JPH10176235A - Titaniumcyanide-base cermet for milling cutter - Google Patents

Titaniumcyanide-base cermet for milling cutter

Info

Publication number
JPH10176235A
JPH10176235A JP35289996A JP35289996A JPH10176235A JP H10176235 A JPH10176235 A JP H10176235A JP 35289996 A JP35289996 A JP 35289996A JP 35289996 A JP35289996 A JP 35289996A JP H10176235 A JPH10176235 A JP H10176235A
Authority
JP
Japan
Prior art keywords
regulated
coercive force
resistance
binding phase
ticn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35289996A
Other languages
Japanese (ja)
Inventor
Yuichi Nakahara
雄一 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP35289996A priority Critical patent/JPH10176235A/en
Publication of JPH10176235A publication Critical patent/JPH10176235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve breakage resistance without deteriorating wear resistance and to obtain a TiCN-base cermet alloy excellent in cutting life by specifying respective values of saturation magnetic flux density and coercive force among material characteristics and further specifying hardness and crack length, respectively. SOLUTION: In a TiCN-base cermet alloy, atmosphere at the time of manufacture and sintering temp. are regulated, respectively, and the saturation magnetic flux density (4πσ) and coercive force (Hc) of the material are regulated to (4 to 22)μTm<3> /kg and 100-200, respectively. Further, hardness and crack length are regulated to 91.0-91.7 by HRA and <=180μm, respectively. At this time, the limitation of saturation magnetic density to >=4 indicates that carbon content in a binding phase is in a high carbon region, and <=22 is used for convenience sake to show the extent causing no free carbon phase because there are causes where the content of the binding phase is high or low. Coercive force is regulated to 100-200 because the thickness of the binding phase becomes too large when coercive force is less than 100, and, when it exceeds 200, the thickness of the binding phase becomes too small. Within the ranges of both properties mentioned above, the breakage resistance and wear resistance of a tip can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、フライス加工用
の耐欠損性、耐チッピング性に優れたサーメットに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cermet having excellent chipping and chipping resistance for milling.

【0002】[0002]

【従来の技術】TiCN基サーメットの耐欠損性、耐チ
ッピング性の改良には、様々な提案が行われている。そ
の中でも超硬粒子の如く微細化を計ったのも、強度を高
める成分、例えばMo、W等の添加量を増やしたものも
ある。フライス分野では、加工能率を高めるため、切削
速度をあげることはもちろん、送り量を高くした切削に
変わりつつある。切削速度、送り量とも高めると切れ刃
先端にかかる負荷は高くなり、強度の他、熱に係わる損
傷に対する性能を向上させる必要がある。また、最近は
機械のNC化が進み無人による加工が増えつつあるた
め、より安定したチップが望まれている。従来の技術と
して組織を微細化する(特開平8―24090号)こと
で優れた靱性を持ったTiCN基サーメットや構成する
元素添加量を調整することで靱性を高めたもの等がTi
CN基サーメット工具としてフライス加工等に用いられ
ている。
Various proposals have been made to improve the chipping resistance and chipping resistance of a TiCN-based cermet. Among them, fine particles are measured as in the case of ultra-hard particles, and those in which the amount of a component for increasing strength, for example, Mo, W, etc., is increased. In the milling field, in order to increase machining efficiency, cutting speed has been increased, as well as cutting with increased feed rate. When both the cutting speed and the feed amount are increased, the load applied to the tip of the cutting edge is increased, and it is necessary to improve not only strength but also performance against heat-related damage. In addition, recently, the use of NC machines has increased, and unmanned machining has been increasing. Therefore, more stable chips have been desired. As a conventional technique, a TiCN-based cermet having excellent toughness by refining the structure (Japanese Patent Application Laid-Open No. Hei 8-24090) and an alloy having an improved toughness by adjusting the amount of constituent elements are used.
Used as a CN-based cermet tool for milling and the like.

【0003】[0003]

【発明が解決しようとする課題】本願発明では、耐欠損
性と熱的損傷の双方の観点より性能向上を検討し、ある
程度の高速切削速度の域での性能向上が図れるよう、靭
性、高温特性、耐欠損性等を改善したサーメットを提供
するものである。本発明の目的は、従来に比べ耐欠損性
を向上させることで切削寿命の優れたTiCN基サーメ
ット合金を提供することである。
SUMMARY OF THE INVENTION In the present invention, the performance improvement is examined from the viewpoints of both the fracture resistance and the thermal damage, and the toughness and the high-temperature characteristics are improved so that the performance can be improved at a certain high-speed cutting speed. And a cermet having improved fracture resistance and the like. An object of the present invention is to provide a TiCN-based cermet alloy having improved cutting resistance as compared with conventional ones and having an excellent cutting life.

