JPH10177176A - Reflection type liquid crystal display device - Google Patents

Reflection type liquid crystal display device

Info

Publication number
JPH10177176A
JPH10177176A JP35318096A JP35318096A JPH10177176A JP H10177176 A JPH10177176 A JP H10177176A JP 35318096 A JP35318096 A JP 35318096A JP 35318096 A JP35318096 A JP 35318096A JP H10177176 A JPH10177176 A JP H10177176A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
crystal alignment
alignment film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35318096A
Other languages
Japanese (ja)
Inventor
Toshiki Yoshida
俊樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP35318096A priority Critical patent/JPH10177176A/en
Publication of JPH10177176A publication Critical patent/JPH10177176A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize reduction of the production cost and the improvement in throughput and reliability by enabling the application of an org. liquid crystal oriented film having the proved records in use of liquid crystal display, and transmission type liquid crystal display device though, heretofore, an inorg. liquid crystal oriented film by a diagonal vapor deposition method have to be applied as the liquid crystal oriented film on the surface of the reflection electrode layer of the reflection type liquid crystal display device. SOLUTION: A thin film 23 of silicon oxide or aluminum oxide is formed by a sputtering method, etc., on the surface on the reflection electrode layer 9 side of an active element substrate 21 and an org. liquid crystal oriented film 24 is formed on the upper side thereof. The thin film 23 has transparency and insulation characteristic and has the affinity to ink of polyimide or the like which is the material of the org. liquid crystal oriented film 24. The good wettability of the ink is obtd. and the formation of the uniform and flat org. liquid crystal oriented film 24 is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は映像を大画面に表示
するための反射型液晶表示装置に係り、特にその液晶配
向膜として既に一般の液晶ディスプレイや透過型液晶表
示装置において実績のあるポリイミド等の有機液晶配向
膜を適用し得るようにするための改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type liquid crystal display device for displaying an image on a large screen, and particularly to a liquid crystal alignment film, such as polyimide, which has already been used in general liquid crystal displays and transmission type liquid crystal display devices. The present invention relates to an improvement for applying an organic liquid crystal alignment film.

【0002】[0002]

【従来の技術】最近、屋外公衆用や管制業務用のディス
プレイ、またハイビジョン等の高精細映像の表示用ディ
スプレイ等のように、映像を大画面に表示するための投
射型表示装置の要望が高まっている。投射型表示装置に
は大別すると透過型方式と反射型方式のものがあり、前
者は薄膜トランジスタと透明電極からなる画素をマトリ
クス状に配設した液晶パネルを透過する光を投影させる
方式であり、後者は前記の液晶パネルで反射した光を投
影させる方式である。
2. Description of the Related Art Recently, there has been an increasing demand for a projection type display device for displaying an image on a large screen, such as a display for outdoor public use or a traffic control operation, or a display for displaying a high-definition image such as a high definition image. ing. Projection display devices are roughly classified into a transmission type and a reflection type.The former is a method of projecting light transmitted through a liquid crystal panel in which pixels formed of thin film transistors and transparent electrodes are arranged in a matrix, The latter is a method of projecting light reflected by the liquid crystal panel.

【0003】透過型方式は、光学系の構成が比較的簡単
で安価に製造できるという利点があるが、表示パネルを
小型化すると画素電極の電圧を制御するトランジスタや
配線が占める面積の割合が大きくなり、開口率が小さく
なって画像の輝度が低下するという欠点がある。一方、
反射型方式では、反射電極層の下側にトランジスタや配
線を配置できるため、開口率を低下させることなく画素
数を増大させて、高輝度で高解像度の画像を表示させる
ことができる。従って、拡大投影方式の画像表示装置で
は、小型で高密度化が可能な反射型方式の方が適してい
る。
The transmissive type has an advantage that the configuration of the optical system is relatively simple and can be manufactured at a low cost. However, when the display panel is miniaturized, the area occupied by the transistors and the wiring for controlling the voltage of the pixel electrode increases. Therefore, there is a disadvantage that the aperture ratio is reduced and the brightness of the image is reduced. on the other hand,
In the reflection type, a transistor and a wiring can be arranged below the reflective electrode layer. Therefore, the number of pixels can be increased without lowering the aperture ratio, and a high-luminance, high-resolution image can be displayed. Therefore, for an image display apparatus of the enlargement projection system, the reflection type system which is compact and capable of increasing the density is more suitable.

【0004】ここで、従来の反射型液晶表示装置の一画
素分に係る断面構造の一例を図3に示す。同図におい
て、1はSi基板であり、そのSi基板1に半導体プロセス
によってMOS-FET2と電荷蓄積容量部3を形成して
一画素分の能動素子が構成されている。より詳細には、
Si基板1の表面に絶縁層4を形成してMOS-FET2と
電荷蓄積容量部3を構成しているが、5はMOS-FET2
のソース、6はゲート、7はドレインであり、そのドレイ
ン7と電荷蓄積容量部3の間は信号検出用電極8によって
接続されている。前記の能動素子はSi基板1に多数個マ
トリクス状に配設されるが、その配設領域の上側は絶縁
層4'で覆われ、その絶縁層4'の上面に各能動素子に対応
した反射電極層9が形成されると共に、反射電極層9は絶
縁層4'を貫通した導通部9'によって信号検出用電極8に
接続されている。また、反射電極層9と絶縁層4'がなす
上側表面には液晶配向膜10が被膜形成され、以上の層構
造によって能動素子基板11が構成されている。
FIG. 3 shows an example of a sectional structure of one pixel of a conventional reflection type liquid crystal display device. In FIG. 1, reference numeral 1 denotes a Si substrate, on which a MOS-FET 2 and a charge storage capacitor 3 are formed by a semiconductor process on the Si substrate 1 to constitute an active element for one pixel. More specifically,
The insulating layer 4 is formed on the surface of the Si substrate 1 to form the MOS-FET 2 and the charge storage capacitor unit 3, and 5 is the MOS-FET 2
Is a gate, 7 is a drain, and 7 is a drain. The signal detection electrode 8 connects between the drain 7 and the charge storage capacitor section 3. A large number of the active elements are arranged on the Si substrate 1 in a matrix. The upper side of the area where the active elements are arranged is covered with an insulating layer 4 ', and the upper surface of the insulating layer 4' has a reflective surface corresponding to each active element. The electrode layer 9 is formed, and the reflection electrode layer 9 is connected to the signal detection electrode 8 by a conductive portion 9 'penetrating the insulating layer 4'. Further, a liquid crystal alignment film 10 is formed on the upper surface formed by the reflective electrode layer 9 and the insulating layer 4 ', and the active element substrate 11 is constituted by the above-mentioned layer structure.

