JPH10172920A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH10172920A
JPH10172920A JP8342720A JP34272096A JPH10172920A JP H10172920 A JPH10172920 A JP H10172920A JP 8342720 A JP8342720 A JP 8342720A JP 34272096 A JP34272096 A JP 34272096A JP H10172920 A JPH10172920 A JP H10172920A
Authority
JP
Japan
Prior art keywords
film
substrate
semiconductor substrate
semiconductor device
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8342720A
Other languages
Japanese (ja)
Inventor
Hirobumi Sumi
博文 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8342720A priority Critical patent/JPH10172920A/en
Publication of JPH10172920A publication Critical patent/JPH10172920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a high-speed, low-electric power consuming, and fine semiconductor device with a high yield by suppressing a thin line effect of a compound film formed on a diffusion layer and improving heat resistance. SOLUTION: The surface of a Si substrate 11 is converted amorphous by ion implantation before forming a Ti film 18, thereby suppressing a thin line effect of a TiSi, film 19. The Si substrate 11 and the Ti film 18 are mixed on their interface by ion implantation after formation of the Ti film 18, thereby improving the heat resistance of the TiSi2 film 19. Further, atoms each having the diameter which is equal to or larger than the diameter of Si constructing the Si substrate 11 are used for the ion implantation, the dose necessary for making amorphous and mixing is reduced, and a crystal defect is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願の発明は、半導体基板と
金属膜とを反応させて半導体基板の拡散層上に化合物膜
を形成する半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device in which a compound film is formed on a diffusion layer of a semiconductor substrate by reacting a semiconductor substrate with a metal film.

【0002】[0002]

【従来の技術】半導体装置の微細化に伴う短チャネル効
果等を抑制するために、電界効果トランジスタのソース
/ドレイン等になっている拡散層を浅くする必要がある
が、拡散層を浅くすると、この拡散層のシート抵抗が増
大して、高速、低消費電力の半導体装置を製造すること
が困難になる。そこで、半導体と金属との低抵抗の化合
物膜であるTiSi2 膜やCoSi2 膜等を拡散層上に
形成する構造が考えられている。
2. Description of the Related Art In order to suppress a short channel effect and the like accompanying miniaturization of a semiconductor device, it is necessary to make a diffusion layer serving as a source / drain of a field effect transistor shallow. The sheet resistance of the diffusion layer increases, and it becomes difficult to manufacture a high-speed, low-power-consumption semiconductor device. Therefore, a structure in which a TiSi 2 film, a CoSi 2 film, or the like, which is a low-resistance compound film of a semiconductor and a metal, is formed on the diffusion layer has been considered.

【0003】図3は、この様な構造を有するCMOSト
ランジスタの製造方法の一従来例を示している。この一
従来例では、図3(a)に示す様に、Si基板11の表
面に素子分離酸化膜としてのSiO2 膜12とゲート酸
化膜としてのSiO2 膜13とを形成し、多結晶Si膜
14でゲート電極を形成する。
FIG. 3 shows a conventional example of a method for manufacturing a CMOS transistor having such a structure. In this conventional example, as shown in FIG. 3A, an SiO 2 film 12 as an element isolation oxide film and an SiO 2 film 13 as a gate oxide film are formed on the surface of a Si substrate 11 to form a polycrystalline Si. A gate electrode is formed with the film 14.

【0004】その後、多結晶Si膜14及びSiO2
12をマスクにして、NMOSトランジスタの形成領域
にはAsを低濃度でイオン注入し、PMOSトランジス
タの形成領域にはBF2 を低濃度でイオン注入し、Si
2 膜15でゲート電極の側壁スペーサを形成する。
Thereafter, using the polycrystalline Si film 14 and the SiO 2 film 12 as masks, As is ion-implanted into the NMOS transistor formation region at a low concentration, and BF 2 is ion-implanted at a low concentration into the PMOS transistor formation region. Implanted, Si
The O 2 film 15 forms a side wall spacer of the gate electrode.

【0005】そして、多結晶Si膜14及びSiO2
12、15をマスクにして、NMOSトランジスタの形
成領域にはAsを高濃度でイオン注入し、PMOSトラ
ンジスタの形成領域にはBF2 を高濃度でイオン注入し
て、LDD構造のN型の拡散層16及びP型の拡散層1
7を夫々形成する。
Then, using the polycrystalline Si film 14 and the SiO 2 films 12 and 15 as masks, As is ion-implanted at a high concentration in the NMOS transistor formation region, and BF 2 is doped at a high concentration in the PMOS transistor formation region. The N type diffusion layer 16 and the P type diffusion layer 1 having the LDD structure are ion-implanted.
7 are formed respectively.

