JPH10178203A - Light-emitting element and light-emitting diode using the same - Google Patents

Light-emitting element and light-emitting diode using the same

Info

Publication number
JPH10178203A
JPH10178203A JP33923496A JP33923496A JPH10178203A JP H10178203 A JPH10178203 A JP H10178203A JP 33923496 A JP33923496 A JP 33923496A JP 33923496 A JP33923496 A JP 33923496A JP H10178203 A JPH10178203 A JP H10178203A
Authority
JP
Japan
Prior art keywords
semiconductor
light
electrode
light emitting
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33923496A
Other languages
Japanese (ja)
Other versions
JP3211870B2 (en
Inventor
Motokazu Yamada
元量 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP33923496A priority Critical patent/JP3211870B2/en
Publication of JPH10178203A publication Critical patent/JPH10178203A/en
Application granted granted Critical
Publication of JP3211870B2 publication Critical patent/JP3211870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light-emitting element whose light-emitting efficiency is made uniform and enhanced by a method wherein the end part of a semiconductor of a second conductivity type is formed in a tapered shape and a first electrode thicker than the tapered shape is constituted. SOLUTION: As a light-emitting element, a semiconductor 101 is formed on an insulating substrate 104 on which a first electrode corresponding to a positive pole and a second electrode corresponding to a negative pole are formed on the same main face side of the semiconductor 101. As the light-emitting element, various semiconductors used for an active layer such as InGaN, GaN, AlN, InN and the like are enumerated. The end part of the semiconductor 101 refers to the emission part of light transmitted in a semiconductor layer or to a part near the part, and the outer circumferential part of the semiconductor 101 constituting an LED chip is enumerated. As the shape of the end part, a mask material in a desired shape is formed on the semiconductor 101, an electrode face is formed by an etching operation, and, at the same time, a tapered shape is formed. In addition, the tapered shape refers to a shape in which the film of the semiconductor is gradually thin at the end part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、同一主面側に正
極及び負極の両電極を形成させた半導体発光素子に係わ
り、特に電極による外部量子効率の低下を抑制させた発
光素子及びそれを用いた発光ダイオードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device in which both a positive electrode and a negative electrode are formed on the same principal surface, and more particularly to a light emitting device in which a decrease in external quantum efficiency due to the electrodes is suppressed and a light emitting device using the same. Light emitting diode.

【0002】[0002]

【従来技術】今日、光通信、表示装置、光プリンター光
源やバックライト光源など各種光源などに発光素子が利
用されている。特に、高輝度に発光可能な発光素子が実
用化され、種々の応用分野に利用され始めている。この
ような、高輝度発光素子の一つに絶縁性基板上に半導体
膜を形成させたものがある。例えば、良質な半導体特性
を有する半導体膜を形成させるなどのためにサファイア
やスピネル等の絶縁性基板上にMOCVD法などにより
窒化物系化合物半導体が挙げられる。このような半導体
は、基板が絶縁性であるため基板側から導通をとること
ができない。そのため、成膜された半導体を部分的にエ
ッチングさせることによって、各導電型の半導体とオー
ミック接触する電極をそれぞれ形成する半導体表面(以
下、電極面ともいう。)を露出させている。半導体面に
電極をそれぞれ形成させることによって発光素子である
LEDチップを形成する。
2. Description of the Related Art Today, light emitting elements are used for various light sources such as optical communication, display devices, optical printer light sources and backlight light sources. In particular, light emitting elements capable of emitting light with high luminance have been put to practical use and have begun to be used in various application fields. One of such high-luminance light-emitting elements is one in which a semiconductor film is formed on an insulating substrate. For example, a nitride-based compound semiconductor is formed on an insulating substrate such as sapphire or spinel by an MOCVD method or the like in order to form a semiconductor film having good semiconductor characteristics. In such a semiconductor, conduction cannot be obtained from the substrate side because the substrate is insulative. Therefore, a semiconductor surface (hereinafter, also referred to as an electrode surface) on which an electrode in ohmic contact with each conductive semiconductor is formed is exposed by partially etching the formed semiconductor. An LED chip which is a light emitting element is formed by forming electrodes on the semiconductor surface.

【0003】発光ダイオードを形成させる場合は、上述
のLEDチップに設けられた電極を外部からの電力を供
給させるリード・フレームなどと金線などによりワイヤ
ーボンディングし電気的接続を行う。その後、所望に応
じて発光素子などをエポキシ樹脂などによりモールドさ
せる。発光ダイオードの電極間に電力を供給させると発
光素子の発光面などから光を取り出すことができる。こ
れにより比較的簡単に量産性良く、信頼性の高い発光ダ
イオードを形成させることができる。
When a light emitting diode is formed, an electrode provided on the above-mentioned LED chip is electrically connected to a lead frame for supplying electric power from the outside by wire bonding with a gold wire or the like. Thereafter, the light emitting element and the like are molded with an epoxy resin or the like as desired. When power is supplied between the electrodes of the light emitting diode, light can be extracted from the light emitting surface of the light emitting element. Accordingly, a light emitting diode with high mass productivity and high reliability can be formed relatively easily.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、発光素
子の使用環境の広がりと共に、より高輝度に発光可能な
発光素子やそれを用いた発光ダイオードの開発が求めら
れている。本願発明の目的は、半導体の同一面側に正極
及び負極などの電極が設けられた半導体発光素子におい
て、より発光効率を均一に更に向上させた信頼性の高い
発光素子及びそれを用いた発光ダイオードを形成するこ
とにある。
However, with the expansion of the usage environment of the light emitting element, development of a light emitting element capable of emitting light with higher luminance and a light emitting diode using the same have been required. It is an object of the present invention to provide a semiconductor light emitting device in which electrodes such as a positive electrode and a negative electrode are provided on the same surface side of a semiconductor, and a highly reliable light emitting device having further improved luminous efficiency and a light emitting diode using the same. Is to form

【0005】[0005]

【課題を解決するための手段】本願発明は、透光性絶縁
基板上に第1の導電型を有する半導体と、該第1の導電
型を有する半導体上に第2の導電型を有する半導体と、
前記第1及び第2の導電型を有する半導体の同一主面側
にそれぞれ設けられた第1及び第2の電極と、を有する
発光素子であって、前記第2の導電型を有する半導体の
端部がテーパー形状であると共にテーパー形状の厚みよ
りも厚い第1の電極を有する発光素子とすることにより
上記課題を解決することができる。
According to the present invention, there is provided a semiconductor having a first conductivity type on a light-transmitting insulating substrate, and a semiconductor having a second conductivity type on the semiconductor having the first conductivity type. ,
And a first electrode and a second electrode provided on the same main surface side of the semiconductor having the first and second conductivity types, respectively, wherein the end of the semiconductor having the second conductivity type is provided. The above problem can be solved by providing a light-emitting element having a first electrode whose portion is tapered and which is thicker than the tapered shape.