【0005】一方、12は能動素子基板11に対向せしめら
れた透明基板であり、基体となるガラス基板13の表面に
透明電極膜14と液晶配向膜15を被膜形成したものであ
る。そして、対向した能動素子基板11側の液晶配向膜10
と透明基板13側の液晶配向膜15の間には光変調層となる
液晶層16が挾装・封止され、全体として反射型液晶表示
装置のパネル構造が構成されている。
[0005] On the other hand, reference numeral 12 denotes a transparent substrate opposed to the active element substrate 11, which is formed by forming a transparent electrode film 14 and a liquid crystal alignment film 15 on the surface of a glass substrate 13 serving as a base. The liquid crystal alignment film 10 on the active element substrate 11 side
A liquid crystal layer 16 serving as a light modulating layer is sandwiched and sealed between the liquid crystal alignment film 15 on the transparent substrate 13 side, thereby forming a panel structure of a reflection type liquid crystal display device as a whole.

【0006】前記の反射型液晶表示装置は次のように動
作する。先ず、走査信号をMOS-FET2のゲート6に
印加するとMOS-FET2がオンになり、その状態でソ
ース5に画像信号を印加すると信号検出用電極8と反射電
極層9がその印加電位となって、液晶層16の反射電極層9
に対応した部分と電荷蓄積容量部3が充電される。充電
された液晶層16と電荷蓄積容量部3の蓄積電荷は走査信
号が0レベルになってもそれらの合計容量と放電抵抗に
よる時定数で定まる時間だけ反射電極層9の電位を保持
させるが、前記の時定数はその保持時間がフィールド走
査時間より長くなるように設定してある。従って、走査
信号で各MOS-FET2のゲート6を走査しながらそれ
に同期させて画像信号をソース5へ入力させれば、透明
基板1側の透明電極膜14と能動素子基板11側の各反射電
極層9の間の電位差が画像信号に対応して変化し、画素
単位で液晶層16の屈折率が変化せしめられることによ
り、読出し光を画素単位で変調した投射画像を表示させ
ることが可能になる。
The above-mentioned reflection type liquid crystal display device operates as follows. First, when a scanning signal is applied to the gate 6 of the MOS-FET 2, the MOS-FET 2 is turned on. In this state, when an image signal is applied to the source 5, the signal detecting electrode 8 and the reflective electrode layer 9 become the applied potential. , The reflective electrode layer 9 of the liquid crystal layer 16
And the charge storage capacitor section 3 is charged. Although the charged charges stored in the liquid crystal layer 16 and the charge storage capacitor section 3 keep the potential of the reflective electrode layer 9 for a time determined by the time constant of the total capacity and the discharge resistance even when the scanning signal becomes 0 level, The time constant is set so that the holding time is longer than the field scanning time. Therefore, by scanning the gate 6 of each MOS-FET 2 with a scanning signal and inputting an image signal to the source 5 in synchronization with the scanning, the transparent electrode film 14 on the transparent substrate 1 and the reflective electrode on the active element substrate 11 The potential difference between the layers 9 changes according to the image signal, and the refractive index of the liquid crystal layer 16 is changed in pixel units, so that it is possible to display a projection image in which readout light is modulated in pixel units. .

【0007】[0007]

【発明が解決しようとする課題】ところで、能動素子基
板11と透明基板12に被膜されている液晶配向膜10,15
は、液晶分子の誘電率異方性を利用してその動作モード
に適した配列や傾き(プレティルト)を制御するためであ
るが、前記の反射型液晶表示装置においては斜方蒸着法
によって酸化珪素を成膜させた無機配向膜になってい
る。
The liquid crystal alignment films 10, 15 coated on the active element substrate 11 and the transparent substrate 12 are known.
Is to control the arrangement and tilt (pretilt) suitable for the operation mode by using the dielectric anisotropy of liquid crystal molecules.In the above-mentioned reflection type liquid crystal display device, silicon oxide is formed by oblique evaporation. Is formed as an inorganic alignment film.

【0008】一方、近年多量に製造されている液晶ディ
スプレイ等においては、ポリイミドに代表される有機材
料からなる薄膜を液晶配向膜として適用しており、その
形成工程は、ポリイミド前駆体又はポリイミド溶液から
なるインクを凸版印刷法で塗布し、それを焼成した後
に、ラビング法によって液晶配向性能を付与するもので
あり、極めて量産性に優れた方式で安定した品質の液晶
配向膜が得られる。
On the other hand, in liquid crystal displays and the like which have been manufactured in large quantities in recent years, a thin film made of an organic material represented by polyimide is applied as a liquid crystal alignment film, and the formation process is performed by using a polyimide precursor or a polyimide solution. After applying the resulting ink by letterpress printing and baking it, the liquid crystal alignment performance is imparted by a rubbing method, and a liquid crystal alignment film of stable quality can be obtained by a method excellent in mass productivity.

【0009】従って、前記の反射型液晶表示装置におい
ても、その液晶配向膜10,15に有機配向膜を適用すれば
よいように考えられるが、次のような理由から適用され
ていない。一般の液晶ディスプレイや透過型液晶表示装
置のように、液晶配向膜を施す際の下地がITO(Indiu
m Tin Oxide:酸化インジウムに酸化錫を1〜5重量%ド
ーピングしたもの)の透明電極である場合には、ポリイ
ミド等の有機性材料溶液はそのITOの表面に対して親
和性を有し、塗布した際に良好な濡れ性が得られて有機
液晶配向膜を均一に形成することが可能である。しか
し、反射型液晶表示装置では、図4に示したように一方
の液晶配向膜10の下地が反射電極層9であり、その反射
電極層9は可視光に対する十分な反射率を得るためにAl
やAg等で形成されている。その場合、前記の有機性材
料溶液はAl面やAg面に対して親和性がなく、凸版印刷
法やスピンコーティング法によるインク塗布を試みる
と、反射電極層9に展延されたインクの厚みにムラが発
生したり、一旦展延されたインクが凝集する等の不具合
が発生して液晶配向膜としての特性が実用に耐えないも
のとなる。従って、反射型液晶表示装置では有機液晶配
向膜が適用できず、無機液晶配向膜によらざるを得ない
とされている。
Therefore, in the above-mentioned reflection type liquid crystal display device, it is considered that an organic alignment film should be applied to the liquid crystal alignment films 10 and 15, but it is not applied for the following reasons. As in a general liquid crystal display or a transmission type liquid crystal display device, a base for applying a liquid crystal alignment film is made of ITO (Indiu).
m Tin Oxide: Indium oxide doped with 1 to 5% by weight of tin oxide), the organic material solution such as polyimide has an affinity for the surface of the ITO, and is coated. In this case, good wettability is obtained, and the organic liquid crystal alignment film can be formed uniformly. However, in the reflective liquid crystal display device, as shown in FIG. 4, the base of one liquid crystal alignment film 10 is a reflective electrode layer 9, and the reflective electrode layer 9 is made of Al to obtain a sufficient reflectance for visible light.
And Ag or the like. In this case, the organic material solution has no affinity for the Al surface or the Ag surface, and when ink is applied by letterpress printing or spin coating, the thickness of the ink spread on the reflective electrode layer 9 is reduced. Problems such as unevenness and aggregation of the ink once spread occur, and the characteristics as a liquid crystal alignment film are not practical. Therefore, an organic liquid crystal alignment film cannot be applied to a reflection type liquid crystal display device, and it is inevitable to use an inorganic liquid crystal alignment film.