【0004】[0004]

【課題を解決するための手段】具体的には、硬質相、結
合相双方の影響する物理的性質において、飽和磁束密度
(以下、4πσと略称する。)、保磁力(以下、Hcと
略称する。)、硬さ、クラック長、をスケールとして、
その特性と切削性能を勘案し、それら物理的性質を改善
することにより、切削性能を高め、用途に適したサーメ
ットとした。すなわち、材料特性のうち4πσを4(μ
Tm3/kg)〜22とし、かつ、Hc(Oe)を10
0〜200とすることにより、更には、硬さがHRAで
91.0〜91.7、かつ、クラック長が180μm以
下にすることにより靭性に優れたフライス用TiCN基
サーメットとしたものである。
Specifically, in the physical properties affected by both the hard phase and the binder phase, the saturation magnetic flux density (hereinafter abbreviated as 4πσ) and the coercive force (hereinafter abbreviated as Hc). )), Hardness, crack length, as a scale,
Taking into account its characteristics and cutting performance, by improving their physical properties, the cutting performance was enhanced and a cermet suitable for the application was obtained. That is, 4πσ of the material properties is set to 4 (μ
Tm 3 / kg) to 22 and Hc (Oe) is 10
By setting the hardness to 0 to 200, the hardness is 91.0 to 91.7 in terms of HRA, and the crack length is set to 180 μm or less to obtain a TiCN-based cermet for milling excellent in toughness.

【0005】上記4πσやHcは硬質相、結合相の状態
により数値が変化する。また、硬さはチップの寿命(耐
摩耗性)やクラック長はチップの靱性(耐欠損性)に大
きく影響する。まず、4πσは、結合相中の磁化の強さ
を現し、この値は、間接的に結合相中の炭素量を表す。
Hcは、結合相の厚みを表し、間接的に硬質粒子の粒度
が把握できる。両特性とも品質管理上簡便に用いられて
いる特性値である。よって、4πσを4以上としたの
は、結合相中の炭素量が高炭素域であることを示し、2
2以下は、結合相含有量が少ない、多い場合があるので
フリーカーボン相が生じない程度を表すため、便宜的に
用いたものである。また、Hcを100以上200以下
としたのは、100未満では結合相の厚みが厚くなりす
ぎ、言い換えれば粒子が粗いため所望の特性が得られ
ず、また200を越えると結合相の厚みが薄くなりす
ぎ、言い換えれば粒子が細かくなりすぎるため、100
以上200以下とした。この両特性を範囲内とすること
で、チップの耐欠損性と耐摩耗性を改善することが出来
た。
The numerical values of 4πσ and Hc change depending on the state of the hard phase and the binder phase. The hardness greatly affects the life of the chip (abrasion resistance) and the crack length greatly affects the toughness (breakage resistance) of the chip. First, 4πσ indicates the intensity of magnetization in the binder phase, and this value indirectly represents the amount of carbon in the binder phase.
Hc represents the thickness of the binder phase, and the particle size of the hard particles can be indirectly grasped. Both characteristics are characteristic values that are easily used for quality control. Therefore, setting 4πσ to 4 or more indicates that the carbon content in the binder phase is in a high carbon region, and 2
A value of 2 or less is used for convenience because it indicates the extent to which a free carbon phase does not occur because the binder phase content may be small or large. Further, the reason why Hc is set to 100 or more and 200 or less is that if it is less than 100, the thickness of the binder phase becomes too thick, in other words, the desired characteristics cannot be obtained because the particles are coarse, and if it exceeds 200, the thickness of the binder phase becomes thin. Because the particles are too fine, in other words
It was 200 or less. By keeping both these characteristics within the ranges, the chipping resistance and wear resistance of the chip could be improved.