【0006】次に、図3(b)に示す様に、拡散層1
6、17及び多結晶Si膜14上の自然酸化膜(図示せ
ず)を弗酸で完全に除去してから、Ti膜18を全面に
形成する。そして、図3(c)に示す様に、熱処理でS
i基板11及び多結晶Si膜14とTi膜18とを反応
させてTiSi2 膜19を選択的に形成し、アンモニア
過水等に浸して、SiO2 膜12、15上に未反応のま
ま残っているTi膜18を除去する。
[0006] Next, as shown in FIG.
After completely removing the native oxide films (not shown) on the polycrystalline Si film 14 and 6, 17 and the hydrofluoric acid, a Ti film 18 is formed on the entire surface. Then, as shown in FIG.
A TiSi 2 film 19 is selectively formed by reacting the i-substrate 11 and the polycrystalline Si film 14 with the Ti film 18, immersed in ammonia peroxide, etc., and left unreacted on the SiO 2 films 12 and 15. The remaining Ti film 18 is removed.

【0007】次に、図3(d)に示す様に、層間絶縁膜
21を形成し、層間絶縁膜21に接続孔22を形成し、
TiN/Ti膜23及びW膜24で接続孔22を埋め
る。そして、Ti膜25及びAl−Si膜26で配線を
形成し、更に従来公知の工程を実行して、NMOSトラ
ンジスタ27及びPMOSトランジスタ28を有するC
MOSトランジスタ29を完成させる。
Next, as shown in FIG. 3D, an interlayer insulating film 21 is formed, and a connection hole 22 is formed in the interlayer insulating film 21.
The connection holes 22 are filled with the TiN / Ti film 23 and the W film 24. Then, a wiring is formed with the Ti film 25 and the Al-Si film 26, and a conventionally known process is performed to form a wiring having an NMOS transistor 27 and a PMOS transistor 28.
The MOS transistor 29 is completed.

【0008】[0008]

【発明が解決しようとする課題】ところが、CMOSト
ランジスタ29の微細化に伴って拡散層16、17の線
幅も狭くなってきており、Asで形成して且つ線幅の狭
い拡散層16上では、図3(c)(d)に示した様にT
iSi2 膜19が凝集する。この結果、TiSi2 膜1
9を形成しても拡散層16のシート抵抗が低減しないと
いう細線効果が生じ易く、図3に示した一従来例では、
高速、低消費電力及び微細なCMOSトランジスタ29
を製造することが困難であった。
However, with the miniaturization of the CMOS transistor 29, the line width of the diffusion layers 16 and 17 has also been reduced, and the diffusion layers 16 and 17 are formed of As and have a small line width. , T as shown in FIGS.
The iSi 2 film 19 aggregates. As a result, the TiSi 2 film 1
Even if 9 is formed, the thin line effect that the sheet resistance of the diffusion layer 16 does not decrease is likely to occur, and in the conventional example shown in FIG.
High speed, low power consumption and fine CMOS transistor 29
Was difficult to manufacture.

【0009】しかも、既述の様にCMOSトランジスタ
29を微細化するためには拡散層16を浅くする必要が
あるので、TiSi2 膜19とSi基板11との短絡を
防止するためにTiSi2 膜19も薄くする必要があ
る。このため、TiSi2 膜19が更に凝集し易くて、
高速、低消費電力及び微細なCMOSトランジスタ29
を製造することが更に困難であった。
Further, as described above, the diffusion layer 16 must be made shallow in order to miniaturize the CMOS transistor 29. Therefore, in order to prevent a short circuit between the TiSi 2 film 19 and the Si substrate 11, a TiSi 2 film is formed. 19 also needs to be thin. For this reason, the TiSi 2 film 19 is more easily aggregated,
High speed, low power consumption and fine CMOS transistor 29
Was more difficult to produce.

【0010】これに対して、TiSi2 膜19の代わり
にCoSi2 膜を拡散層16上に形成すると、細線効果
が生じにくい。しかし、CoSi2 膜の耐熱性はTiS
2膜19と同等程度の750〜800℃程度であまり
高くなく、その後の熱処理の余裕が小さくて、高速、低
消費電力及び微細な半導体装置を高い歩留りで製造する
ことが困難であった。
On the other hand, if a CoSi 2 film is formed on the diffusion layer 16 instead of the TiSi 2 film 19, the thin line effect is less likely to occur. However, the heat resistance of the CoSi 2 film is TiS
The temperature is not so high at about 750 to 800 ° C., which is about the same as that of the i 2 film 19, and the margin of the subsequent heat treatment is small, so that it is difficult to manufacture a high-speed, low power consumption and fine semiconductor device with high yield.

【0011】また、細線効果を抑制する別の方法とし
て、Asのイオン注入でSi基板11の表面部を非晶質
化しておいた状態でTi膜18を形成し、その後の高速
熱処理でTiSi2 膜19を形成する方法があった。し
かし、この方法でも、耐熱性の高いTiSi2 膜19を
形成することはできなかった。
As another method for suppressing the fine wire effect, a Ti film 18 is formed in a state where the surface of the Si substrate 11 is made amorphous by ion implantation of As, and then TiSi 2 is formed by high-speed heat treatment. There was a method of forming the film 19. However, even with this method, the TiSi 2 film 19 having high heat resistance could not be formed.