【0010】そして、反射型液晶表示装置では、前記の
ように反射電極層9側に無機液晶配向膜10を適用する関
係で、透明電極14側にも同様の無機液晶配向膜15を形成
するようにしているが、それらの無機液晶配向膜10,15
を形成するには、酸化珪素等の無機材料を真空中で加熱
・蒸発させ、基板側に対して斜め方向から蒸着させるこ
とにより、基板表面に微細な形状や分極の配列パターン
を有した薄膜を形成するという極めて複雑な斜方蒸着工
程を要し、高価で性能維持が煩雑な真空装置が必要にな
ると共に、スループットも量産によるスケールメリット
を確保できるだけのものを得ることが困難であるという
問題点がある。
In the reflection type liquid crystal display device, since the inorganic liquid crystal alignment film 10 is applied to the reflection electrode layer 9 as described above, the same inorganic liquid crystal alignment film 15 is formed on the transparent electrode 14 side. However, those inorganic liquid crystal alignment films 10, 15
Is formed by heating and evaporating an inorganic material such as silicon oxide in a vacuum and vapor-depositing the material obliquely with respect to the substrate side, thereby forming a thin film having a fine shape or a polarization array pattern on the substrate surface. It requires an extremely complicated oblique deposition process of forming, requires a vacuum apparatus that is expensive and requires complicated performance maintenance, and has a problem that it is difficult to obtain a throughput that can secure the merit of scale by mass production. There is.

【0011】そこで、本発明は、反射電極層の表面に対
して、既に十分な実績があると共に量産性の点でも極め
て優れている有機液晶配向膜を十分な均一性を確保しな
がら安定的に形成できる反射型液晶表示装置の構造を提
供し、装置の製造コストの低減及び量産性や信頼性の向
上を図ることを目的として創作された。
Accordingly, the present invention provides an organic liquid crystal alignment film which has a sufficient track record and is extremely excellent in mass productivity with respect to the surface of the reflective electrode layer while ensuring a sufficient uniformity. It was created for the purpose of providing a structure of a reflective liquid crystal display device that can be formed, reducing manufacturing cost of the device, and improving mass productivity and reliability.

【0012】[0012]

【課題を解決するための手段】第1の発明は、基板上
に、スイッチング素子とその出力端子に接続されてスイ
ッチング素子の導通状態に対応して電荷を蓄積する電荷
蓄積容量部とを一画素分の能動素子として多数個マトリ
クス状に配設させ、その配設領域を絶縁層で覆い、前記
絶縁層の上面に前記の各能動素子に対応した反射電極層
を形成すると共に、前記絶縁層を貫通した導通部によっ
て前記スイッチング素子と前記電荷蓄積容量部を接続す
る信号検出部と前記反射電極層とを接続し、且つ前記反
射電極層と前記絶縁層の上に液晶配向膜を被膜形成した
能動素子基板と、前記能動素子基板に対向せしめられ、
その対向面側に可視光を透過させる透明電極膜と液晶配
向膜を被膜形成した透明基板と、前記能動素子基板と前
記透明基板の各液晶配向膜の間に挾装・封止された液晶
層とからなる反射型液晶表示装置において、前記反射電
極層と前記絶縁層の上に、絶縁性と可視光に対する透明
性を有すると共に、有機液晶配向膜の材料溶液に対して
親和性を有する材料からなる薄膜を形成し、その薄膜の
上面に有機液晶配向膜を被膜形成したことを特徴とする
反射型液晶表示装置に係る。
According to a first aspect of the present invention, a switching element and a charge storage capacitor connected to an output terminal of the switching element and accumulating charge corresponding to a conductive state of the switching element are formed on a substrate. A large number of active elements are arranged in a matrix, the area where the active elements are arranged is covered with an insulating layer, and a reflective electrode layer corresponding to each of the active elements is formed on the upper surface of the insulating layer. An active element in which a signal detecting section connecting the switching element and the charge storage capacitor section is connected to the reflective electrode layer by a penetrating conductive section, and a liquid crystal alignment film is formed on the reflective electrode layer and the insulating layer. An element substrate, opposed to the active element substrate,
A transparent substrate having a transparent electrode film for transmitting visible light and a liquid crystal alignment film formed on its opposite surface, and a liquid crystal layer sandwiched and sealed between the active element substrate and each liquid crystal alignment film of the transparent substrate. In the reflective liquid crystal display device comprising: on the reflective electrode layer and the insulating layer, while having insulation and transparency to visible light, from a material having an affinity for the material solution of the organic liquid crystal alignment film The present invention relates to a reflection type liquid crystal display device, wherein a thin film is formed and an organic liquid crystal alignment film is formed on the thin film.

【0013】従来の反射型液晶表示装置において無機液
晶配向膜の適用を余儀なくされていたのは、有機液晶配
向膜がAlやAg等で形成されている反射電極層の表面に
対して親和性を有しておらず、有機液晶配向膜の形成工
程で濡れ性が得られずに塗布インクに厚みムラや凝集等
の不具合が発生するためであった。この発明では、反射
電極層と有機液晶配向膜の間に、ポリイミド等の有機材
料溶液に対して親和性を有する薄膜を介在させたため、
有機液晶配向膜の材料溶液を塗布して被膜形成する際に
十分な濡れ性が得られ、下地がITOの場合と同様に均
一性と平坦性を確保しながら有機液晶配向膜を構成する
ことが可能になる。そして、発明者の研究の結果、薄膜
の材料としては酸化珪素又は酸化アルミニウムを適用で
きることが判明した。ここで、その薄膜自体は配向膜と
して機能せしめるものではないため、通常の半導体プロ
セスで適用されているスパッタリング法や電子ビーム法
によって成膜することができる。また、前記の薄膜は前
記の親和性と共に絶縁性と可視光に対する透明性を有し
ているため、反射型液晶表示装置の電気的及び光学的機
能に支障を生じさせない。
In the conventional reflection type liquid crystal display device, the application of the inorganic liquid crystal alignment film is inevitable because the organic liquid crystal alignment film has an affinity for the surface of the reflective electrode layer made of Al, Ag or the like. This is because no wettability was obtained in the step of forming the organic liquid crystal alignment film, and problems such as uneven thickness and aggregation occurred in the applied ink. In the present invention, a thin film having an affinity for an organic material solution such as polyimide is interposed between the reflective electrode layer and the organic liquid crystal alignment film.
Sufficient wettability can be obtained when forming a film by applying a material solution for the organic liquid crystal alignment film, and it is possible to form the organic liquid crystal alignment film while ensuring uniformity and flatness as in the case of ITO. Will be possible. As a result of the research by the inventor, it has been found that silicon oxide or aluminum oxide can be used as the material of the thin film. Here, since the thin film itself does not function as an alignment film, it can be formed by a sputtering method or an electron beam method applied in a normal semiconductor process. In addition, since the thin film has insulating properties and transparency to visible light as well as the affinity, the electrical and optical functions of the reflective liquid crystal display device are not affected.