【0006】また、上記課題を解決する本願発明は、基
体上のLEDチップと、該LEDチップ上にモールド部
材と、を有する発光ダイオードであって、前記LEDチ
ップが透光性絶縁基板上に第1の導電型を有する半導体
と、該第1の導電型を有する半導体上に第2の導電型を
有する半導体と、前記第1及び第2の導電型を有する半
導体の同一主面側にそれぞれ設けられた第1及び第2の
電極と、を有し前記第2の導電型を有する半導体の端部
がテーパー形状であると共にテーパー形状の厚みよりも
厚い第1の電極を有する発光ダイオードであり、前記モ
ールド部材がエポキシ樹脂、シリコーン樹脂から選択さ
れる少なくとも一種である発光ダイオードである。さら
に、前記透光性絶縁基板は、サファイア或いは、スピネ
ルである発光ダイオードであり、前記第1及び第2の導
電体を有する半導体が窒化物系化合物半導体である発光
ダイオードでもある。さらにまた、前記第1の導電型を
有する半導体の少なくとも一部は、前記第2の導電型を
有する半導体のテーパー形状に連続してテーパーが設け
られている発光ダイオードである。
Further, the present invention for solving the above-mentioned problem is a light-emitting diode having an LED chip on a base and a mold member on the LED chip, wherein the LED chip is formed on a light-transmitting insulating substrate. A semiconductor having the first conductivity type, a semiconductor having the second conductivity type on the semiconductor having the first conductivity type, and a semiconductor having the first and second conductivity types provided on the same main surface side, respectively. And a first electrode having a first electrode that is thicker than the tapered shape, the end of the semiconductor having the second conductivity type having a tapered shape, The mold member is a light emitting diode that is at least one selected from an epoxy resin and a silicone resin. Furthermore, the light-transmitting insulating substrate is a light-emitting diode that is sapphire or spinel, and a light-emitting diode in which the semiconductor having the first and second conductors is a nitride-based compound semiconductor. Furthermore, at least a part of the semiconductor having the first conductivity type is a light emitting diode in which a taper is continuously provided in a taper shape of the semiconductor having the second conductivity type.

【0007】[0007]

【作用】本願発明の構成とすることによって、半導体層
中を全反射などにより伝搬してきた発光を半導体の端部
により別の角度などに反射させる。そのため、同一主面
側に設けられた電極面に形成された電極によって光が遮
光されたり、吸収されることがない。したがって、半導
体層を伝搬してきた光を効率よく均一に外部に取り出す
ことができる。また、発光層に十分な電力を供給させつ
つ、発光強度をより高めることができる。
According to the structure of the present invention, light emitted through the semiconductor layer by total reflection or the like is reflected at another angle by the end of the semiconductor. Therefore, light is not blocked or absorbed by the electrodes formed on the electrode surface provided on the same main surface side. Therefore, light that has propagated through the semiconductor layer can be efficiently and uniformly extracted to the outside. In addition, the emission intensity can be further increased while supplying sufficient power to the emission layer.

【0008】[0008]

【発明の実施の形態】本願発明者は、種々の実験の結
果、厚みの厚い電極を端部近傍に有する半導体にテーパ
ー形状を設けることによって、外部出力効率が向上する
という知見にもとづき発光光率の高い発光素子及び発光
ダイオードとした。
DETAILED DESCRIPTION OF THE INVENTION The inventors of the present invention have found from various experiments that the emission efficiency can be improved by providing a tapered shape in a semiconductor having a thick electrode near an end to improve external output efficiency. And a light-emitting element and a light-emitting diode with high values.

【0009】本願発明の構成による発光効率向上の理由
は定かではないが、半導体の端部がテーパー形状をとる
ことにより、半導体内で伝搬してきた光が電極などに吸
収されることなく外部に取り出されることにより光利用
効率が向上すると考えられる。
Although the reason for the improvement of the luminous efficiency by the structure of the present invention is not clear, the light propagating in the semiconductor is extracted outside without being absorbed by the electrodes and the like, because the end of the semiconductor has a tapered shape. It is thought that the light utilization efficiency is improved by this.

【0010】即ち、発光素子は、半導体を通して発光観
測面側である全面から発光する光の他、図4の如く屈折
率などの関係から半導体活性層などを伝搬して放出され
る光がある。このような光は、半導体の横方向から放出
される。
That is, in the light emitting element, there are light emitted from the entire surface on the emission observation surface side through the semiconductor and light emitted by propagating through the semiconductor active layer and the like due to the refractive index and the like as shown in FIG. Such light is emitted from the lateral direction of the semiconductor.

【0011】一方、半導体401上に形成された電極4
03は、半導体401及び電気的接続部材405などと
良好なオーミック接触や密着強度を向上させるためは、
半導体の膜厚(エッチングなどにより形成された厚み)
に比べて極めて厚くせざるを得ない。また、このような
電極は、AuやAuにTi、Al、W、Niが含有され
た合金などのように光を透過させない金属によって構成
されている。さらに、半導体上に設けられた電極403
は、電気的接続部材405である金線などをワイヤーボ
ンディングなどによって電気的に接続させる。ワイヤー
ボンディングは、金線403などを超音波融着などによ
り形成させるため、電極403面上に比較的大きな金属
のボール(半球状の金属)404が形成される。そのた
め、LEDチップの側方から放出された光が一方の電極
等の陰になり反射或いは吸収され遮られてしまう。本願
発明は、半導体層を伝搬してきた光の進行方向をその端
面で変えるものである。
On the other hand, the electrode 4 formed on the semiconductor 401
03 is for improving good ohmic contact and adhesion strength with the semiconductor 401 and the electrical connection member 405, etc.
Semiconductor film thickness (thickness formed by etching etc.)
It has to be very thick compared to. Such an electrode is made of a metal that does not transmit light, such as Au or an alloy containing Au, Ti, Al, W, and Ni. Further, an electrode 403 provided on the semiconductor
Is used to electrically connect a gold wire or the like as the electrical connection member 405 by wire bonding or the like. In the wire bonding, since the gold wire 403 and the like are formed by ultrasonic fusion or the like, a relatively large metal ball (hemispherical metal) 404 is formed on the surface of the electrode 403. Therefore, the light emitted from the side of the LED chip is shaded by one electrode or the like, and is reflected or absorbed to be blocked. The present invention changes the traveling direction of light propagating through a semiconductor layer at its end face.

【0012】具体的な発光ダイオード例を図3に示す。
図3は、チップタイプLEDの概略断面構造が示されて
いる。チップタイプLEDのパッケージ302内には、
ダイボンド樹脂を介してLEDチップ301がダイボン
ドされている。また、LEDチップ301には同一主面
側に正極及び負極の両電極が形成され、それぞれパッケ
ージ302に設けられた外部電極307と金線304を
用いてワイヤーボンディングされている。LEDチップ
は、サファイア基板上に窒化物系化合物半導体が形成さ
れている。窒化物系化合物半導体の外周に相当する端部
には、正極の設けられた第1の半導体、負極が設けられ
た第2の半導体を含むテーパー形状が設けられている。
このような、テーパー形状を設けることにより更に高輝
度発光可能な発光ダイオードを形成することができる。
以下、本願発明の具体的構成について詳述する。
FIG. 3 shows a specific example of a light emitting diode.
FIG. 3 shows a schematic sectional structure of a chip type LED. In the package 302 of the chip type LED,
The LED chip 301 is die-bonded via a die-bond resin. Further, both the positive electrode and the negative electrode are formed on the same main surface side of the LED chip 301, and are wire-bonded to the external electrodes 307 provided on the package 302 and the gold wires 304, respectively. The LED chip has a nitride-based compound semiconductor formed on a sapphire substrate. At the end corresponding to the outer periphery of the nitride-based compound semiconductor, a tapered shape including a first semiconductor provided with a positive electrode and a second semiconductor provided with a negative electrode is provided.
By providing such a tapered shape, a light emitting diode capable of emitting light with higher luminance can be formed.
Hereinafter, a specific configuration of the present invention will be described in detail.

