igawa
享子 井川
Seiji Takeuchi
瀞士 武内
Hideto Momose
秀人 百生
Yoshimi Komatsu
誼 小松
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8347101A priority Critical patent/JPH10188980A/en
Publication of JPH10188980A publication Critical patent/JPH10188980A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery with large battery capacity and energy density. SOLUTION: This battery has lithium occluded/released positive electrode active material and negative electrode active material 1 and lithium ion conducive nonaqueous electrolyte. The negative electrode active material in the charged condition contains lithium contained composite oxide Lix My Oz (where 0.1<=x/y<=8, 0.1<=z/y<=4, and M mainly contains at least one kind out of a typical group element IIIB or VB, Ge, Sn and Pb) and lithium compound Lis M't (where 0.01<=s/t<=8, and M' mainly contains at least one kind of a typical group element IIIB or VB, Ge, Sn and Pb).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
に関する。
[0001] The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】従来、リチウム二次電池用負極活物質と
して、リチウムやその合金,リチウムを挿入放出可能な
炭素質材料が用いられてきた。
2. Description of the Related Art Conventionally, lithium, its alloys, and carbonaceous materials capable of inserting and releasing lithium have been used as negative electrode active materials for lithium secondary batteries.

【0003】しかし、リチウムやその合金を負極活物質
に用いた場合、充放電中にリチウム金属が樹脂状に析
出,成長し、内部短絡しやすく、また、活性なリチウム
を使用しているため発火等の危険性があった。また、リ
チウムを挿入放出可能な炭素質材料でも過充電状態では
リチウム金属が析出することに加え、密度が低いことか
ら体積容量密度が低く、電池を構成した場合の体積あた
りの容量密度を向上できないという問題があった。
However, when lithium or an alloy thereof is used as a negative electrode active material, lithium metal precipitates and grows in a resinous state during charge and discharge, and is liable to cause an internal short circuit. And so on. In addition, even in a carbonaceous material capable of inserting and releasing lithium, in addition to the precipitation of lithium metal in an overcharged state, the volume density is low due to the low density, and the capacity density per volume when a battery is formed cannot be improved. There was a problem.

【0004】そのため、リチウムを吸蔵放出可能な酸化
物またはカルコゲン化合物が負極活物質材料として検討
されているが、遷移金属系の酸化物ではいずれも動作電
位が高く、3.6V 級の電池を構成することができなか
った。
For this reason, oxides or chalcogen compounds capable of occluding and releasing lithium have been studied as negative electrode active material materials. However, all transition metal oxides have a high operating potential and constitute a 3.6 V class battery. I couldn't.

【0005】動作電位が低く、構成電池電圧が高く高容
量となる酸化物として、シリコンを主体としたリチウム
含有複合酸化物(特開平6−325765号,特開平7−230800
号公報),IVB,VB族元素を主体としたリチウム含有
複合酸化物(特開平7−122274号公報),III,IVB,V
B 族元素を主体としたリチウム含有複合酸化物(特開
平7−288123号公報)が知られている。
As oxides having a low operating potential and a high capacity battery voltage and a high capacity, lithium-containing composite oxides mainly composed of silicon (JP-A-6-325765, JP-A-7-230800)
Publication), lithium-containing composite oxides mainly composed of group IVB and VB elements (JP-A-7-122274), III, IVB, V
A lithium-containing composite oxide mainly composed of a group B element (Japanese Patent Application Laid-Open No. 7-288123) is known.

【0006】[0006]