【0014】第2の発明は、反射型液晶表示装置が、反
射電極層と絶縁層の上面に低屈折率の誘電体膜と高屈折
率の誘電体膜を交互に積層構成した増反射層及び液晶配
向膜を被膜形成したものである場合において、前記増反
射層における高屈折率の誘電体膜を有機液晶配向膜の材
料溶液に対して親和性を有する材料からなる薄膜で形成
すると共に、その増反射層の最上面膜を前記の高屈折率
の誘電体膜とし、前記増反射層の上面に有機液晶配向膜
を被膜形成したことを特徴とする反射型液晶表示装置に
係る。
According to a second aspect of the present invention, there is provided a reflection type liquid crystal display device comprising: a reflection-enhancing layer in which a dielectric film having a low refractive index and a dielectric film having a high refractive index are alternately laminated on the upper surfaces of a reflective electrode layer and an insulating layer; In the case where the liquid crystal alignment film is formed by coating, the dielectric film having a high refractive index in the enhanced reflection layer is formed of a thin film made of a material having an affinity for a material solution of the organic liquid crystal alignment film. According to a reflection type liquid crystal display device, the uppermost film of the reflection enhancing layer is the above-mentioned dielectric film having a high refractive index, and an organic liquid crystal alignment film is formed on the upper surface of the reflection enhancing layer.

【0015】この発明は、反射電極層の表面に増反射層
を設けて反射率を向上させる方式の反射型液晶表示装置
に関するものであるが、その増反射層における液晶配向
膜に接合する最上面膜を第1の発明の薄膜と同様の材料
からなるもので構成しているため、増反射層の上面に有
機材料溶液を十分な濡れ性を確保しながら塗布でき、均
一な有機液晶配向膜を形成することが可能になる。
The present invention relates to a reflection type liquid crystal display device of the type in which a reflection enhancing layer is provided on the surface of a reflection electrode layer to improve the reflectance, and the uppermost film bonded to a liquid crystal alignment film in the reflection enhancing layer. Is made of the same material as the thin film of the first invention, so that the organic material solution can be applied to the upper surface of the reflection-enhancing layer while ensuring sufficient wettability, and a uniform organic liquid crystal alignment film is formed. It becomes possible to do.

【0016】第3の発明は、反射型液晶表示装置が、第
2の発明における増反射層の構造に限らず、増反射膜を
設けたものである場合において、前記増反射層の上面
に、絶縁性と可視光に対する透明性を有すると共に、有
機液晶配向膜の材料溶液に対して親和性を有する材料か
らなる薄膜を形成し、その薄膜の上側に有機液晶配向膜
を形成したことを特徴とする反射型液晶表示装置に係
る。
According to a third aspect of the present invention, in the case where the reflection type liquid crystal display device is not limited to the structure of the enhanced reflection layer in the second invention, but is provided with an enhanced reflection film, A thin film made of a material that has insulating properties and transparency to visible light and has an affinity for the material solution of the organic liquid crystal alignment film is formed, and the organic liquid crystal alignment film is formed on the thin film. Reflective liquid crystal display device.

【0017】この発明では、有機液晶配向膜の材料溶液
が増反射層の表面に対して親和性を有しているか否かを
問わず、形成した増反射層の上側に第1の発明の薄膜と
同様の材質を有した薄膜を形成し、その上に有機液晶配
向膜を被膜形成させており、前記の各発明と同様の効果
が得られる。
In the present invention, the thin film of the first invention is placed on the formed reflective layer regardless of whether the material solution for the organic liquid crystal alignment film has an affinity for the surface of the reflective layer. A thin film having the same material as that described above is formed, and an organic liquid crystal alignment film is formed thereon. The same effects as those of the above-described inventions can be obtained.

【0018】[0018]

【発明の実施の形態】以下、本発明の反射型液晶表示装
置の実施形態を、図1から図3を用いて詳細に説明す
る。但し、図1から図3において、図4と同一の符号で
示される各要素は同一の要素に相当し、また電気的及び
光学的な基本機能は図4の装置と同様であるため、以下
の各実施形態では主にその構造的な特徴部分について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the reflection type liquid crystal display device of the present invention will be described in detail with reference to FIGS. However, in FIG. 1 to FIG. 3, each element denoted by the same reference numeral as FIG. 4 corresponds to the same element, and the basic electrical and optical functions are the same as those of the apparatus of FIG. In each embodiment, the structural features will be mainly described.

【0019】《実施形態1》この実施形態の反射型液晶
表示装置における一画素分に係る断面構造は図1に示さ
れる。この実施形態の特徴は、能動素子基板21の反射電
極層9と絶縁層4'の上面に、酸化珪素又は酸化アルミニ
ウムの薄膜23を形成しておき、その上側にポリイミド等
の有機液晶配向膜24を被膜形成した点にある。
Embodiment 1 FIG. 1 shows a sectional structure of one pixel in a reflection type liquid crystal display device of this embodiment. The feature of this embodiment is that a thin film 23 of silicon oxide or aluminum oxide is formed on the upper surface of the reflective electrode layer 9 and the insulating layer 4 ′ of the active element substrate 21, and an organic liquid crystal alignment film 24 of polyimide or the like is formed on the thin film 23. In that a film was formed.