【0013】(発光素子201、301)本願発明に用
いられる発光素子201としては、半導体の同一主面側
に正極及び負極に相当する第1及び第2の電極が設けら
れた絶縁性基板104上の半導体である。発光素子とし
ては、MOCVD法や液相成長法などにより形成された
InGaN、GaN、AlN、InNなどを活性層に用
いた種々の半導体が好適に挙げられる。半導体の構造と
しては、MIS接合、PIN接合やPN接合等を有する
ホモ構造、ヘテロ構造或いはダブルヘテロ構造などのも
のが挙げられる。半導体層の材料やその混晶度によって
発光波長を種々選択することができる。また、活性層を
量子効果が生ずる程度の薄膜に形成させた単一量子井戸
構造や多重量子井戸構造とすることもできる。
(Light-Emitting Elements 201 and 301) The light-emitting element 201 used in the present invention is provided on an insulating substrate 104 provided with first and second electrodes corresponding to a positive electrode and a negative electrode on the same main surface of a semiconductor. Semiconductor. As the light emitting element, various semiconductors using an active layer of InGaN, GaN, AlN, InN, or the like formed by a MOCVD method, a liquid phase growth method, or the like are preferable. Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, a PN junction, and the like, a heterostructure, a double heterostructure, and the like. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal thereof. In addition, a single quantum well structure or a multiple quantum well structure in which the active layer is formed as a thin film having a quantum effect can be obtained.

【0014】窒化物系化合物半導体を使用した場合、半
導体の基板104、402には、サファイア、スピネル
などの材料が好適に用いられる。特に、特性の優れた窒
化ガリウム系化合物半導体を形成させる場合は、サファ
イア基板の上に形成させることの好ましい。さらに、半
導体とサファイア基板との間には、それぞれの格子定数
の違いなどからバッファ層を設けることがより好まし
い。バッファ層には、低温で形成させた窒化アルミニウ
ムや窒化ガリウムなどが好適に用いられる。
When a nitride-based compound semiconductor is used, materials such as sapphire and spinel are preferably used for the semiconductor substrates 104 and 402. In particular, in the case of forming a gallium nitride-based compound semiconductor having excellent characteristics, it is preferable to form it on a sapphire substrate. Further, it is more preferable to provide a buffer layer between the semiconductor and the sapphire substrate due to the difference in their respective lattice constants. Aluminum nitride, gallium nitride, or the like formed at a low temperature is suitably used for the buffer layer.

【0015】窒化物系化合物半導体を使用した発光素子
の例としては、サファイア上に窒化ガリウムのバッファ
層、N型窒化ガリウムで形成させた第1のコンタクト
層、量子効果を生じる程度に薄膜に形成させた窒化イン
ジュウム・ガリウムの活性層、P型窒化アルミニウム・
ガリウムで形成した第2のクラッド層、P型窒化ガリウ
ムで形成した第2のコンタクト層を順に形成させた構成
とすることができる。
Examples of a light emitting device using a nitride compound semiconductor include a buffer layer of gallium nitride on sapphire, a first contact layer formed of n-type gallium nitride, and a thin film formed to the extent that a quantum effect is produced. Active layer of indium gallium nitride, P-type aluminum nitride
A structure in which a second clad layer formed of gallium and a second contact layer formed of P-type gallium nitride can be sequentially formed.

【0016】なお、窒化物系化合物半導体は、不純物を
ドープしない状態でN型導電性を示す。発光効率を向上
させるなど所望のN型窒化物系化合物半導体を形成させ
る場合は、N型ドーパントとしてSi、Ge、Se、T
e、Cなどを適宜導入することが好ましい。一方、P型
窒化物系化合物半導体を形成させる場合は、P型ドーパ
ントであるZn、Mg、Be、Ca、Sr、Baなどを
ドープさせる。窒化ガリウム系化合物半導体はP型ドー
パントをドープしただけではP型化しにくいためP型ド
ーパント導入後に、炉による加熱、低速電子線照射やプ
ラズマ照射などによりアニールすることでP型化させる
ことが好ましい。
The nitride-based compound semiconductor exhibits N-type conductivity without being doped with impurities. When a desired N-type nitride-based compound semiconductor is formed, for example, to improve luminous efficiency, Si, Ge, Se, T
It is preferable to appropriately introduce e, C, and the like. On the other hand, when a P-type nitride-based compound semiconductor is formed, a P-type dopant such as Zn, Mg, Be, Ca, Sr, or Ba is doped. Since gallium nitride-based compound semiconductors are difficult to become p-type only by doping with a p-type dopant, it is preferable that the p-type dopant be introduced and then annealed by heating in a furnace, low-speed electron beam irradiation, plasma irradiation, or the like to make the g-type compound semiconductor.

【0017】サファイア基板上に設けられた半導体の電
極面を形成させるためには、第1のコンタクト層、第2
のコンタクト層表面を露出させる必要がある。このよう
な電極面は、半導体を堆積後に形成させても良いし、所
望の面積にそれぞれを堆積することによって形成させて
も良い。電極面上には所望形状の電極が形成される。端
部及び電極が形成された半導体ウエハー等は、ダイヤモ
ンド製の刃先を有するブレードが回転するダイシングソ
ーにより直接フルカットするか、又は刃先幅よりも広い
幅の溝を切り込んだ後(ハーフカット)、外力によって
半導体ウエハーを割る。あるいは、先端のダイヤモンド
針が往復直線運動するスクライバーにより半導体ウエハ
ーに極めて細いスクライブライン(経線)を例えば碁盤
目状に引いた後、外力によってウエハーを割り半導体ウ
エハーからチップ状にカットする。このようにしてLE
Dチップを形成させることができる。
In order to form an electrode surface of a semiconductor provided on a sapphire substrate, a first contact layer and a second contact layer are formed.
It is necessary to expose the surface of the contact layer. Such an electrode surface may be formed after the semiconductor is deposited, or may be formed by depositing each of them on a desired area. An electrode having a desired shape is formed on the electrode surface. The semiconductor wafer or the like on which the edge and the electrode are formed is directly full-cut by a dicing saw in which a blade having a diamond cutting edge rotates, or after cutting a groove having a width wider than the cutting edge width (half cut), The semiconductor wafer is broken by external force. Alternatively, an extremely thin scribe line (meridian) is drawn on the semiconductor wafer, for example, in a checkerboard pattern by a scriber in which a diamond needle at the tip reciprocates linearly, and then the wafer is cut by an external force and cut into chips from the semiconductor wafer. In this way LE
D chips can be formed.