【発明が解決しようとする課題】シリコンを主体とした
リチウム含有複合酸化物(特開平6−325765号,特開平7
−230800号公報)を負極活物質として使用する従来技術
では、シリコンを含有する規定のためシリコンを含有し
ない高容量の系への拡張ができない。IVB,VB族半金
属元素を主体としたリチウム含有複合酸化物(特開平7
−122274 号公報)を負極活物質として使用する従来技
術では、構成元素がリチウムと合金化しない範囲で使用
すると記載されており、高容量化が不十分である。II
I,IVB,VB族元素から選ばれる二種以上の元素を含
む酸化物及び/またはカルコゲン化物(特開平7−28812
3 号公報)を負極活物質として使用する従来技術では、
リチウム合金を添加する記載があるものの、これらを電
池反応として利用するものではないと記載されており、
合金化の電極反応を利用しないため高容量化が不十分で
ある。
SUMMARY OF THE INVENTION A lithium-containing composite oxide mainly composed of silicon (JP-A-6-325765, JP-A-7-325765)
-230800) as a negative electrode active material cannot be extended to a high-capacity system containing no silicon due to the provision of silicon. Lithium-containing composite oxides mainly composed of IVB and VB group metalloid elements
In the prior art in which a negative electrode active material is used as a negative electrode active material, it is described that the constituent element is used in a range that does not alloy with lithium, and the increase in capacity is insufficient. II
Oxides and / or chalcogenides containing two or more elements selected from Group I, IVB and VB elements (JP-A-7-28812)
No. 3) as a negative electrode active material,
Although there is a description of adding a lithium alloy, it is described that these are not used as a battery reaction,
Since the electrode reaction of alloying is not used, the increase in capacity is insufficient.

【0007】本発明の目的は、体積及び重量あたりのエ
ネルギ密度の大きなリチウム二次電池を提供することに
ある。
An object of the present invention is to provide a lithium secondary battery having a large energy density per volume and weight.

【0008】[0008]

【課題を解決するための手段】本発明の目的は、リチウ
ムを吸蔵,放出する正極活物質と負極活物質,リチウム
イオン導電性の非水電解質とを含む非水電解質二次電池
で、電池構成前または構成後、負極の充電終止電位をL
i基準で0−0.5V の範囲とすることにより、充電状
態の負極活物質中に、リチウム含有複合酸化物Lixy
z(ただし、0.1≦x/y≦8,1≦z/y≦4、M
はIIIB,VB族典型元素、Ge,SnおよびPbのう
ちの少なくとも一種が主体)およびリチウム化合物Li
sM′t(ただし、0.01≦s/t≦8、M′はIIIB,
VB族典型元素、Ge,SnおよびPbのうちの少なく
とも一種が主体)の両方を形成させることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery including a positive electrode active material for absorbing and releasing lithium, a negative electrode active material, and a lithium ion conductive non-aqueous electrolyte. Before or after the configuration, the charge termination potential of the negative electrode is set to L
By the i reference range of 0-0.5V, a negative electrode active material in charged state, the lithium-containing composite oxide Li x M y
O z (However, 0.1 ≦ x / y ≦ 8, 1 ≦ z / y ≦ 4, M
Represents at least one of the group IIIB and VB typical elements, Ge, Sn and Pb) and the lithium compound Li
s M ′ t (where 0.01 ≦ s / t ≦ 8, M ′ is IIIB,
VB group typical element, at least one of Ge, Sn and Pb).

【0009】本発明の正極活物質は、リチウム含有遷移
金属複合酸化物を用いることが好ましく、特にLiCo
2,LiNiO2,LiMn24を用いることが好まし
い。本発明の電解質溶媒としては、アルキルカーボネー
ト,アルキルカーボネートの一部元素の置換体,プロピ
オン酸メチル,プロピオン酸エチル、1,2−ジメトキ
シエタンの少なくとも1種の混合物を用いることが好ま
しく、特に、エチレンカーボネートとジメチルカーボネ
ートの混合溶媒またはエチレンカーボネートとジエチル
カーボネートの混合溶媒が好ましい。
The positive electrode active material of the present invention preferably uses a lithium-containing transition metal composite oxide, particularly LiCo.
It is preferable to use O 2 , LiNiO 2 , and LiMn 2 O 4 . As the electrolyte solvent of the present invention, it is preferable to use a mixture of at least one of alkyl carbonate, a partially substituted alkyl carbonate, methyl propionate, ethyl propionate, and 1,2-dimethoxyethane. A mixed solvent of carbonate and dimethyl carbonate or a mixed solvent of ethylene carbonate and diethyl carbonate is preferred.