【0020】装置の製造に際しては、能動素子基板21側
の製造工程で、絶縁層4'の上側に反射電極層9を形成し
た段階でスパッタリング蒸着法又は電子ビーム蒸着法に
よって酸化珪素又は酸化アルミニウムの薄膜23を形成
し、その上側にポリイミド前駆体又はポリイミド溶液か
らなるインクを凸版印刷法で塗布し、それを焼成した後
に、ラビング処理することで液晶配向性能を付与する。
一方、この実施形態では、透明基板22側についてもポリ
イミドからなる有機液晶配向膜25が成膜されているが、
その下地は透明電極膜(ITO)14であるため、従来の液
晶ディスプレイや透過型液晶表示装置の場合と同様の工
程で透明電極膜14の表面に有機液晶配向膜25を成膜させ
れば足りる。
In manufacturing the device, at the stage of forming the reflective electrode layer 9 on the upper side of the insulating layer 4 'in the manufacturing process on the active element substrate 21 side, silicon oxide or aluminum oxide is formed by sputtering evaporation or electron beam evaporation. The thin film 23 is formed, an ink composed of a polyimide precursor or a polyimide solution is applied on the thin film 23 by a letterpress printing method, baked, and then subjected to a rubbing treatment to impart liquid crystal alignment performance.
On the other hand, in this embodiment, the organic liquid crystal alignment film 25 made of polyimide is also formed on the transparent substrate 22 side,
Since the base is a transparent electrode film (ITO) 14, it is sufficient to form an organic liquid crystal alignment film 25 on the surface of the transparent electrode film 14 in the same process as that of a conventional liquid crystal display or a transmission type liquid crystal display device. .

【0021】ここで、酸化珪素又は酸化アルミニウムの
薄膜23はポリイミド前駆体又はポリイミド溶液であるイ
ンクに対して親和性を有しており、そのインクを十分な
濡れ性をもって薄膜23の表面に塗布でき、薄膜23に対し
て密着性が強く、均一で平坦な有機液晶配向膜24を安定
的に形成できる。そして、以上の製造工程を従来の反射
型液晶表示装置(図4)の製造工程と比較してみると、ス
パッタリング蒸着法又は電子ビーム蒸着法による薄膜23
の成膜工程が必要となるが、その成膜工程は通常の半導
体プロセスで適用されるものであり、また有機液晶配向
膜24の形成工程も液晶ディスプレイ等で最も一般的に適
用されているものであることから、従来の無機液晶配向
膜24の成膜のように高価な設備と複雑な制御を必要とす
る斜方蒸着工程を必要とせず、製造コストの低減化及び
量産性や信頼性の点で従来のものより優れているといえ
る。
Here, the silicon oxide or aluminum oxide thin film 23 has an affinity for the ink which is a polyimide precursor or a polyimide solution, and the ink can be applied to the surface of the thin film 23 with sufficient wettability. In addition, a uniform and flat organic liquid crystal alignment film 24 having strong adhesion to the thin film 23 can be stably formed. When comparing the above manufacturing process with the manufacturing process of the conventional reflection type liquid crystal display device (FIG. 4), the thin film 23 formed by the sputtering evaporation method or the electron beam evaporation method is compared.
The film forming process is required, but the film forming process is applied in a normal semiconductor process, and the forming process of the organic liquid crystal alignment film 24 is also most commonly applied in a liquid crystal display or the like. This eliminates the need for expensive equipment and the oblique deposition process that requires complicated control like the conventional film formation of the inorganic liquid crystal alignment film 24, thereby reducing manufacturing costs and improving mass productivity and reliability. In this respect, it can be said that it is superior to the conventional one.

【0022】《実施形態2》この実施形態の反射型液晶
表示装置の一画素分に係る断面構造は図2に示される。
この実施形態の特徴は、能動素子基板31の反射電極層9
と絶縁層4'の上側に特殊な構成の増反射層33が構成され
ており、その上側にポリイミド等の有機液晶配向膜24が
被膜形成されている点にある。一般に、増反射層は高屈
折率の誘電体膜と低屈折率の誘電体膜をそれぞれλ/4
(但し、λは読出し光の中心波長)の光学膜厚で交互に積
層させて構成されている。この実施形態の増反射層33で
は、高屈折率の誘電体膜33aに酸化チタン又は酸化アル
ミニウム等を適用し、低屈折率の誘電体膜33bにそれよ
りも屈折率が小さい誘電体(例えば、酸化珪素等)を適用
している。
Embodiment 2 FIG. 2 shows a cross-sectional structure of one pixel of a reflection type liquid crystal display device according to this embodiment.
The feature of this embodiment is that the reflective electrode layer 9 of the active element substrate 31
A special reflection enhancing layer 33 is formed on the upper side of the insulating layer 4 ′, and an organic liquid crystal alignment film 24 of polyimide or the like is formed on the upper side thereof. In general, the reflection enhancing layer is composed of a dielectric film having a high refractive index and a dielectric film having a low refractive index each of λ / 4.
(Where, λ is the central wavelength of the read light). In the reflection-enhancing layer 33 of this embodiment, titanium oxide or aluminum oxide is applied to the high-refractive-index dielectric film 33a, and a dielectric material having a lower refractive index than the low-refractive-index dielectric film 33b (e.g., Silicon oxide).

【0023】そして、更に、増反射層33は交互積層の最
終段として酸化珪素又は酸化アルミニウムの蒸着を行
い、その結果、その最上面膜は酸化珪素又は酸化アルミ
ニウム等の誘電体膜33aになっており、その上側にポリ
イミド等の有機液晶配向膜24が成膜されていることにな
る。実施形態1で説明したように、酸化珪素又は酸化ア
ルミニウムはポリイミド前駆体又はポリイミド溶液であ
るインクに対して親和性を有しており、そのインクを十
分な濡れ性をもって増反射層33の表面に塗布できるた
め、有機液晶配向膜24を増反射層33に対して十分な密着
性を確保しながら均一且つ平坦に形成できる。尚、増反
射層33はスパッタリング法によって構成され、有機液晶
配向膜24は、実施形態1の場合と同様に、ポリイミド前
駆体又はポリイミド溶液であるインクの塗布とその焼成
処理とラビング処理を施すことにより形成される。
Further, the reflection-enhancing layer 33 is formed by depositing silicon oxide or aluminum oxide as the last stage of the alternate lamination. As a result, the uppermost film is a dielectric film 33a such as silicon oxide or aluminum oxide. Thus, an organic liquid crystal alignment film 24 of polyimide or the like is formed on the upper side. As described in the first embodiment, silicon oxide or aluminum oxide has an affinity for an ink that is a polyimide precursor or a polyimide solution, and the ink is applied to the surface of the reflective layer 33 with sufficient wettability. Since the coating can be performed, the organic liquid crystal alignment film 24 can be formed uniformly and flatly while securing sufficient adhesion to the reflection-enhancing layer 33. Incidentally, the reflection-enhancing layer 33 is formed by a sputtering method, and the organic liquid crystal alignment film 24 is formed by applying an ink which is a polyimide precursor or a polyimide solution, and baking and rubbing the same as in the first embodiment. Formed by