【0006】次に、硬さは耐摩耗性を表すものであり、
前記Hcと相関する物性であり、HRA91.7を超え
ると、耐摩耗性は向上するが、その反面、靭性が低下
し、耐欠損性を低めてしまい、HRA91.0未満で
は、耐摩耗性が不足してしまうため、硬さをHRA9
1.0〜91.7の範囲とした。また、クラック長を1
80μm以下としたのは、クラック長はビッカース硬さ
計で50kg荷重を掛けた時の圧痕各コーナーに生ずる
4本のクラック長さを平均した値である。このクラック
長さは、クラックを伝播させたときの経路によりその長
さが変化する。例えば、上記特性値を満足する場合は、
クラックの伝播はその粒子と結合相の界面に沿って進
み、結合相の強度が高いため、あまり長くはならない。
しかし、上記特性の範囲外となると、例えばHcが高い
場合には、クラックの伝播はその粒子と結合相の界面に
沿って進み、結合相の厚さが薄いため伝播しやすく、長
くなる傾向が現れる。また、4πσが4未満では、結合
相自体の強度が下がるため同様な傾向になる。また、ク
ラック長が短くクラックを伝播しにくいことは、結合相
自体の機械的強度が改善され、実施例でのテストでクラ
ック長の短い本発明合金はヒートクラックも短いことか
ら、クラック長がチップの耐欠損性およびヒートクラッ
クに対する強さを表す尺度とすることができる。
Next, hardness indicates abrasion resistance.
It is a physical property that correlates with the above Hc. When HRA exceeds 91.7, wear resistance is improved, but on the other hand, toughness is reduced and fracture resistance is reduced. Because of shortage, the hardness is HRA9
The range was 1.0 to 91.7. The crack length is 1
The reason why the crack length is 80 μm or less is that the crack length is a value obtained by averaging the lengths of four cracks generated at each corner of the indentation when a 50 kg load is applied by a Vickers hardness tester. The length of the crack varies depending on the path through which the crack propagated. For example, if the above characteristic values are satisfied,
Crack propagation proceeds along the interface between the particle and the binder phase and is not too long due to the high strength of the binder phase.
However, when the properties are out of the above range, for example, when Hc is high, the crack propagates along the interface between the particle and the binder phase, and because the thickness of the binder phase is thin, the crack easily propagates and tends to become longer. appear. When 4πσ is less than 4, the same tendency tends to occur because the strength of the binder phase itself decreases. In addition, the fact that the crack length is short and the crack is not easily propagated means that the mechanical strength of the binder phase itself is improved, and the alloy of the present invention having a short crack length in the test in the Examples has a short heat crack, so that the crack length is small. Can be used as a measure of the fracture resistance and heat cracking resistance of the steel.

【0007】[0007]

【実施例】以下、実際例により本発明を詳細に説明す
る。本願発明においては、JIS M20相当組成のT
iCN基サーメットを用いた。本願のような特性とする
ため、焼結における温度、雰囲気をパラメーターとして
様々試験を行った。その結果、同種の組成物において
も、その雰囲気調整、焼結時の温度等により物性を制御
した。その結果を表1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to practical examples. In the present invention, T of the composition equivalent to JIS M20 is used.
An iCN-based cermet was used. Various tests were conducted using the temperature and atmosphere in sintering as parameters to obtain the characteristics as in the present application. As a result, even for the same type of composition, the physical properties were controlled by adjusting the atmosphere, temperature during sintering, and the like. Table 1 shows the results.

【0008】[0008]

【表1】 [Table 1]

【0009】表1より、本発明例1〜8は4πσ、Hc
とも値が大きく、十分な炭素量、結合相の厚みが得られ
ているのに対し、従来例では、4πσ、Hcとも値が小
さくなっているが、これは結合相の炭素量が低く、結合
相の厚みが厚すぎることを示している。次に、切削試験
は本発明例1、2及び従来例11、12を用いて行っ
た。ネガポジタイプの160mmφの正面フライスを用
いて、チップ形状SEE42TN―特殊形状で行った。
切削諸元は、切削速度150m/min、切り込み2.
0mm、一定時間に送り量を上げて欠損する送りの値で
評価した。被削材はSKD11(未調質材)、サイズ1
25×125×250mmブロックの中心に50mmの
溝を設け、耐欠損性を評価した。その結果を図1に示
す。
From Table 1, it can be seen that Examples 1 to 8 of the present invention have 4πσ, Hc
In both cases, the values of 4πσ and Hc are small, whereas the values of 4πσ and Hc are small in the conventional example. This indicates that the thickness of the phase is too thick. Next, a cutting test was performed using Examples 1 and 2 of the present invention and Conventional Examples 11 and 12. The chip shape was SEE42TN-special shape using a negative / positive type 160 mmφ face milling machine.
Cutting specifications were as follows: cutting speed 150 m / min, cutting depth 2.
The feeding amount was increased at a fixed time of 0 mm, and the value of the feeding was evaluated. Work material is SKD11 (non-tempered material), size 1
A 50 mm groove was provided at the center of a 25 × 125 × 250 mm block, and the fracture resistance was evaluated. The result is shown in FIG.