【0010】本発明の電解質支持塩としては、リチウム
解離性のハロゲン元素含有リチウム化合物を用いること
が好ましく、特に、LiPF6 が好ましい。
As the electrolyte supporting salt of the present invention, it is preferable to use a lithium compound having a lithium dissociation property and a halogen element, particularly LiPF 6 .

【0011】なお、本発明の負極活物質に遷移金属元素
を加えることもできる。
Incidentally, a transition metal element can be added to the negative electrode active material of the present invention.

【0012】また、本発明の負極活物質あるいは負極活
物質前駆体を非晶質化することにより放電容量を大きく
することができる。
The discharge capacity can be increased by amorphizing the negative electrode active material or the negative electrode active material precursor of the present invention.

【0013】本発明の非水電解質二次電池によれば、負
極をリチウムが合金化する低い電位まで利用することが
可能なため、大きな放電容量と低い動作電位を得ること
ができる。したがって、電池としての容量が大きく、か
つ動作電圧も大きくなる。これにより、電池としてのエ
ネルギ密度も向上する。
According to the non-aqueous electrolyte secondary battery of the present invention, the negative electrode can be used to a low potential at which lithium is alloyed, so that a large discharge capacity and a low operating potential can be obtained. Therefore, the capacity as a battery is large, and the operating voltage is also large. Thereby, the energy density of the battery is also improved.

【0014】また、本発明負極から電気化学的に形成さ
れたリチウム合金は微細であり、従来のリチウム合金単
体を負極活物質として用いる電極で問題となるサイクル
特性の劣化も最小限に抑えることができる。
Further, the lithium alloy electrochemically formed from the negative electrode of the present invention is fine, and it is possible to minimize the deterioration of cycle characteristics, which is a problem in a conventional electrode using a single lithium alloy as a negative electrode active material. it can.

【0015】また、酸化物負極だけでは初回充放電時の
リテンション量が大きいという問題がある。これを補う
ため、予めリチウムまたはリチウム合金等を電極構成時
に配合することが考えられるが、リチウムまたはリチウ
ム合金を残存させないよう酸化物のリテンション量を超
えない範囲で近づける設計は困難である。リチウムまた
はリチウム合金を介在させることを前提とすれば、酸化
物のリテンション量以上のリチウムまたはリチウム合金
を介在させることができ、設計が容易である。
Another problem is that the oxide negative electrode alone has a large retention during initial charging and discharging. In order to compensate for this, it is conceivable to mix lithium or a lithium alloy or the like in advance at the time of forming the electrode. However, it is difficult to design such that lithium or the lithium alloy does not exceed the retention amount of the oxide so as not to remain. Assuming that lithium or a lithium alloy is interposed, it is possible to interpose lithium or a lithium alloy in excess of the oxide retention amount, which facilitates design.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0017】(合成例1)以下の試料を電池特性評価用
に作製した。
(Synthesis Example 1) The following samples were prepared for evaluation of battery characteristics.

【0018】1)酸化錫SnO2 と酸化鉛PbO2 ,酸
化ゲルマニウムGeO2 ,酸化インジウムl23,酸化
ビスマスBi23をモル比9:1で配合,混合し、アル
ゴン雰囲気中、10K/min 以上の昇温速度で加熱し、
溶融させた後、銅製回転ロール上に鋳造して急冷試料を
作製した。
1) Tin oxide SnO 2 , lead oxide PbO 2 , germanium oxide GeO 2 , indium oxide l 2 O 3 , bismuth oxide Bi 2 O 3 are mixed and mixed at a molar ratio of 9: 1, and the mixture is mixed in an argon atmosphere at 10K. / Min.
After being melted, it was cast on a copper rotating roll to prepare a quenched sample.