【0024】この実施形態によれば、反射電極層9の上
側に増反射層33を設けて反射率を向上させる方式を採用
した場合の反射型液晶表示装置においても、その能動素
子基板31側に有機液晶配向膜24を適用することを可能に
する。尚、本実施形態に係る透明基板32側の構成は実施
形態1の場合と同様であり、当然に液晶層16との接合面
側に同様の有機液晶配向膜25が成膜されている。
According to this embodiment, also in the reflection type liquid crystal display device in which the method of improving the reflectivity by providing the enhanced reflection layer 33 on the reflection electrode layer 9 is provided on the active element substrate 31 side. It is possible to apply the organic liquid crystal alignment film 24. The configuration on the transparent substrate 32 side according to the present embodiment is the same as that of the first embodiment, and the same organic liquid crystal alignment film 25 is naturally formed on the bonding surface side with the liquid crystal layer 16.

【0025】《実施形態3》この実施形態の反射型液晶
表示装置の一画素分に係る断面構造は図3に示される。
この実施形態の特徴は、能動素子基板41の反射電極層9
と絶縁層4'の上面に増反射層43が構成されており、その
上側に酸化珪素又は酸化アルミニウムの薄膜44が被膜形
成され、更にその上側にポリイミド等の有機液晶配向膜
24が成膜されており、且つ、この実施形態における増反
射層43は、実施形態2における増反射層33のように材料
が特定されたものではない点にある。
Embodiment 3 FIG. 3 shows a sectional structure of one pixel of a reflection type liquid crystal display device according to this embodiment.
The feature of this embodiment is that the reflective electrode layer 9 of the active element substrate 41
And an insulating layer 4 ', the reflection-enhancing layer 43 is formed on the upper surface thereof, a thin film 44 of silicon oxide or aluminum oxide is formed thereon, and an organic liquid crystal alignment film such as polyimide is further formed thereon.
24 is formed, and the material of the high reflection layer 43 in this embodiment is not specified as in the high reflection layer 33 of the second embodiment.

【0026】従って、増反射層43は有機液晶配向膜の材
料の塗布性を考慮せずに形成されたものであり、その最
上面膜であるTiO2膜の表面にポリイミド前駆体又はポ
リイミド溶液のインクを塗布すると厚みムラや凝集が生
じ、結果的に均一な有機液晶配向膜を成膜できないこと
になる。そこで、この実施形態では、増反射層43の最上
面膜(TiO2)の上側に、実施形態1の場合と同様にスパ
ッタリング蒸着法又は電子ビーム蒸着法によって酸化珪
素又は酸化アルミニウムの薄膜44を形成しておき、その
上側に実施形態1の場合と同様の工程でポリイミドの有
機液晶配向膜24を成膜するようにしている。
Therefore, the reflection-enhancing layer 43 is formed without considering the applicability of the material for the organic liquid crystal alignment film, and the surface of the TiO 2 film, which is the uppermost film, is coated with a polyimide precursor or a polyimide solution ink. Is applied, uneven thickness and aggregation occur, and as a result, a uniform organic liquid crystal alignment film cannot be formed. Therefore, in this embodiment, a thin film 44 of silicon oxide or aluminum oxide is formed on the uppermost film (TiO 2 ) of the reflection-enhancing layer 43 by a sputtering evaporation method or an electron beam evaporation method as in the first embodiment. The organic liquid crystal alignment film 24 of polyimide is formed on the upper side in the same process as in the first embodiment.

【0027】その結果、実施形態2の場合と同様に増反
射層43を設けながら有機液晶配向膜24を適用が可能にな
ると共に、この実施形態では増反射層43として、いかな
る組成・構造のものでも利用できるという利点を有して
いる。
As a result, it is possible to apply the organic liquid crystal alignment film 24 while providing the reflection-enhancing layer 43 as in the case of Embodiment 2, and in this embodiment, the reflection-enhancing layer 43 has any composition and structure. However, it has the advantage that it can be used.

【0028】[0028]

【発明の効果】本発明の反射型液晶表示装置は、以上の
構成を有していることにより、次のような効果を奏す
る。従来の反射型液晶表示装置では、反射電極層がAl
やAgの面になるために有機液晶配向膜材料との親和性
が得られず、高価な設備を用いた複雑な工程である斜方
蒸着によって無機液晶配向膜を成膜する必要があった
が、各請求項の発明では、有機配向膜材料と親和性を有
して良好な濡れ性が確保できる酸化珪素又は酸化アルミ
ニウム等の薄膜を下地に形成しておき、その上に液晶配
向膜を施すことにしたため、既に一般の液晶ディスプレ
イや透過型液晶表示装置で実績があり、量産性と品質の
安定性に優れた有機液晶配向膜を適用することを可能に
する。その結果、反射型液晶表示装置の製造コストの低
減化が図れると共に、スループットと信頼性の向上が実
現できる。また、請求項2及び請求項3は、反射電極層
の表面に増反射層を施す場合にも有機液晶配向膜の適用
を可能にする。
According to the reflection type liquid crystal display device of the present invention having the above-described structure, the following effects can be obtained. In a conventional reflective liquid crystal display device, the reflective electrode layer is made of Al.
However, it was not possible to obtain an affinity for the organic liquid crystal alignment film material because of the surface of Ag or Ag, and it was necessary to form the inorganic liquid crystal alignment film by oblique deposition, which is a complicated process using expensive equipment. In the invention of each claim, a thin film of silicon oxide or aluminum oxide, which has an affinity with the organic alignment film material and can ensure good wettability, is formed on a base, and a liquid crystal alignment film is formed thereon. As a result, it has already been used in general liquid crystal displays and transmissive liquid crystal display devices, and makes it possible to apply an organic liquid crystal alignment film excellent in mass productivity and quality stability. As a result, the manufacturing cost of the reflective liquid crystal display device can be reduced, and the throughput and reliability can be improved. Further, the second and third aspects enable the application of the organic liquid crystal alignment film even in the case where a reflection enhancing layer is provided on the surface of the reflective electrode layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る反射型液晶表示装置
の一画素分の断面構造図である。
FIG. 1 is a cross-sectional structural diagram of one pixel of a reflective liquid crystal display device according to a first embodiment of the present invention.

【図2】実施形態2に係る反射型液晶表示装置の一画素
分の断面構造図である。
FIG. 2 is a cross-sectional structure diagram of one pixel of a reflective liquid crystal display device according to a second embodiment.