【0018】また、詳細は不明であるが発光素子からの
発光波長が490nm以下などの比較的短波長側におい
て特に本願発明による効率改善が顕著に現れる。また、
発光輝度の高い窒化物系化合物半導体を用いることによ
ってより光取り出し効率の改善が顕著にでてきた。
Although the details are unknown, the improvement of the efficiency according to the present invention is particularly remarkable on a relatively short wavelength side such as a wavelength of 490 nm or less from the light emitting element. Also,
The use of a nitride-based compound semiconductor having a high emission luminance has significantly improved light extraction efficiency.

【0019】(電極103、403)電極103は、各
電極面が形成された半導体上に良好なオーミック接触が
得られる金属や合金をスパッタリング法などを用いるこ
とで形成することができる。具体的な電極材料としては
半導体が窒化ガリウム系化合物半導体である場合、Au
やAuにTi、Al、W、Niが含有された合金などが
好適に挙げられる。このような電極103は、良好な電
気伝導性を得るために膜厚を厚くさせることが好まし
い。特に、ワイヤーボンディングなどにより電気的に接
続される場合は、密着強度を向上させるために形成され
た半導体端部のテーパー形状の厚みよりも厚い0.5μ
mから5μmが好ましく、より好ましくは、1μmから
3μmであることが好ましい。
(Electrode 103, 403) The electrode 103 can be formed by using a metal or an alloy capable of obtaining good ohmic contact on the semiconductor on which the respective electrode surfaces are formed, by using a sputtering method or the like. As a specific electrode material, when the semiconductor is a gallium nitride-based compound semiconductor, Au
And an alloy containing Ti, Al, W, and Ni in Au or the like. It is preferable that the thickness of the electrode 103 be large in order to obtain good electric conductivity. In particular, when electrically connected by wire bonding or the like, 0.5 μm thicker than the thickness of the tapered shape of the semiconductor end formed to improve the adhesion strength.
m to 5 μm, more preferably 1 μm to 3 μm.

【0020】本願発明においては、電極103の膜厚を
半導体接合の高さ以上にさせた場合や電極上に形成され
る導電性ワイヤーの接続部が大きい場合などにおいて
も、半導体中を伝搬してきた光が吸収や反射などされる
ことはない。したがって、電気伝導性、密着性と光取り
出し効率の向上を図ることができる。
In the present invention, even when the thickness of the electrode 103 is set to be equal to or greater than the height of the semiconductor junction, or when the connection portion of the conductive wire formed on the electrode is large, the electrode 103 has propagated through the semiconductor. Light is not absorbed or reflected. Therefore, it is possible to improve the electric conductivity, adhesion and light extraction efficiency.

【0021】(半導体の端部)本願発明の半導体の端部
とは、半導体層中を伝達する光の放出部或いは、その近
傍のことである。従って、LEDチップ201、301
を構成する半導体の外周部が挙げられる。端部の形状
は、半導体上に所望形状のマスク材を設けエッチングな
どにより電極面を形成させると同時にテーパー形状とさ
せることができる。テーパー形状は、マスク材、エッチ
ング時間、エッチング材やエッチングを種々選択するこ
とによって所望に調節させることができる。エッチング
方法としては、リアクティブ・イオン・エッチング、プ
ラズマ・エッチングやスパッタ・エッチングなどのドラ
イ・エッチング法や種々の溶液を用いたウエット・エッ
チング法が挙げられる。
(End of Semiconductor) The end of the semiconductor according to the present invention is an emission portion of light transmitted through the semiconductor layer or a vicinity thereof. Therefore, the LED chips 201, 301
And the outer peripheral portion of the semiconductor. The shape of the end portion can be tapered at the same time that a mask material having a desired shape is provided on the semiconductor and the electrode surface is formed by etching or the like. The tapered shape can be adjusted as desired by variously selecting a mask material, an etching time, an etching material and etching. Examples of the etching method include a dry etching method such as reactive ion etching, plasma etching and sputter etching, and a wet etching method using various solutions.

【0022】また、半導体の端部に設けられたテーパー
は、半導体や半導体を挟む材料の屈折率等により種々調
整させることが好ましい。具体的には、サファイア基板
上に窒化ガリウム系化合物半導体を形成させエポキシ樹
脂などにより封止した場合には、45°以下が好まし
く、より好ましくは7.6°未満である。発光効率など
を考慮した場合は、5.2°以上45°以下が好まし
い。このような角度にすることにより半導体中を反射し
ながら進んできた光は透光性絶縁基板側へ角度を変えて
全反射する。良好な半導体を量産性よく形成されるため
は、半導体の厚みを基板の厚みに比べて極めて薄くす
る。例えば、窒化物系化合物半導体の厚み約5nmに対
してサファイア基板の厚みは約70μm以上の厚みとな
る場合がある。そのため、一度透光性絶縁基板に入り込
んだ光は、LEDチップ側面側などよりLEDチップの
外に出ていくこととなる。
It is preferable that the taper provided at the end of the semiconductor be variously adjusted according to the refractive index of the semiconductor and the material sandwiching the semiconductor. Specifically, when a gallium nitride-based compound semiconductor is formed on a sapphire substrate and sealed with an epoxy resin or the like, the angle is preferably 45 ° or less, more preferably less than 7.6 °. In consideration of luminous efficiency and the like, the angle is preferably 5.2 ° or more and 45 ° or less. With such an angle, the light traveling while reflecting in the semiconductor is totally reflected at a different angle toward the light-transmitting insulating substrate. In order to form a good semiconductor with good mass productivity, the thickness of the semiconductor is made extremely thin as compared with the thickness of the substrate. For example, the thickness of the sapphire substrate may be about 70 μm or more with respect to the thickness of the nitride-based compound semiconductor of about 5 nm. Therefore, light once entering the translucent insulating substrate exits the LED chip from the side of the LED chip or the like.

【0023】なお、テーパー形状とは、半導体の膜厚が
端部において徐々に薄くなっていることである。端部の
テーパー形状において全反射され半導体外に導出される
限り、側面側から見て直線形状や曲線状など種々の形態
をとることができる。また、テーパー形状の厚みとは、
LEDチップ側面側から観測した厚み(エッチング深さ
など)である。
The tapered shape means that the thickness of the semiconductor is gradually reduced at the end. As long as the light is totally reflected and led out of the semiconductor in the tapered shape at the end, it can take various forms such as a linear shape or a curved shape when viewed from the side. Also, the thickness of the tapered shape is
This is the thickness (such as the etching depth) observed from the side of the LED chip.