【0019】2)酸化錫SnOと酸化鉛PbO2 ,酸化
ゲルマニウムGeO2 ,酸化インジウムl23,酸化ビ
スマスBi23をモル比9:1で配合,混合し、アルゴ
ン雰囲気中、10K/min 以上の昇温速度で加熱し、溶
融させた後、銅製回転ロール上に鋳造して急冷試料を作
製した。
2) Tin oxide SnO, lead oxide PbO 2 , germanium oxide GeO 2 , indium oxide l 2 O 3 , bismuth oxide Bi 2 O 3 are mixed and mixed at a molar ratio of 9: 1, and the mixture is mixed in an argon atmosphere at 10 K / cm 2. After heating and melting at a temperature rising rate of min or more, the sample was cast on a copper rotating roll to prepare a quenched sample.

【0020】また、市販の酸化錫SnO2 ,SnOも各
々単体で評価した。
Further, commercially available tin oxides SnO 2 and SnO were each evaluated alone.

【0021】上記試料を合成後、遊星ボールミルにて粉
砕し、45μm以下に分級して電池特性評価に使用し
た。
After synthesizing the above sample, it was pulverized by a planetary ball mill, classified to 45 μm or less, and used for battery characteristics evaluation.

【0022】(実施例1)図1は合成例1に示した合成
粉の負極材料としての電池特性評価用セルの断面図であ
る。
(Example 1) FIG. 1 is a sectional view of a cell for battery characteristic evaluation as a negative electrode material of the synthetic powder shown in Synthesis Example 1.

【0023】負極板は、以下の手順で、すべて湿度3%
以下の雰囲気で作製した。
The negative electrode plate was subjected to the following procedure with a humidity of 3%.
It was produced in the following atmosphere.

【0024】負極合剤の配合は合成粉,導電材,結着剤
の重量比で各々87:8.7:4.3とした。まず、重量
比率の合成粉,導電材黒鉛を乳鉢で混練し、さらにNM
Pで10wt%に希釈した結着剤ポリフッ化ビニリデン
を添加,混練し、合剤ペーストを得た。合剤ペーストを
電解銅箔に塗布し、80℃で2時間の予備乾燥の後1.
5t /cm2 の荷重でプレスした後、120℃で2時間
乾燥した。
The composition of the negative electrode mixture was 87: 8.7: 4.3 in terms of the weight ratio of the synthetic powder, the conductive material, and the binder. First, synthetic powder and conductive material graphite in a weight ratio are kneaded in a mortar, and then NM
A binder polyvinylidene fluoride diluted to 10 wt% with P was added and kneaded to obtain a mixture paste. The mixture paste was applied to electrolytic copper foil, and after pre-drying at 80 ° C. for 2 hours, 1.
After pressing with a load of 5 t 2 / cm 2 , it was dried at 120 ° C. for 2 hours.

【0025】作製した負極板を、グローブボックス内で
図1のようにリチウム板を対極,参照極とし、ポリエチ
レン製セパレータを挾んで配置してセルを構成し、密封
ガラス容器内に収納した。電解液にはエチレンカーボネ
ートとジメチルカーボネートの1:2の混合溶媒に支持
塩として1M/リットルのLiPF6 を添加したものを
用い、セパレータ及び負極活物質に含浸させた。
The prepared negative electrode plate was arranged in a glove box with a lithium plate as a counter electrode and a reference electrode as shown in FIG. 1 and a polyethylene separator interposed therebetween to form a cell, and was housed in a sealed glass container. As the electrolytic solution, a mixture of ethylene carbonate and dimethyl carbonate in a ratio of 1: 2 to which 1 M / liter of LiPF 6 was added as a supporting salt was used to impregnate the separator and the negative electrode active material.

