JPH10182661A - Production of alkoxysilane - Google Patents

Production of alkoxysilane

Info

Publication number
JPH10182661A
JPH10182661A JP8355775A JP35577596A JPH10182661A JP H10182661 A JPH10182661 A JP H10182661A JP 8355775 A JP8355775 A JP 8355775A JP 35577596 A JP35577596 A JP 35577596A JP H10182661 A JPH10182661 A JP H10182661A
Authority
JP
Japan
Prior art keywords
alkoxysilane
silicon
alcohol
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8355775A
Other languages
Japanese (ja)
Inventor
Minoru Hasegawa
稔 長谷川
Kosaburo Nishiyama
幸三郎 西山
Koji Sakurai
浩二 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colcoat Co Ltd
Original Assignee
Colcoat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colcoat Co Ltd filed Critical Colcoat Co Ltd
Priority to JP8355775A priority Critical patent/JPH10182661A/en
Publication of JPH10182661A publication Critical patent/JPH10182661A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain an alkoxysilane in a high conversion at a low temperature, by reacting silicon with a monohydric alcohol in the presence of a specific catalyst in a specified reaction solvent in liquid phase. SOLUTION: This method for producing the alkoxysilane comprises reacting (A) silicon with (B) a monovalent 1-4C aliphatic alcohol (preferably methyl alcohol) in the presence of (C) a copper halide catalyst (e.g. cuprous chloride, cupric chloride, cupric bromide) in (D) a dislkoxybenzene of the formula: C6 H4 (OR)2 (R is a 1-4C alkyl) (preferably ortho or para-dimethoxybenzene) as a reaction solvent preferably at a temperature of 170-200 deg.C. Thereby, the selectivity of the trialkoxysilane can be improved even at a low temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は塩化銅触媒の存在下にケ
イ素とアルコールからアルコキシシラン特にトリアルコ
キシシランを製造する改良法に関する。
The present invention relates to an improved process for producing alkoxysilanes, especially trialkoxysilanes, from silicon and alcohol in the presence of a copper chloride catalyst.

【0002】[0002]

【従来の技術】アルコキシシランの製造法としては、ク
ロロシランとアルコールとを反応させる方法と金属ケイ
素とアルコールを直接反応させる方法が知られている。
クロロシランを用いる方法は、副生物として塩酸が生成
し、反応装置を腐食させるほか、生成したアルコキシシ
ランの加水分解を促進し、且つ塩酸を含む廃液の処理に
も多大の費用を要する欠点を持っている。金属ケイ素を
用いる方法は液相反応で銅系触媒を用いた場合、アルコ
キシ基が3〜4個導入されたシランの混合物が得られる
が、ケイ素の反応率が低い。改良反応法として反応溶媒
としてアリールメタン化合物やイソパラフィンを溶媒と
して用いる方法が知られているがいずれも200℃以上
の高温で反応させないと高反応率が達成できない。
2. Description of the Related Art As a method for producing alkoxysilane, a method of reacting chlorosilane with an alcohol and a method of directly reacting metal silicon with an alcohol are known.
The method using chlorosilane has the disadvantages that hydrochloric acid is generated as a by-product, corrodes the reactor, promotes the hydrolysis of the generated alkoxysilane, and requires a great deal of cost to treat wastewater containing hydrochloric acid. I have. In the method using metal silicon, when a copper-based catalyst is used in a liquid phase reaction, a mixture of silanes having 3 to 4 alkoxy groups introduced therein is obtained, but the reaction rate of silicon is low. As an improved reaction method, a method using an arylmethane compound or isoparaffin as a reaction solvent as a solvent is known, but a high conversion cannot be achieved unless the reaction is carried out at a high temperature of 200 ° C. or higher.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来の欠点
を解消し、低温で高転化率でアルコキシシランを製造す
る方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the conventional disadvantages and to provide a method for producing alkoxysilane at a high conversion rate at a low temperature.