【0024】(基体202、302)基体202として
は、LEDチップ201を配置させるものであり、ダイ
ボンド機器などでLEDチップ201を積載するのに十
分な大きさがあれば良い。したがって、マウント・リー
ド202や発光ダイオードを構成するパッケージ302
など種々のものが挙げられる。また、基体を導電性の良
いもので形成させ電気的導通をとることもできる。具体
的には、LEDチップを複数設置しマウント・リードを
LEDチップの共通電極として利用する場合において
は、十分な電気伝導性とボンディングワイヤー等との接
続性が求められる。
(Bases 202 and 302) The base 202 is for mounting the LED chip 201, and it is sufficient that the base 202 is large enough to mount the LED chip 201 by die bonding equipment or the like. Therefore, the package 302 constituting the mount lead 202 and the light emitting diode
And the like. Alternatively, the base may be formed of a material having good conductivity to achieve electrical continuity. Specifically, when a plurality of LED chips are provided and the mount leads are used as a common electrode of the LED chips, sufficient electrical conductivity and connectivity with a bonding wire or the like are required.

【0025】LEDチップの基体となるマウント・リー
ドのカップとの接着は熱硬化性樹脂などによって行うこ
とができる。具体的には、エポキシ樹脂、アクリル樹脂
やイミド樹脂などが挙げられる。さらに、本願発明にお
いては、端部がテーパー形状とすることにより下方に光
が多く向かう。そのため、発光ダイオードの光利用効率
を向上させるためにLEDチップが配置される基体の表
面を鏡面状とし高反射率とすることが好ましい。この場
合の表面粗さは、0.1S以上0.8S以下が好まし
い。また、マウント・リードの具体的な電気抵抗として
は300μΩ−cm以下が好ましく、より好ましくは、
3μΩ−cm以下である。また、マウント・リード上に
複数のLEDチップを積置する場合は、LEDチップか
らの発熱量が多くなるため熱伝導度がよいことが求めら
れる。具体的には、0.01cal/cm2/cm/℃
以上が好ましい。また、より好ましくは 0.5cal
/cm 2/cm/℃以上である。これらの条件を満たす
材料としては、鉄、銅、鉄入り銅、錫入り銅、メタライ
ズパターン付きセラミック等が挙げられる。
Mount Lee serving as the base of the LED chip
Do not bond the cup to the cup with a thermosetting resin.
Can be. Specifically, epoxy resin, acrylic resin
And imide resin. Furthermore, the present invention
In this case, the end is tapered so that light
Heads a lot. Therefore, the light use efficiency of light emitting diodes
Of the substrate on which the LED chips are arranged to improve
It is preferable that the surface be mirror-shaped and have a high reflectance. This place
In this case, the surface roughness is preferably 0.1S or more and 0.8S or less.
No. Also, the specific electrical resistance of the mounting leads
Is preferably 300 μΩ-cm or less, more preferably,
3 μΩ-cm or less. Also on the mounting leads
When stacking multiple LED chips,
High heat conductivity is required due to the large amount of heat generated
It is. Specifically, 0.01 cal / cmTwo/ Cm / ℃
The above is preferred. Also, more preferably 0.5 cal
/ Cm Two/ Cm / ° C or more. Meet these conditions
Materials include iron, copper, copper with iron, copper with tin, metallurgy
Ceramics with a fine pattern.

【0026】(インナー・リード203)インナー・リ
ード203としては、マウント・リード202上に配置
されたLEDチップ201と接続された導電性ワイヤー
204との接続を図るものである。マウント・リード上
に複数のLEDチップを設けた場合は、各導電性ワイヤ
ー同士が接触しないよう配置できる構成とする必要があ
る。具体的には、マウント・リードから離れるに従っ
て、インナー・リードのワイヤーボンディングさせる端
面の面積を大きくすることなどによってマウント・リー
ドからより離れたインナー・リードと接続させる導電性
ワイヤーの接触を防ぐことができる。導電性ワイヤーと
の接続端面の粗さは、密着性を考慮して1.6S以上1
0S以下が好ましい。インナー・リードの先端部を種々
の形状に形成させるためには、あらかじめリードフレー
ムの形状を型枠で決めて打ち抜き形成させてもよく、或
いは全てのインナー・リードを形成させた後にインナー
・リード上部の一部を削ることによって形成させても良
い。さらには、インナー・リードを打ち抜き形成後、端
面方向から加圧することにより所望の端面の面積と端面
高さを同時に形成させることもできる。
(Inner Lead 203) The inner lead 203 is for connecting the LED chip 201 disposed on the mount lead 202 to the conductive wire 204 connected to the LED chip 201. In the case where a plurality of LED chips are provided on the mount lead, it is necessary to arrange the conductive wires so that the conductive wires do not contact each other. Specifically, as the distance from the mount lead increases, the area of the end face of the inner lead to which wire bonding is performed can be increased to prevent contact of the conductive wire connected to the inner lead further away from the mount lead. it can. The roughness of the connection end face with the conductive wire should be 1.6 S or more 1 in consideration of adhesion.
0S or less is preferable. In order to form the tip of the inner lead into various shapes, the shape of the lead frame may be determined in advance with a mold and punched and formed, or after all the inner leads are formed, the upper part of the inner lead may be formed. May be formed by cutting a part of. Further, after the inner lead is punched and formed, a desired end face area and end face height can be simultaneously formed by pressing from the end face direction.

【0027】インナー・リードは、導電性ワイヤーであ
るボンディングワイヤー等との接続性及び電気伝導性が
良いことが求められる。具体的な電気抵抗としては、3
00μΩ−cm以下が好ましく、より好ましくは3μΩ
−cm以下である。これらの条件を満たす材料として
は、鉄、銅、鉄入り銅、錫入り銅や銅、金、銀をメッキ
したアルミニウム、鉄、銅等が挙げられる。
The inner leads are required to have good connectivity with a conductive wire such as a bonding wire and good electrical conductivity. The specific electric resistance is 3
00 μΩ-cm or less, more preferably 3 μΩ
−cm or less. Materials satisfying these conditions include iron, copper, copper with iron, copper with tin, copper, gold, silver-plated aluminum, iron, and copper.

【0028】(電気的接続部材204、304、40
5)電気的接続部材204とは、LEDチップと外部電
極を電気的に接続されるために用いられる。したがっ
て、導電性ペースト、半田バンプや導電性ワイヤーなど
を用いることができる。例えば、電気的接続部材である
導電性ワイヤーは、LEDチップの電極とのオーミック
性、機械的接続性、電気伝導性及び熱伝導性がよいもの
が求められる。熱伝導度としては0.01cal/cm
2/cm/℃以上が好ましく、より好ましくは0.5c
al/cm2/cm/℃以上である。また、作業性など
を考慮して導電性ワイヤーの直径は、好ましくは、Φ1
0μm以上、Φ45μm以下である。このような導電性
ワイヤーとして具体的には、金、銅、白金、アルミニウ
ム等の金属及びそれらの合金を用いた導電性ワイヤーが
挙げられる。このような導電性ワイヤーは、各LEDチ
ップの電極と、インナー・リード及びマウント・リード
などと、をワイヤーボンディング機器によって容易に接
続させることができる。
(Electrical connecting members 204, 304, 40
5) The electrical connection member 204 is used to electrically connect the LED chip and external electrodes. Therefore, a conductive paste, a solder bump, a conductive wire, or the like can be used. For example, a conductive wire that is an electrical connection member is required to have good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with an electrode of an LED chip. 0.01 cal / cm as thermal conductivity
2 / cm / ° C. or higher, more preferably 0.5 c
al / cm 2 / cm / ° C. or more. The diameter of the conductive wire is preferably Φ1 in consideration of workability and the like.
0 μm or more and Φ45 μm or less. Specific examples of such conductive wires include conductive wires using metals such as gold, copper, platinum, and aluminum and alloys thereof. Such a conductive wire can easily connect an electrode of each LED chip to an inner lead, a mount lead, and the like by a wire bonding device.