【0026】この電池を合成粉1gあたり40mAの電
流密度で、0−1.5VvsLi+/Liの電位範囲で充放
電試験した。表1に充放電試験結果を示す。負極の電位
を0−0.5VvsLi+/Liの範囲まで利用することに
より放電容量が大きくなる。
The battery was subjected to a charge / discharge test at a current density of 40 mA per gram of the synthetic powder and in a potential range of 0 to 1.5 V vs Li + / Li. Table 1 shows the results of the charge / discharge test. The discharge capacity is increased by utilizing the potential of the negative electrode in the range of 0-0.5 V vs Li + / Li.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明の非水電解質二次電池によれば、
負極をリチウムが合金化する低い電位まで利用すること
が可能なため、大きな放電容量と低い動作電位を得るこ
とができる。したがって、電池としての容量が大きく、
かつ動作電圧も大きくなる。これにより、電池としての
エネルギ密度も向上する。
According to the non-aqueous electrolyte secondary battery of the present invention,
Since the negative electrode can be used up to a low potential at which lithium is alloyed, a large discharge capacity and a low operating potential can be obtained. Therefore, the capacity as a battery is large,
In addition, the operating voltage increases. Thereby, the energy density of the battery is also improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】合成例1に示した合成粉の負極材料としての電
池特性評価用セルの断面図。
FIG. 1 is a cross-sectional view of a battery characteristic evaluation cell as a negative electrode material of a synthetic powder shown in Synthesis Example 1.

【符号の説明】[Explanation of symbols]

1…負極活物質、2…負極集電体、3…リチウム対極、
4…リチウム参照極、5…セパレータ、6…セル固定用
SUS製ジグ、7…固定ボルト、8…固定ナット。
1: negative electrode active material, 2: negative electrode current collector, 3: lithium counter electrode,
4 ... lithium reference electrode, 5 ... separator, 6 ... SUS jig for cell fixing, 7 ... fixing bolt, 8 ... fixing nut.

フロントページの続き (72)発明者 百生 秀人 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小松 誼 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Continued on the front page (72) Inventor Hideto Momomo 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yoshi Komatsu 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 In Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Ren Muranaka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture In Hitachi Research Laboratory, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵,放出する正極活物質と、
負極活物質と、リチウムイオン導電性の非水電解質とを
含む非水電解質二次電池において、充電状態の負極活物
質中に、リチウム含有複合酸化物Lixyz(ただ
し、0.1≦x/y≦8,0.1≦z/y≦4、MはIII
B,VB 族典型元素、Ge,SnおよびPbのうちの
少なくとも一種が主体)およびリチウム化合物Li
sM′t(ただし、0.01≦s/t≦8、M′はIIIB,
VB 族典型元素、Ge,SnおよびPbのうちの少な
くとも一種が主体)を含むことを特徴とする非水電解質
二次電池。
1. A positive electrode active material for absorbing and releasing lithium,
And the anode active material, the non-aqueous electrolyte secondary battery comprising a lithium ion conductive non-aqueous electrolyte, the negative electrode active material in charged state, the lithium-containing composite oxide Li x M y O z (where 0.1 ≦ x / y ≦ 8, 0.1 ≦ z / y ≦ 4, M is III
B, VB group typical element, at least one of Ge, Sn and Pb) and lithium compound Li
s M ′ t (where 0.01 ≦ s / t ≦ 8, M ′ is IIIB,
A non-aqueous electrolyte secondary battery comprising at least one of VB group typical elements, Ge, Sn and Pb).
【請求項2】電池組み立て前または組み立て後、前駆体
y′z′(ただし、0.1≦z′/y′≦8、MはIII
B,VB 族典型元素、Ge,Sn,PbおよびLiの
うちの少なくとも一種が主体)とリチウムを電気化学的
または化学的に反応させ、リチウムを挿入させたリチウ
ム含有複合酸化物Lixyz(ただし、0.1≦x/y
≦8,0.1≦z/y≦4、MはIIIB,VB族典型元
素、Ge,SnおよびPbのうちの少なくとも一種が主
体)およびリチウムとM′が合金化したLisM′t(ただ
し、0.01≦s/t≦8、M′はIIIB,VB族典型元
素、Ge,SnおよびPbのうちの少なくとも一種が主
体)を形成させる請求項1に記載の非水電解質二次電
池。
2. A cell assembly before or after assembly, the precursor M y 'O z' (except, 0.1 ≦ z '/ y' ≦ 8, M is III
B, VB group typical elements, Ge, Sn, Pb and at least one is mainly) lithium electrochemical or chemically reacting the with of Li, lithium-containing composite oxide was inserted lithium Li x M y O z (However, 0.1 ≦ x / y
≦ 8,0.1 ≦ z / y ≦ 4 , M is IIIB, VB group typical elements, Ge, at least one of Sn and Pb is mainly) and lithium and M 'are alloyed Li s M' t ( 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein 0.01 ≦ s / t ≦ 8 and M ′ is mainly formed of at least one of IIIB and VB group typical elements, Ge, Sn and Pb. .
【請求項3】上記負極の充電終止電位をLi基準で0−
0.5V の範囲とする請求項1または2に記載の非水電
解質二次電池。
3. The charge end potential of the negative electrode is 0-
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery has a range of 0.5 V. 4.
【請求項4】上記正極活物質がリチウム含有遷移金属複
合酸化物である請求項1,2または3に記載の非水電解
質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein said positive electrode active material is a lithium-containing transition metal composite oxide.
【請求項5】アルキルカーボネート,アルキルカーボネ
ートの一部元素の置換体,プロピオン酸メチル,プロピ
オン酸エチル、1,2−ジメトキシエタンの中の1種以
上の混合物を電解液溶媒として用いる請求項1,2また
は3に記載の非水電解質二次電池。
5. The electrolyte solvent according to claim 1, wherein a mixture of at least one of alkyl carbonate, a partially substituted alkyl carbonate, methyl propionate, ethyl propionate, and 1,2-dimethoxyethane is used. 4. The non-aqueous electrolyte secondary battery according to 2 or 3.
【請求項6】リチウム解離性のハロゲン元素含有リチウ
ム化合物を支持電解質として用いる請求項1,2または
3に記載の非水電解質二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein a lithium-dissociable halogen-containing lithium compound is used as a supporting electrolyte.
【請求項7】コンピュータ及びその接続周辺機器,情報
・通信機器,映像・音響機器,冷熱機器,照明機器,そ
の他の家電製品,時計,電卓,玩具,工具,医療機器,
無停電電源,電力貯蔵システム,自動車,その他車両,
人工衛星,潜水艦に使用する請求項1,2,3,4,5
または6に記載の非水電解質二次電池。
7. Computers and their connected peripherals, information and communication equipment, video and audio equipment, cooling and heating equipment, lighting equipment, other home appliances, watches, calculators, toys, tools, medical equipment,
Uninterruptible power supply, power storage system, automobile, other vehicles,
Claims 1, 2, 3, 4, 5 for use in satellites and submarines
Or the non-aqueous electrolyte secondary battery according to 6.
JP8347101A 1996-12-26 1996-12-26 Nonaqueous electrolyte secondary battery Pending JPH10188980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8347101A JPH10188980A (en) 1996-12-26 1996-12-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8347101A JPH10188980A (en) 1996-12-26 1996-12-26 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10188980A true JPH10188980A (en) 1998-07-21