【0004】[0004]

【課題を解決するための手段】本発明は、ケイ素と炭素
数1〜4の1価脂肪族アルコールとをハロゲン化銅系触
媒の存在下に液相反応させてアルコキシシランを製造す
る方法において、反応溶媒として一般式;C6H4(O
R)2、(Rは炭素数1〜4のアルキル基)で表される
ジアルコキシベンゼンを用いる事を特徴とするアルコキ
シシランの製造法である。
The present invention provides a method for producing an alkoxysilane by subjecting silicon and a monohydric aliphatic alcohol having 1 to 4 carbon atoms to a liquid phase reaction in the presence of a copper halide catalyst. General formula: C6H4 (O
(R) A method for producing an alkoxysilane, wherein dialkoxybenzene represented by 2, (R is an alkyl group having 1 to 4 carbon atoms) is used.

【0005】本発明において、原料であるケイ素として
は通常純度が90%以上の金属ケイ素を200μ以下、
好ましくは100μ以下の平均粒度に微細化したものが
用いられ、その表面が酸化されないように不活性ガスで
シールされた状態で保存されているものが好ましい。
[0005] In the present invention, as a raw material silicon, metal silicon having a purity of 90% or more is usually 200 μm or less,
Preferably, a fine particle having an average particle size of 100 μm or less is used, and one whose surface is stored in a state sealed with an inert gas so as not to be oxidized is preferable.

【0006】1価脂肪族アルコールとしては、炭素数が
1〜4個のものが用いられ、具体的にはメタノール、エ
タノール、イソプロパノール、n−ブタノール等があげ
られるが特にメタノール、エタノールが好ましい。アル
コールの使用量は金属ケイ素1モルに対して2〜5倍モ
ルの範囲から選ばれ、3倍モル程度が好ましい。
As the monohydric aliphatic alcohol, one having 1 to 4 carbon atoms is used. Specific examples include methanol, ethanol, isopropanol, n-butanol and the like, with methanol and ethanol being particularly preferred. The amount of the alcohol used is selected from the range of 2 to 5 moles per 1 mole of metal silicon, and is preferably about 3 moles.

【0007】ハロゲン化銅系触媒としては、具体的に
は、塩化第1銅、塩化第2銅、臭化第1銅、臭化第2
銅、よう化第1銅、よう化第2銅等があげられる。これ
ら触媒の使用量は金属ケイ素に対し0.1〜50モル
%、好ましくは0.5〜10モル%が用いられる。触媒
の添加法は、予め溶媒に一括して溶解もしくはけん濁さ
せておいても良いが、時として触媒が失括する事がある
ので反応の途中で間欠的に添加する事が好ましい。
Specific examples of the copper halide-based catalyst include cuprous chloride, cupric chloride, cuprous bromide, and copper bromide.
Copper, cuprous iodide, cupric iodide and the like can be mentioned. These catalysts are used in an amount of 0.1 to 50 mol%, preferably 0.5 to 10 mol%, based on silicon metal. As for the method of adding the catalyst, the catalyst may be dissolved or suspended in a lump in a solvent in advance, but it is preferable to add the catalyst intermittently during the reaction because the catalyst may sometimes be lost.

【0008】本発明で用いるジアルコキシベンゼンとし
ては、オルトジメトキシベンゼン、パラジメトキシベン
ゼン、オルトジエトキシベンゼン、パラジエトキシベン
ベン等が用いられ、特にパラジメトキシベンゼンが好ま
しい。溶媒の使用量は特に制限はないが金属ケイ素に対
100〜400重量%用いるのが好ましい。
As the dialkoxybenzene used in the present invention, orthodimethoxybenzene, paradimethoxybenzene, orthodiethoxybenzene, paradiethoxybenben and the like are used, and paradimethoxybenzene is particularly preferred. Although the amount of the solvent used is not particularly limited, it is preferably used in an amount of 100 to 400% by weight based on silicon metal.

【0009】反応温度は150〜200℃が好ましく、
特に170〜190℃が好ましい。反応は、溶媒中に金
属ケイ素と触媒を溶解もしくはけん濁させ、攪拌下、こ
れにメタノールまたはエタノールなどのアルコールを滴
下添加することで好適に進行する。生成物は主にトリア
ルコキシシラン及びテトラアルコキシシランからなる
が、トリアルコキシシランは未反応アルコールと反応し
てテトラアルコキシシランに転換し易いので、トリアル
コキシシランの生成を望む場合にはアルコリシス反応の
禁止剤を添加したり、10℃以下の低温、特に5℃以下
に保持する事が好ましい。
The reaction temperature is preferably from 150 to 200 ° C.,
Particularly, 170 to 190 ° C. is preferable. The reaction suitably proceeds by dissolving or suspending the metal silicon and the catalyst in a solvent, and dropwise adding an alcohol such as methanol or ethanol thereto with stirring. The product is mainly composed of trialkoxysilane and tetraalkoxysilane, but trialkoxysilane easily reacts with unreacted alcohol and is converted to tetraalkoxysilane. It is preferable to add an agent or to maintain the temperature at a low temperature of 10 ° C. or less, particularly 5 ° C. or less.