【0029】(モールド部材205、305)モールド
部材205は、発光ダイオードの使用用途に応じて発光
素子201、電気的接続部材204などを外部から保護
するために設けることができる。モールド部材205
は、種々の樹脂やガラスを用いて形成させることができ
る。モールド部材中に拡散剤及び/又は着色剤を含有さ
せることができる。拡散剤を含有させることによって発
光素子であるLEDチップが発光した光の指向性を緩和
させ視野角を増やすことができる。着色剤を含有させる
ことによって、LEDチップが発光した光を所望にカッ
トするフィルター効果を持たすことができる。また、セ
リウムで付活したイットリウム・アルミニウム・ガーネ
ットなどの蛍光物質を含有させることもできる。蛍光物
質からの黄色系発光とLEDチップからの青色系発光に
よって白色系などの発光を得ることもできる。
(Mold members 205 and 305) The mold member 205 can be provided to protect the light emitting element 201, the electrical connection member 204, and the like from the outside according to the application of the light emitting diode. Mold member 205
Can be formed using various resins and glasses. A diffusing agent and / or a coloring agent can be contained in the mold member. By incorporating a diffusing agent, the directivity of light emitted by the LED chip as a light emitting element can be reduced and the viewing angle can be increased. By including a coloring agent, it is possible to have a filter effect of cutting light emitted from the LED chip as desired. Further, a fluorescent substance such as yttrium, aluminum, or garnet activated with cerium can be contained. White light emission or the like can be obtained by yellow light emission from the fluorescent substance and blue light emission from the LED chip.

【0030】更に、モールド部材205を所望の形状に
することによってLEDチップ201からの発光を集束
させたり拡散させたりするレンズ効果を持たせることが
できる。従って、モールド部材205は1種類で形成さ
せても良いし、複数積層した構造としてもよい。具体的
には、凸レンズ形状、凹レンズ形状さらには、発光観測
面から見て楕円形状やそれらを複数組み合わせたものが
好適に挙げられる。モールド部材の具体的材料として
は、主としてエポキシ樹脂、ユリア樹脂、シリコーン樹
脂、アクリル樹脂、フッ素樹脂などの耐候性に優れた透
光性樹脂や硝子などが挙げられる。特に、生産性などの
点からエポキシ樹脂、シリコーン樹脂が好ましい。ま
た、拡散剤としては、チタン酸バリウム、酸化チタン、
酸化アルミニウム、酸化珪素等が好適に用いられる。以
下本願発明について具体的実施例に基づいて詳述する。
Further, by forming the mold member 205 into a desired shape, it is possible to have a lens effect of converging or diffusing light emitted from the LED chip 201. Therefore, the mold member 205 may be formed of one type, or may have a structure in which a plurality of layers are stacked. Specifically, a convex lens shape, a concave lens shape, an elliptical shape as viewed from the light emission observation surface, and a combination of a plurality of them are preferred. As a specific material of the mold member, a translucent resin excellent in weather resistance, such as an epoxy resin, a urea resin, a silicone resin, an acrylic resin, a fluororesin, or the like, glass, or the like can be given. Particularly, epoxy resin and silicone resin are preferable from the viewpoint of productivity and the like. Further, as the diffusing agent, barium titanate, titanium oxide,
Aluminum oxide, silicon oxide and the like are preferably used. Hereinafter, the present invention will be described in detail based on specific examples.

【0031】[0031]

【実施例】【Example】

(実施例1)発光素子として発光ピークが460nmの
In0.4Ga0.6N半導体を発光層に用いた。LEDチッ
プは、十分洗浄させたサファイヤ基板上にTMG(トリ
メチルガリウム)ガス、TMI(トリメチルインジュウ
ム)ガス、窒素ガス及びドーパントガスをキャリアガス
と共に流し、MOCVD法で成膜させることにより窒化
物系化合物半導体を形成させた。ドーパントガスとして
SiH4とCp2Mgと、を切り替えることによって、ド
ーパントが含有された半導体を形成させた。半導体は、
N型窒化ガリウム半導体である第1のコンタクト層、量
子効果が生ずる約3nmの厚さに形成させた窒化インジ
ュウム・ガリウム半導体の活性層、P型窒化ガリウム・
アルミニウム半導体である第1のクラッド層、P型窒化
ガリウム半導体である第2のコンタクト層を順次形成さ
せてある。(なお、P型半導体は、成膜後400℃以上
でアニールさせてある。また、サファイア基板上には、
窒化ガリウムを低温で成膜しバッファ層を形成させてあ
る。)
Example 1 As a light emitting element, an In 0.4 Ga 0.6 N semiconductor having a light emission peak of 460 nm was used for a light emitting layer. The LED chip is formed by flowing a TMG (trimethyl gallium) gas, a TMI (trimethyl indium) gas, a nitrogen gas and a dopant gas together with a carrier gas on a sufficiently cleaned sapphire substrate, and forming the film by MOCVD. A semiconductor was formed. By switching between SiH 4 and Cp 2 Mg as the dopant gas, a semiconductor containing a dopant was formed. Semiconductors are
A first contact layer of an N-type gallium nitride semiconductor, an active layer of an indium-gallium nitride semiconductor formed to a thickness of about 3 nm at which a quantum effect occurs, a P-type gallium nitride.
A first cladding layer made of an aluminum semiconductor and a second contact layer made of a P-type gallium nitride semiconductor are sequentially formed. (Note that the P-type semiconductor is annealed at 400 ° C. or higher after film formation. Further, on a sapphire substrate,
Gallium nitride is formed at a low temperature to form a buffer layer. )