【図3】実施形態3に係る反射型液晶表示装置の一画素
分の断面構造図である。
FIG. 3 is a cross-sectional structure diagram of one pixel of a reflective liquid crystal display device according to a third embodiment.

【図4】従来の反射型液晶表示装置の一画素分の断面構
造図である。
FIG. 4 is a sectional structural view of one pixel of a conventional reflective liquid crystal display device.

【符号の説明】[Explanation of symbols]

1…Si基板、2…MOS-FET、3…電荷蓄積容量部、
4,4'…絶縁層、5…ソース、6…ゲート、7…ドレイン、8
…信号検出用電極、9…反射電極層、9'…導通部、10,15
…液晶配向膜(無機液晶配向膜)、11,21,31,41…能動素
子基板、12,22,32,42…透明基板、13…ガラス基板、14
…透明電極膜、16…液晶層、23,44…薄膜(酸化珪素又は
酸化アルミニウム)、24,25…有機液晶配向膜(ポリイミ
ド等)、33,43…増反射膜、33a…高屈折率の誘電体膜(酸
化珪素又は酸化アルミニウム)、33b…低屈折率の誘電体
膜(酸化珪素)。
1 ... Si substrate, 2 ... MOS-FET, 3 ... Charge storage capacitor part,
4,4 '… insulating layer, 5… source, 6… gate, 7… drain, 8
... signal detection electrode, 9 ... reflective electrode layer, 9 '... conducting part, 10, 15
... liquid crystal alignment film (inorganic liquid crystal alignment film), 11, 21, 31, 41 ... active element substrate, 12, 22, 32, 42 ... transparent substrate, 13 ... glass substrate, 14
... Transparent electrode film, 16 ... Liquid crystal layer, 23,44 ... Thin film (silicon oxide or aluminum oxide), 24,25 ... Organic liquid crystal alignment film (polyimide etc.), 33,43 ... High reflection film, 33a ... High refractive index Dielectric film (silicon oxide or aluminum oxide), 33b... Low-refractive-index dielectric film (silicon oxide).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、スイッチング素子とその出力
端子に接続されてスイッチング素子の導通状態に対応し
て電荷を蓄積する電荷蓄積容量部とを一画素分の能動素
子として多数個マトリクス状に配設させ、その配設領域
を絶縁層で覆い、前記絶縁層の上面に前記の各能動素子
に対応した反射電極層を形成すると共に、前記絶縁層を
貫通した導通部によって前記スイッチング素子と前記電
荷蓄積容量部を接続する信号検出部と前記反射電極層と
を接続し、且つ前記反射電極層と前記絶縁層の上に液晶
配向膜を被膜形成した能動素子基板と、前記能動素子基
板に対向せしめられ、その対向面側に可視光を透過させ
る透明電極膜と液晶配向膜を被膜形成した透明基板と、
前記能動素子基板と前記透明基板の各液晶配向膜の間に
挾装・封止された液晶層とからなる反射型液晶表示装置
において、前記反射電極層と前記絶縁層の上に、絶縁性
と可視光に対する透明性を有すると共に、有機液晶配向
膜の材料溶液に対して親和性を有する材料からなる薄膜
を形成し、その薄膜の上面に有機液晶配向膜を被膜形成
したことを特徴とする反射型液晶表示装置。
1. A large number of switching elements and a charge storage capacitor section connected to an output terminal thereof and accumulating electric charge corresponding to a conduction state of the switching elements on a substrate as active elements for one pixel in a matrix. Disposed, the disposed region is covered with an insulating layer, a reflective electrode layer corresponding to each of the active elements is formed on the upper surface of the insulating layer, and the switching element and the conductive element are penetrated through the insulating layer. An active element substrate that connects a signal detection section that connects a charge storage capacitor section and the reflective electrode layer, and that has a liquid crystal alignment film formed on the reflective electrode layer and the insulating layer; And a transparent substrate on which a transparent electrode film and a liquid crystal alignment film that allow visible light to pass therethrough are formed on the opposite surface side,
In a reflection type liquid crystal display device comprising a liquid crystal layer sandwiched and sealed between respective liquid crystal alignment films of the active element substrate and the transparent substrate, an insulating property is provided on the reflection electrode layer and the insulating layer. Reflection characterized by forming a thin film made of a material having transparency to visible light and having an affinity for the material solution of the organic liquid crystal alignment film, and forming an organic liquid crystal alignment film on the upper surface of the thin film. Liquid crystal display device.
【請求項2】 基板上に、スイッチング素子とその出力
端子に接続されてスイッチング素子の導通状態に対応し
て電荷を蓄積する電荷蓄積容量部とを一画素分の能動素
子として多数個マトリクス状に配設させ、その配設領域
を絶縁層で覆い、前記絶縁層の上面に前記の各能動素子
に対応した反射電極層を形成すると共に、前記絶縁層を
貫通した導通部によって前記スイッチング素子と前記電
荷蓄積容量部を接続する信号検出部と前記反射電極層と
を接続し、且つ前記反射電極層と前記絶縁層の上面に低
屈折率の誘電体膜と高屈折率の誘電体膜を交互に積層構
成した増反射層及び液晶配向膜を被膜形成した能動素子
基板と、前記能動素子基板に対向せしめられ、その対向
面側に可視光を透過させる透明電極膜と液晶配向膜を被
膜形成した透明基板と、前記能動素子基板と前記透明基
板の各液晶配向膜の間に挾装・封止された液晶層とから
なる反射型液晶表示装置において、前記増反射層におけ
る高屈折率の誘電体膜を有機液晶配向膜の材料溶液に対
して親和性を有する材料からなる薄膜で形成すると共
に、その増反射層の最上面膜を前記の高屈折率の誘電体
膜とし、前記増反射層の上面に有機液晶配向膜を被膜形
成したことを特徴とする反射型液晶表示装置。
2. A large number of switching elements and a charge storage capacitor section connected to an output terminal thereof and accumulating electric charges corresponding to a conductive state of the switching elements on a substrate as active elements for one pixel. Disposed, the disposed region is covered with an insulating layer, a reflective electrode layer corresponding to each of the active elements is formed on the upper surface of the insulating layer, and the switching element and the conductive element are penetrated through the insulating layer. A signal detection unit that connects a charge storage capacitor unit and the reflective electrode layer are connected, and a dielectric film with a low refractive index and a dielectric film with a high refractive index are alternately formed on the reflective electrode layer and the upper surface of the insulating layer. An active element substrate coated with a laminated reflection-enhancing layer and a liquid crystal alignment film, a transparent electrode film opposed to the active element substrate, and a transparent electrode film that transmits visible light and a liquid crystal alignment film formed on the opposing surface side; substrate And a liquid crystal layer sandwiched and sealed between the active element substrate and the liquid crystal alignment films of the transparent substrate, wherein a high refractive index dielectric film in the enhanced reflection layer is provided. An organic liquid crystal alignment film is formed of a thin film made of a material having an affinity for the material solution, and the uppermost film of the reflection-enhancing layer is the high-refractive-index dielectric film. A reflection type liquid crystal display device comprising a liquid crystal alignment film formed thereon.
【請求項3】 基板上に、スイッチング素子とその出力
端子に接続されてスイッチング素子の導通状態に対応し
て電荷を蓄積する電荷蓄積容量部とを一画素分の能動素
子として多数個マトリクス状に配設させ、その配設領域
を絶縁層で覆い、前記絶縁層の上面に前記の各能動素子
に対応した反射電極層を形成すると共に、前記絶縁層を
貫通した導通部によって前記スイッチング素子と前記電
荷蓄積容量部を接続する信号検出部と前記反射電極層と
を接続し、且つ前記反射電極層と前記絶縁層の上面に低
屈折率の誘電体膜と高屈折率の誘電体膜を交互に積層構
成した増反射層及び液晶配向膜を被膜形成した能動素子
基板と、前記能動素子基板に対向せしめられ、その対向
面側に可視光を透過させる透明電極膜と液晶配向膜を被
膜形成した透明基板と、前記能動素子基板と前記透明基
板の各液晶配向膜の間に挾装・封止された液晶層とから
なる反射型液晶表示装置において、前記増反射層の上面
に、絶縁性と可視光に対する透明性を有すると共に、有
機液晶配向膜の材料溶液に対して親和性を有する材料か
らなる薄膜を形成し、その薄膜の上面に有機液晶配向膜
を被膜形成したことを特徴とする反射型液晶表示装置。
3. A plurality of switching elements and a charge storage capacitor section connected to an output terminal thereof and accumulating electric charges corresponding to a conductive state of the switching elements on a substrate as active elements for one pixel in a matrix. Disposed, the disposed region is covered with an insulating layer, a reflective electrode layer corresponding to each of the active elements is formed on the upper surface of the insulating layer, and the switching element and the conductive element are penetrated through the insulating layer. A signal detection unit that connects a charge storage capacitor unit and the reflective electrode layer are connected, and a dielectric film with a low refractive index and a dielectric film with a high refractive index are alternately formed on the reflective electrode layer and the upper surface of the insulating layer. An active element substrate coated with a laminated reflection-enhancing layer and a liquid crystal alignment film, a transparent electrode film opposed to the active element substrate, and a transparent electrode film that transmits visible light and a liquid crystal alignment film formed on the opposing surface side; substrate And a liquid crystal layer sandwiched and sealed between the active element substrate and each liquid crystal alignment film of the transparent substrate. A reflective liquid crystal, comprising: forming a thin film made of a material having an affinity for a material solution of an organic liquid crystal alignment film while having transparency to the liquid crystal, and forming an organic liquid crystal alignment film on the thin film. Display device.
【請求項4】 薄膜が、酸化珪素又は酸化アルミニウム
をスパッタリング蒸着法又は電子ビーム蒸着法により成
膜したものである請求項1又は請求項3の反射型液晶表
示装置。
4. The reflection type liquid crystal display device according to claim 1, wherein the thin film is formed by depositing silicon oxide or aluminum oxide by a sputtering evaporation method or an electron beam evaporation method.
JP35318096A 1996-12-16 1996-12-16 Reflection type liquid crystal display device Pending JPH10177176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35318096A JPH10177176A (en) 1996-12-16 1996-12-16 Reflection type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35318096A JPH10177176A (en) 1996-12-16 1996-12-16 Reflection type liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH10177176A true JPH10177176A (en) 1998-06-30