【0010】[0010]

【実施例】以下、具体的に本発明を説明するが、特記し
ない限り部は重量部を示す。 実施例1 ジムロート冷却管を備えた受器と、滴下ロートをY字型
連結管接続したフラスコに金属ケイ素57.0部、塩化
第1銅3.4部、パラジメトキシベンゼン100部を加
え、攪拌子を入れて攪拌しながらオイルバスを用いて1
80℃に加熱した。滴下ロートにメタノールをローラー
ポンプで供給しながら、該滴下ロートからフラスコ内に
195部のメタノールを6時間かけて滴下供給した。生
成物は速やかに気化され、ジムロート冷却管で冷却さ
れ、受器に溜まる。
EXAMPLES Hereinafter, the present invention will be described specifically, but parts are by weight unless otherwise specified. Example 1 57.0 parts of metallic silicon, 3.4 parts of cuprous chloride, and 100 parts of paradimethoxybenzene were added to a receiver equipped with a Dimroth condenser tube and a flask in which a dropping funnel was connected to a Y-shaped connecting pipe, and stirred. Use an oil bath while mixing and stirring
Heated to 80 ° C. While supplying methanol to the dropping funnel with a roller pump, 195 parts of methanol was dropped into the flask from the dropping funnel over 6 hours. The product is quickly vaporized, cooled in a Dimroth condenser, and accumulates in a receiver.

【0011】受器に溜まった留分を1時間毎に取り出
し、ガスクロマトグラフィー分析を行った。反応終了
後、残存ケイ素量からケイ素の転化率を求めたところ、
32%であり、生成物中のトリメトキシシランの割合は
55%であった。
The fraction collected in the receiver was taken out every hour and analyzed by gas chromatography. After completion of the reaction, when the conversion of silicon was determined from the amount of residual silicon,
32%, and the proportion of trimethoxysilane in the product was 55%.

【0012】実施例2 実施例1と同様にして、ただし、最初に加えた塩化第1
銅の量を6.8部とし、反応開始の時点から5.5時間
経過後に更に6.8部の塩化第1銅を加えて11時間反
応を継続した。メタノールの合計添加量は390部とな
った。この時のケイ素の転化率は73%であった。生成
物中のトリメトキシシランの割合は59%であった。
Example 2 As Example 1, except that the first added chloride
The amount of copper was 6.8 parts, and 5.5 hours after the start of the reaction, another 6.8 parts of cuprous chloride was added, and the reaction was continued for 11 hours. The total amount of methanol added was 390 parts. At this time, the conversion of silicon was 73%. The proportion of trimethoxysilane in the product was 59%.

【0013】実施例3 実施例2と同様にして、ただし、メタノールの代わりに
エタノールを用い、その合計添加量を560部となっ
た。この時のケイ素の転化率は63%であった。生成物
中のトリエトキシシランの割合は52%であった。
Example 3 In the same manner as in Example 2, except that ethanol was used instead of methanol, and the total amount of addition was 560 parts. At this time, the conversion of silicon was 63%. The proportion of triethoxysilane in the product was 52%.

【0014】比較例 使用溶媒を下記に示すものに変えて、実施例1と同じに
して実験を行った。結果を以下に示す。
Comparative Example An experiment was carried out in the same manner as in Example 1 except that the solvent used was changed as follows. The results are shown below.

【0015】 溶媒 反応温度(℃)反応時間 ケイ素転化率 選択率* イソパラフィン 180 11時間 25% 48% ジフェニルメタン 180 11時間 18% 44% *選択率は、生成物中のトリメトキシシランの割合を示す。Solvent Reaction temperature (° C.) Reaction time Silicon conversion Selectivity * Isoparaffin 180 11 hours 25% 48% Diphenylmethane 180 11 hours 18% 44% * Selectivity indicates the proportion of trimethoxysilane in the product.