【0010】図1より、本発明例1、2は、送り量0.
47mm/刃、0.6mm/刃で欠損したが、従来例1
1、12は0.30mm/刃でいずれも欠損している。
As shown in FIG. 1, in Examples 1 and 2 of the present invention, the feed amount is 0.
47 mm / blade, 0.6 mm / blade
Nos. 1 and 12 are missing at 0.30 mm / blade.

【0011】続いて、耐摩耗性を評価するため、切削速
度150m/min、送り0.15mm/刃,切り込み
1.0mmの条件で評価を行った。被削材はSKD11
(未調質材)、125×125×250mmブロックを
用いた。その結果を図2に示す。図2は、切削長(m)
を横軸に、逃げ面最大摩耗量を縦軸にとり、単位切削長
さごとに摩耗を測定した結果を図示したもので、本発明
例1は3mの切削長さで摩耗量は0.16mmで、欠損
もなく正常な摩耗を示した。本発明例2は3mの切削長
さで摩耗量0.19mmで、同様に欠損もなく正常な摩
耗を示した。従来品11は、摩耗量0.3mmで、切り
刃に微細なチッピングが多数観察された。従来品12は
摩耗量が0.39mmと大きく、大きなチッピングが観
察された。
Subsequently, in order to evaluate the wear resistance, the evaluation was performed under the conditions of a cutting speed of 150 m / min, a feed of 0.15 mm / tooth, and a cut of 1.0 mm. Work material is SKD11
A (non-tempered material), 125 × 125 × 250 mm block was used. The result is shown in FIG. Figure 2 shows the cutting length (m)
Is plotted on the abscissa and the maximum flank wear is plotted on the ordinate, and the results of measuring the wear for each unit cutting length are shown. Inventive Example 1 has a cutting length of 3 m and a wear amount of 0.16 mm. And showed normal wear without any defects. Inventive Example 2 had a wear length of 0.19 mm at a cutting length of 3 m, and similarly showed normal wear without any chipping. In the conventional product 11, the wear amount was 0.3 mm, and many fine chippings were observed on the cutting blade. The conventional product 12 had a large wear amount of 0.39 mm, and large chipping was observed.

【0012】次に、耐ヒートクラック性を評価するた
め、切削速度150m/min、送り量0.15mm/
刃,切り込み5.0mmの条件で評価を行った。被削材
はSKD11(未調質材)でその幅を40mmと薄くす
ることにより、切り刃の接触を短く、空転を長くするこ
とにより、切削による加熱を短時間に、空転時の冷却を
長時間として、加熱冷却を繰り返すことにより、ヒート
クラックをより生じやすい諸元として、単位切削長さ毎
にその状況を観察した。その結果を図3に示す。図3の
縦軸のヒートクラック長さは、切削にて生じたヒートク
ラックの平均長さで示した。ヒートクラック長さが本発
明例1、2はそれぞれ0.08mm、0.07mmであ
るが、従来例11は0.19mm、従来例12は0.1
2mmでいずれもヒートクラックが長くなっていた。
Next, in order to evaluate the heat crack resistance, a cutting speed of 150 m / min and a feed rate of 0.15 mm /
The evaluation was performed under the conditions of a blade and a notch of 5.0 mm. The work material is made of SKD11 (non-tempered material), the width of which is as thin as 40 mm, to shorten the contact of the cutting blade, and to lengthen the idling, thereby shortening the heating by cutting and increasing the cooling during idling. By repeating heating and cooling as a time, the condition was observed for each unit cutting length as a parameter that easily causes a heat crack. The result is shown in FIG. The heat crack length on the vertical axis in FIG. 3 is represented by the average length of the heat crack generated by cutting. The heat crack lengths of Examples 1 and 2 of the present invention were 0.08 mm and 0.07 mm, respectively, while Conventional Example 11 was 0.19 mm and Conventional Example 12 was 0.19 mm.
At 2 mm, the heat cracks were all long.

【0013】[0013]

【発明の効果】本発明により耐摩耗性を損なわずに耐欠
損性を大幅に向上させることができ、また、フライス加
工等に対し耐ヒートクラックに優れたTiCN基サーメ
ットとすることができた。
According to the present invention, the fracture resistance can be greatly improved without deteriorating the wear resistance, and a TiCN-based cermet having excellent heat crack resistance against milling or the like can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、耐欠損性試験の結果を示す。FIG. 1 shows the results of a fracture resistance test.