Family

ID=18429105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35318096A Pending JPH10177176A (en) 1996-12-16 1996-12-16 Reflection type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH10177176A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354725C (en) * 2003-09-04 2007-12-12 精工爱普生株式会社 Inorganic orientation film and its forming method,substrate for electronic device,liquid crystal panel
KR100936889B1 (en) 2002-12-31 2010-01-14 엘지디스플레이 주식회사 A array substrate and the fabrication method for LCD
JP2013190811A (en) * 2013-05-13 2013-09-26 Seiko Epson Corp Electro-optical device, substrate for the same and electronic apparatus
CN111971615A (en) * 2018-04-16 2020-11-20 索尼公司 Liquid crystal display device and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936889B1 (en) 2002-12-31 2010-01-14 엘지디스플레이 주식회사 A array substrate and the fabrication method for LCD
CN100354725C (en) * 2003-09-04 2007-12-12 精工爱普生株式会社 Inorganic orientation film and its forming method,substrate for electronic device,liquid crystal panel
JP2013190811A (en) * 2013-05-13 2013-09-26 Seiko Epson Corp Electro-optical device, substrate for the same and electronic apparatus
CN111971615A (en) * 2018-04-16 2020-11-20 索尼公司 Liquid crystal display device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP3201990B2 (en) Reflective liquid crystal cell without flicker
JPH01156725A (en) Display device
JPS6126646B2 (en)
KR20050027069A (en) Reflective liquid crystal display element and manufacturing method thereof, and liquid crystal display device
JP7165556B2 (en) Liquid crystal optical modulators, liquid crystal display devices, and holographic devices
JPH10301141A (en) Liquid crystal display element and its production
JP2001527225A (en) Multipolar liquid crystal display device having alignment layer
US6954244B2 (en) Reflection liquid crystal display device with reflection electrode region having two widths
CN105629556A (en) Light valve and display device
JPH10177176A (en) Reflection type liquid crystal display device
JP2004258366A (en) Electrooptical device, manufacturing method of electrooptical device and electronic device
KR101318247B1 (en) Liquid crystal display device and method for manufacturing of the same
CN101124509B (en) LCD with reduced flicker and a method for manufacturing thereof
JP2003255375A (en) Liquid crystal display
US20060050207A1 (en) Liquid crystal display unit
JP5132056B2 (en) Liquid crystal display device and manufacturing method thereof
JPH0752266B2 (en) Reflective liquid crystal display device
US5773930A (en) Display device for controlling light intensity
TWI286234B (en) Transflective display unit and color filter substrate
JP3280092B2 (en) Reflective liquid crystal display
TWI311664B (en) Liquid crystal display structure with wide viewing angle and high brightness uniformity
JP3097948B2 (en) Manufacturing method of nonlinear element
JP3249399B2 (en) Liquid crystal display device and liquid crystal driving method
JPH1048626A (en) Reflection type image display device
JPS6146835B2 (en)