【0016】[0016]

【発明の効果】本発明は、従来高温でないと金属ケイ素
の反応率が低くトリアルコキシシランの選択率も向上し
なかった反応を、特定の溶媒を選択する事により低温で
反応を効率よく進行させる事が出来る。
According to the present invention, a reaction in which the conversion of metal silicon was low and the selectivity of trialkoxysilane was not improved unless the temperature was high at high temperatures can be efficiently advanced at a low temperature by selecting a specific solvent. I can do things.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ケイ素と炭素数1〜4の1価脂肪族アルコ
ールとをハロゲン化銅系触媒の存在下に反応させてアル
コキシシランを製造する方法において、反応溶媒として
一般式:C6H4(OR)2、(Rは炭素数1〜4のア
ルキル基)を持つジアルコキシベンゼンを用いる事を特
徴とするアルコキシシランの製造法。
1. A method for producing alkoxysilane by reacting silicon with a monohydric aliphatic alcohol having 1 to 4 carbon atoms in the presence of a copper halide catalyst, wherein C6H4 (OR) is used as a reaction solvent. 2. A method for producing an alkoxysilane, comprising using a dialkoxybenzene having (R is an alkyl group having 1 to 4 carbon atoms).
【請求項2】ジアルコキシベンゼンが、オルトまたはパ
ラジメトキシベンゼンである事を特徴とする請求項1の
アルコキシシランの製造法。
2. The method according to claim 1, wherein the dialkoxybenzene is ortho or paradimethoxybenzene.
【請求項3】1価脂肪族アルコールがメチルアルコール
であることを特徴とする請求項1のアルコキシシランの
製造法。
3. The method for producing an alkoxysilane according to claim 1, wherein the monohydric aliphatic alcohol is methyl alcohol.
【請求項4】反応温度が170〜200℃であることを
特徴とする請求項1のアルコキシシランの製造法。
4. The method according to claim 1, wherein the reaction temperature is 170 to 200 ° C.
JP8355775A 1996-12-25 1996-12-25 Production of alkoxysilane Pending JPH10182661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8355775A JPH10182661A (en) 1996-12-25 1996-12-25 Production of alkoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8355775A JPH10182661A (en) 1996-12-25 1996-12-25 Production of alkoxysilane

Publications (1)

Publication Number Publication Date
JPH10182661A true JPH10182661A (en) 1998-07-07

Family

ID=18445696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8355775A Pending JPH10182661A (en) 1996-12-25 1996-12-25 Production of alkoxysilane

Country Status (1)

Country Link
JP (1) JPH10182661A (en)

Similar Documents

Publication Publication Date Title
JP2011502951A (en) Preparation process of alkoxysilane
JPS62918B2 (en)
JP2848908B2 (en) Production method of alkoxysilanes
JP2773509B2 (en) Method for producing trialkoxysilane
CA2019691C (en) Preparation of tertiary-hydrocarbylsilyl compounds
JP2002097191A (en) Freshly precipitated cupric oxide as catalyst for trialkoxysilane synthesis
JP2005521745A (en) Method for producing chlorosilane intermediate
US20140364639A1 (en) Method for preparing trialkoxysilane
US5294727A (en) Method for preparing tertiary hydrocarbon-silyl compounds
JPH10237177A (en) Production of network polysilane
JPS6222790A (en) Production of tertiary hydrocarbonsilyl compound
KR20140093946A (en) A method for preparing a diorganodihalosilane
EP0298487B1 (en) Method for the production of tertiary-alkyldimethylhalosilane
JP2775239B2 (en) Catalytic alkylation method
JPS6341919B2 (en)
US6156918A (en) Process for the preparation of silanes, with a tertiary hydrocarbon group in the a-position relative to the silicon atom
JPH10182660A (en) Production of alkoxysilane
JPH10182661A (en) Production of alkoxysilane
JP6014771B2 (en) Monosilane production method using trialkoxysilane
JP2002138093A (en) Method for producing trialkoxy silane using copper fluoride salt as catalyst
JP2985461B2 (en) Method for producing trialkoxysilane
JP2003012677A (en) Method and apparatus for forming carbon-silicon bond in silane
JP2773568B2 (en) Method for producing trialkoxysilane
JPH0348917B2 (en)
EP0154867B1 (en) 2-substituted-1,3-butadiene derivatives and process for producing same