Family

ID=18387922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8347101A Pending JPH10188980A (en) 1996-12-26 1996-12-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10188980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985504B2 (en) 2006-05-01 2011-07-26 Lg Chem, Ltd Lithium secondary battery of improved low-temperature power property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985504B2 (en) 2006-05-01 2011-07-26 Lg Chem, Ltd Lithium secondary battery of improved low-temperature power property
US8110308B2 (en) 2006-05-01 2012-02-07 Lg Chem, Ltd. Lithium secondary battery of improved low-temperature power property

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
JPH0729602A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3640227B2 (en) Non-aqueous secondary battery
JPH09194214A (en) Lithium manganese oxide compound and its preparation
GB2383465A (en) Lithium metal dispersion in secondary battery anodes
JP3706521B2 (en) Lithium secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JP4534263B2 (en) Nonaqueous electrolyte secondary battery
KR20040025600A (en) Anode material and battery using the same
JP2004095243A (en) Lithium secondary battery using sulfur as positive electrode active material
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH10125309A (en) Nonaqueous secondary battery
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JPH10302776A (en) Totally solid lithium secondary battery
JPH10188980A (en) Nonaqueous electrolyte secondary battery
WO2000033403A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
KR20130065371A (en) Safety enhancing agents for secondary battery and secondary battery improved stability by using thesame
JP3030143B2 (en) Non-aqueous electrolyte secondary battery