【0032】各半導体を形成させた後、第1のコンタク
ト層を第1の半導体として露出し電極面を形成させるた
めにエッチングを行った。各半導体を成膜した半導体ウ
エハー上にフォトマスクを形成した後、スパッタリング
によりSiO2を1μm成膜した。フォトマスクを除去
後SiO2をマスク材としてスパッタ・エッチングし
た。Arガス雰囲気中でエッチングの後、半導体ウエハ
ーを十分洗浄すると共にSiO2を除去した。スパッタ
リング法を用いて第1及び第2の各コンタクト層の露出
面上に、各電極としてAuをそれぞれ形成させた。こう
して出来上がった半導体ウエハーをスクライブラインを
引いた後、外力により分割させLEDチップを形成させ
た。形成されたLEDチップ端面を顕微鏡で観測する
と、図1の如き第2のコンタクト層(第2の導電型を有
する半導体)から第1のコンタクト層(第1の導電型を
有する半導体)の一部まで連続的にテーパー形状を有し
ていた。テーパー形状は、レジストマスクの後退に伴
う、ブロードな端面を形成しておりその角度は、半導体
層に対して約6度であった。また、電極により端部が部
分的に遮光されていた。
After forming each semiconductor, etching was performed to expose the first contact layer as the first semiconductor and form an electrode surface. After forming a photomask on a semiconductor wafer on which each semiconductor was formed, a 1 μm-thick SiO 2 film was formed by sputtering. After removing the photomask, sputtering and etching were performed using SiO 2 as a mask material. After etching in an Ar gas atmosphere, the semiconductor wafer was sufficiently washed and SiO 2 was removed. Au was formed as an electrode on each of the exposed surfaces of the first and second contact layers by using a sputtering method. After the scribe line was drawn on the semiconductor wafer thus completed, it was divided by an external force to form LED chips. When the formed LED chip end face is observed with a microscope, a part of the second contact layer (semiconductor having the second conductivity type) to a part of the first contact layer (semiconductor having the first conductivity type) as shown in FIG. Up to a continuous taper shape. The tapered shape formed a broad end face as the resist mask receded, and its angle was about 6 degrees with respect to the semiconductor layer. Further, the ends were partially shielded from light by the electrodes.

【0033】銀メッキした銅製リードフレームの先端に
カップを有するマウント・リードにLEDチップをエポ
キシ樹脂でダイボンディングした。LEDチップの各電
極とマウント・リード及びインナー・リードと、をそれ
ぞれ金線でワイヤーボンディングし電気的導通を取っ
た。
An LED chip was die-bonded to a mount lead having a cup at the tip of a silver-plated copper lead frame using an epoxy resin. Each electrode of the LED chip, the mount lead and the inner lead were each wire-bonded with a gold wire to establish electrical continuity.

【0034】LEDチップや金線などを外部応力、水分
及び塵芥などから保護する目的でモールド部材として透
光性エポキシ樹脂を形成させた。モールド部材は、砲弾
型の型枠の中にLEDチップが配置されたリードフレー
ムなどを挿入し透光性エポシキ樹脂を混入後、150℃
5時間にて硬化させた。こうして図2に示された本願発
明の発光ダイオードを100個形成させた。
A translucent epoxy resin was formed as a mold member for the purpose of protecting the LED chip, the gold wire, and the like from external stress, moisture, dust, and the like. As for the mold member, after inserting a lead frame or the like in which the LED chips are arranged in a shell type mold and mixing a translucent epoxy resin, the molding member is heated to 150 ° C.
Cured in 5 hours. Thus, 100 light emitting diodes of the present invention shown in FIG. 2 were formed.

【0035】(比較例1)電極面を形成するときのエッ
チング時間を長くした以外は実施例1と同様にしてLE
Dチップを形成させた。形成されたLEDチップの端部
を顕微鏡により確認すると、エッチングされた端部は半
導体層の主平面に対して略垂直な断崖形状が形成されて
いた。このLEDチップを用いて実施例1と同様にして
発光ダイオードを100個形成させた。実施例1及び比
較例1の平均外部光取出し効率を測定した。実施例1の
発光ダイオードは、比較例1の発光ダイオードに対して
平均約5%向上していることがわかった。
(Comparative Example 1) LE was made in the same manner as in Example 1 except that the etching time for forming the electrode surface was increased.
A D chip was formed. When the end of the formed LED chip was confirmed with a microscope, the etched end had a cliff shape substantially perpendicular to the main plane of the semiconductor layer. Using this LED chip, 100 light emitting diodes were formed in the same manner as in Example 1. The average external light extraction efficiency of Example 1 and Comparative Example 1 was measured. It was found that the light emitting diode of Example 1 was improved on average by about 5% compared to the light emitting diode of Comparative Example 1.

【0036】[0036]

【発明の効果】本願発明の請求項1に記載された発光素
子の構成とすることにより、光取り出し効率の高い高効
率な発光素子とすることができる。即ち、半導体中を全
反射して伝搬してきた光を端部に設けられたテーパー形
状で再度全反射させ、下層の半導体面などを通して光を
外部に均一且つ有効に取り出すことができる。
According to the structure of the light emitting device described in claim 1 of the present invention, a light emitting device having high light extraction efficiency and high efficiency can be obtained. That is, the light that has been totally reflected and propagated in the semiconductor is totally reflected again by the tapered shape provided at the end, and the light can be uniformly and effectively extracted to the outside through the lower semiconductor surface or the like.

【0037】本願発明の請求項2に記載の発光ダイオー
ドの構成とすることにより、より均一で発光輝度の高い
発光ダイオードを量産性良く形成することができる。
By adopting the structure of the light emitting diode according to the second aspect of the present invention, it is possible to form a more uniform light emitting diode with high light emission luminance with good mass productivity.

【0038】本願発明の請求項3に記載の発光ダイオー
ドとすることにより、より耐候性の高い発光ダイオード
とすることができる。
By using the light emitting diode according to the third aspect of the present invention, a light emitting diode having higher weather resistance can be obtained.

【0039】本願発明の請求項4に記載の発光ダイオー
ドとすることにより、テーパー形状で全反射した光を効
率よく外部に放出できる極めて効率の高い発光ダイオー
ドとすることができる。
By adopting the light emitting diode according to the fourth aspect of the present invention, it is possible to obtain a light emitting diode with extremely high efficiency capable of efficiently emitting light totally reflected in a tapered shape to the outside.

【0040】本願発明の請求項5に記載の発光ダイオー
ドとすることにより、より光効率の優れた発光ダイオー
ドとすることができる。
By using the light emitting diode according to the fifth aspect of the present invention, a light emitting diode with higher light efficiency can be obtained.

【0041】本願発明の請求項6に記載の発光ダイオー
ドとすることにより、半導体中を全反射して伝搬してき
た光をより有効にテーパー形状の面で再度全反射させる
ことができる。
With the light emitting diode according to the sixth aspect of the present invention, the light that has been totally reflected in the semiconductor and propagated can be more completely reflected again on the tapered surface.

【0042】[0042]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本願発明の発光素子の模式的断面図で
ある。
FIG. 1 is a schematic sectional view of a light emitting device of the present invention.

【図2】図2は、本願発明の発光ダイオードの模式的断
面図である。
FIG. 2 is a schematic sectional view of a light emitting diode of the present invention.

【図3】図3は、本願発明の別の発光ダイオードの模式
的断面図である。
FIG. 3 is a schematic sectional view of another light emitting diode of the present invention.