【図2】図2は、耐摩耗性試験の結果を示す。FIG. 2 shows the results of a wear resistance test.

【図3】図3は、耐ヒートクラック試験の結果を示す。FIG. 3 shows the results of a heat crack resistance test.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 TiCNを基とするサーメット合金にお
いて、飽和磁束密度を4〜22μTm3/kgとし、か
つ、保磁力を100〜200としたことを特徴とする靱
性に優れたフライス用TiCN基サーメット。
1. A cermet alloy based on TiCN, wherein the saturation magnetic flux density is 4 to 22 μTm 3 / kg, and the coercive force is 100 to 200. .
【請求項2】 請求項1記載のTiCN基サーメットに
おいて、硬さがHRAで91.0〜91.7であり、か
つ、クラック長が180μm以下であることを特徴とす
る靭性に優れたフライス用TiCN基サーメット。
2. The milling machine according to claim 1, wherein the hardness of the cermet is 91.0 to 91.7 in terms of HRA and the crack length is 180 μm or less. TiCN-based cermet.
JP35289996A 1996-12-13 1996-12-13 Titaniumcyanide-base cermet for milling cutter Pending JPH10176235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35289996A JPH10176235A (en) 1996-12-13 1996-12-13 Titaniumcyanide-base cermet for milling cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35289996A JPH10176235A (en) 1996-12-13 1996-12-13 Titaniumcyanide-base cermet for milling cutter

Publications (1)

Publication Number Publication Date
JPH10176235A true JPH10176235A (en) 1998-06-30

Family

ID=18427219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35289996A Pending JPH10176235A (en) 1996-12-13 1996-12-13 Titaniumcyanide-base cermet for milling cutter

Country Status (1)

Country Link
JP (1) JPH10176235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000885A (en) * 2006-06-15 2008-01-10 Sandvik Intellectual Property Ab Coated milling insert
JP2017035750A (en) * 2015-08-10 2017-02-16 三菱マテリアル株式会社 Ti-BASED CERMET CUTTING TOOL EXCELLENT IN ANTI-PLASTIC DEFORMATION, ABNORMAL DAMAGE RESISTANCE AND WEAR RESISTANCE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000885A (en) * 2006-06-15 2008-01-10 Sandvik Intellectual Property Ab Coated milling insert
JP2017035750A (en) * 2015-08-10 2017-02-16 三菱マテリアル株式会社 Ti-BASED CERMET CUTTING TOOL EXCELLENT IN ANTI-PLASTIC DEFORMATION, ABNORMAL DAMAGE RESISTANCE AND WEAR RESISTANCE

Similar Documents

Publication Publication Date Title
Narutaki et al. Study on machining of titanium alloys
Komanduri et al. Evaluation of carbide grades and a new cutting geometry for machining titanium alloys
JP2751873B2 (en) Indexable insert for milling and milling cutter using the same
JP5428118B2 (en) cBN sintered body and cBN sintered body tool
JP2824701B2 (en) High Z sialon, cutting tools made therefrom and methods of use
Wayne et al. The role of thermal shock on tool life of selected ceramic cutting tool materials
Vogtel et al. High performance machining of profiled slots in nickel-based-superalloys
Shintani et al. Optimum tool geometry of CBN tool for continuous turning of carburized steel
CA2233401C (en) Cutting tool for milling
Chryssolouris Turning of hardened steels using CBN tools
JPH10176235A (en) Titaniumcyanide-base cermet for milling cutter
Bhattacharyya et al. The performance of ceramic tool materials for the machining of cast iron
US20040213639A1 (en) Ultra-high-pressure sintered cutter with recess or groove, holding mechanism for the cutter,and method of manufacturing the cutter
Mehrotra Applications of ceramic cutting tools
JPH0725619B2 (en) Surface coated cubic boron nitride based ultra high pressure sintering material for cutting tools
Tönshoff et al. Wear characteristics of cermet cutting tools
CN116490308A (en) Diamond tool
JP4339449B2 (en) Carbide material for hob
JP2815533B2 (en) Cutting equipment for milling
Brun et al. Evaluation of Coated‐Carbide and Ceramic Cutting Tools in Short‐Time Machining Tests of 1045 Steel
CN109734443A (en) A kind of milling cutter ceramic material
JP7380632B2 (en) Processing method
CN116944954A (en) Wear prediction method for turning nickel-based superalloy tool
CN117020283B (en) PCD internal cooling reverse boring milling cutter and preparation process thereof
RU2090337C1 (en) Working process automatic control method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080404