【図4】図4は、本願発明の作用を説明するために示し
た発光素子の部分的拡大断面図である。
FIG. 4 is a partially enlarged cross-sectional view of a light emitting device shown for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

101・・・第1の導電型を有する半導体 102・・・第2の導電型を有する半導体 103・・・電極 104・・・透光性絶縁基板 201、301・・・発光素子 202・・・マウント・リード 203・・・インナー・リード 204、304・・・導電性ワイヤー 205、305・・・モールド部材 302・・・パッケージ 307・・・外部電極 401・・・半導体層 402・・・透光性絶縁基板 403・・・第1の電極 404・・・ボール 405・・・導電性ワイヤー 101: Semiconductor having a first conductivity type 102: Semiconductor having a second conductivity type 103: Electrode 104: Translucent insulating substrate 201, 301: Light emitting element 202: Mount lead 203 ... Inner lead 204, 304 ... Conductive wire 205, 305 Mold member 302 ... Package 307 ... External electrode 401 ... Semiconductor layer 402 ... Light transmission Insulating substrate 403: first electrode 404: ball 405: conductive wire

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透光性絶縁基板上に第1の導電型を有する
半導体と、該第1の導電型を有する半導体上に第2の導
電型を有する半導体と、前記第1及び第2の導電型を有
する半導体の同一主面側にそれぞれ設けられた第1及び
第2の電極と、を有する発光素子であって、 前記第2の導電型を有する半導体の端部がテーパー形状
であると共にテーパー形状の厚みよりも厚い第1の電極
を有することを特徴とする発光素子。
A semiconductor having a first conductivity type on a light-transmitting insulating substrate; a semiconductor having a second conductivity type on a semiconductor having the first conductivity type; A first electrode and a second electrode provided on the same main surface side of the semiconductor having the conductivity type, respectively, wherein the semiconductor having the second conductivity type has a tapered end. A light-emitting element having a first electrode thicker than a tapered thickness.
【請求項2】基体上のLEDチップと、該LEDチップ
上にモールド部材と、を有する発光ダイオードであっ
て、 前記LEDチップが透光性絶縁基板上に第1の導電型を
有する半導体と、該第1の導電型を有する半導体上に第
2の導電型を有する半導体と、前記第1及び第2の導電
型を有する半導体の同一主面側にそれぞれ設けられた第
1及び第2の電極と、を有し前記第2の導電型を有する
半導体の端部がテーパー形状であると共にテーパー形状
の厚みよりも厚い第1の電極を有することを特徴とする
発光ダイオード。
2. A light emitting diode comprising: an LED chip on a base; and a mold member on the LED chip, wherein the LED chip has a semiconductor having a first conductivity type on a transparent insulating substrate; A semiconductor having a second conductivity type on a semiconductor having the first conductivity type, and first and second electrodes provided on the same main surface side of the semiconductor having the first and second conductivity types, respectively. A light emitting diode comprising: a semiconductor having the second conductivity type having a first electrode having a tapered end portion and a thickness greater than the tapered thickness.
【請求項3】前記モールド部材がエポキシ樹脂、シリコ
ーン樹脂から選択される少なくとも一種である請求項2
記載の発光ダイオード。
3. The mold member is at least one selected from an epoxy resin and a silicone resin.
A light-emitting diode as described.
【請求項4】前記透光性絶縁基板は、サファイア或い
は、スピネルである請求項3に記載の発光ダイオード
4. The light emitting diode according to claim 3, wherein the light-transmitting insulating substrate is sapphire or spinel.
【請求項5】前記第1及び第2の導電型を有する半導体
がそれぞれ窒化物系化合物半導体である請求項4記載の
発光ダイオード。
5. The light emitting diode according to claim 4, wherein the semiconductors having the first and second conductivity types are each a nitride compound semiconductor.
【請求項6】前記第1の導電型を有する半導体の少なく
とも一部は、前記第2の導電型を有する半導体のテーパ
ー形状に連続してテーパーが設けられている請求項2に
記載の発光ダイオード。
6. The light emitting diode according to claim 2, wherein at least a part of the semiconductor having the first conductivity type is provided with a taper that is continuous with a taper shape of the semiconductor having the second conductivity type. .
JP33923496A 1996-12-19 1996-12-19 Light emitting device and light emitting diode using the same Expired - Lifetime JP3211870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33923496A JP3211870B2 (en) 1996-12-19 1996-12-19 Light emitting device and light emitting diode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33923496A JP3211870B2 (en) 1996-12-19 1996-12-19 Light emitting device and light emitting diode using the same

Publications (2)

Publication Number Publication Date
JPH10178203A true JPH10178203A (en) 1998-06-30
JP3211870B2 JP3211870B2 (en) 2001-09-25

Family

ID=18325529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33923496A Expired - Lifetime JP3211870B2 (en) 1996-12-19 1996-12-19 Light emitting device and light emitting diode using the same

Country Status (1)

Country Link
JP (1) JP3211870B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278511A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Light emitting device and its manufacturing method
WO2007102627A1 (en) * 2005-07-06 2007-09-13 Lg Innotek Co., Ltd Nitride semiconductor led and fabrication metho thereof
JP2010157579A (en) * 2008-12-26 2010-07-15 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element
US7791098B2 (en) 2004-03-31 2010-09-07 Nichia Corporation Nitride semiconductor light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791098B2 (en) 2004-03-31 2010-09-07 Nichia Corporation Nitride semiconductor light emitting device
JP2006278511A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Light emitting device and its manufacturing method
WO2007102627A1 (en) * 2005-07-06 2007-09-13 Lg Innotek Co., Ltd Nitride semiconductor led and fabrication metho thereof
US7847279B2 (en) 2005-07-06 2010-12-07 Lg Innotek Co., Ltd. Nitride semiconductor LED and fabrication method thereof
US8089082B2 (en) 2005-07-06 2012-01-03 Lg Innotek Co., Ltd. Nitride semiconductor LED and fabrication method thereof
JP2010157579A (en) * 2008-12-26 2010-07-15 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element

Also Published As

Publication number Publication date
JP3211870B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP4211359B2 (en) Manufacturing method of semiconductor device
US5798536A (en) Light-emitting semiconductor device and method for manufacturing the same
KR100891403B1 (en) Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
US6746889B1 (en) Optoelectronic device with improved light extraction
JP2980121B2 (en) Light emitting diode for signal and traffic light using the same
US8017967B2 (en) Light-emitting element including a fusion-bonding portion on contact electrodes
US20060001035A1 (en) Light emitting element and method of making same
US20110278626A1 (en) Light emitting device package and method for manufacturing the same
US20080284315A1 (en) Light emitting device and light emitter
US20060049423A1 (en) Light-emitting device
JP2005150675A (en) Semiconductor light-emitting diode and its manufacturing method
JP2009049342A (en) Light emitting device
JP2008300621A (en) Semiconductor light-emitting element and its manufacturing method
JPH11298047A (en) Light-emitting device
JP2006066518A (en) Semiconductor light-emitting element and method of manufacturing the same
JP4366810B2 (en) Method for forming light emitting diode
JP5407116B2 (en) Light emitting device
JP4759791B2 (en) Optical semiconductor device and manufacturing method thereof
JPH11112025A (en) Chip type light emitting element
JP4239545B2 (en) Manufacturing method of semiconductor device
JP2006073618A (en) Optical element and manufacturing method thereof
KR100613273B1 (en) Light emitting diode with vertical electrode structure and manufacturing method of the same
JP3211870B2 (en) Light emitting device and light emitting diode using the same
TWI335114B (en) Optimized contact design for thermosonic bonding of flip-chip devices
KR100447413B1 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term