【0012】一方、耐熱性の高いTiSi2 膜19を形
成する方法として、Si基板11上にTi膜18を形成
した状態でSiをイオン注入してSi基板11とTi膜
18との界面においてこれらを混合させ、その後の高速
熱処理でTiSi2 膜19を形成する方法があった。こ
の方法では、850℃程度までTiSi2 膜19の耐熱
性が向上していた。
On the other hand, as a method for forming the TiSi 2 film 19 having high heat resistance, Si is ion-implanted in a state where the Ti film 18 is formed on the Si substrate 11, and these are formed at the interface between the Si substrate 11 and the Ti film 18. And then forming a TiSi 2 film 19 by high-speed heat treatment. In this method, the heat resistance of the TiSi 2 film 19 has been improved up to about 850 ° C.

【0013】しかし、この方法で耐熱性の高いTiSi
2 膜19を形成するためには、1015cm-2台以上のド
ーズ量でSiをイオン注入する必要があり、その結果、
Si基板11とTi膜18との界面に多数の結晶欠陥が
形成されて、この結晶欠陥をその後の熱処理で消滅させ
ることができなかった。このため、拡散層16における
接合リーク電流が多くて、特性の優れたCMOSトラン
ジスタ29を製造することが困難であった。
However, in this method, TiSi having high heat resistance is used.
In order to form the second film 19, it is necessary to ion-implant Si with a dose of 10 15 cm −2 or more.
Many crystal defects were formed at the interface between the Si substrate 11 and the Ti film 18, and these crystal defects could not be eliminated by a subsequent heat treatment. For this reason, the junction leakage current in the diffusion layer 16 is large, and it is difficult to manufacture the CMOS transistor 29 having excellent characteristics.

【0014】つまり、従来の上述の何れの方法でも、高
速、低消費電力及び微細で且つ特性の優れた半導体装置
を高い歩留りで製造することが困難であった。従って、
本願の発明は、高速、低消費電力及び微細で且つ特性の
優れた半導体装置を高い歩留りで製造することができる
半導体装置の製造方法を提供することを目的としてい
る。
That is, it is difficult to manufacture a semiconductor device with high speed, low power consumption, fineness and excellent characteristics at a high yield by any of the above-mentioned conventional methods. Therefore,
An object of the present invention is to provide a method of manufacturing a semiconductor device capable of manufacturing a semiconductor device with high speed, low power consumption, fineness, and excellent characteristics at a high yield.

【0015】[0015]

【課題を解決するための手段】本願の発明による半導体
装置の製造方法は、半導体基板上に金属膜を形成し、前
記半導体基板と前記金属膜とを反応させて前記半導体基
板の拡散層上に化合物膜を形成する半導体装置の製造方
法において、前記金属膜の形成前に、前記半導体基板を
構成している原子の径以上の径を有する原子を前記半導
体基板にイオン注入して、この半導体基板の表面部を非
晶質化する工程と、前記金属膜の形成後に、前記半導体
基板を構成している原子の径以上の径を有する原子を前
記半導体基板にイオン注入して、この半導体基板と前記
金属膜との界面においてこれらを混合させる工程とを具
備することを特徴としている。
According to a method of manufacturing a semiconductor device according to the present invention, a metal film is formed on a semiconductor substrate, and the semiconductor substrate reacts with the metal film to form a metal film on a diffusion layer of the semiconductor substrate. In the method of manufacturing a semiconductor device for forming a compound film, before forming the metal film, atoms having a diameter equal to or greater than the diameter of atoms constituting the semiconductor substrate are ion-implanted into the semiconductor substrate. Amorphizing the surface portion of the semiconductor substrate, and after forming the metal film, ion-implanting atoms having a diameter equal to or larger than the diameter of atoms constituting the semiconductor substrate into the semiconductor substrate, Mixing them at the interface with the metal film.

【0016】本願の発明による半導体装置の製造方法
は、前記非晶質化のための前記イオン注入における投影
飛程が前記化合物膜の厚さの半分であることが好まし
い。
In the method of manufacturing a semiconductor device according to the present invention, it is preferable that a projection range in the ion implantation for amorphization is half a thickness of the compound film.

【0017】本願の発明による半導体装置の製造方法
は、前記混合のための前記イオン注入における投影飛程
が前記金属膜の厚さであることが好ましい。
In the method of manufacturing a semiconductor device according to the present invention, it is preferable that a projection range in the ion implantation for the mixing is a thickness of the metal film.

【0018】本願の発明による半導体装置の製造方法
は、前記非晶質化のための前記イオン注入及び前記混合
のための前記イオン注入におけるドーズ量が1×1015
cm-2以下であることが好ましい。
In the method of manufacturing a semiconductor device according to the present invention, the dose in the ion implantation for the amorphization and the ion implantation for the mixing is 1 × 10 15.
cm −2 or less.

【0019】本願の発明による半導体装置の製造方法
は、前記半導体基板としてSi基板を用い、前記径を有
する原子として、Si、Ar、Kr、Xe、As、G
e、Sbの何れかを用いることができる。
In the method of manufacturing a semiconductor device according to the present invention, a Si substrate is used as the semiconductor substrate, and Si, Ar, Kr, Xe, As, G
E or Sb can be used.

【0020】本願の発明による半導体装置の製造方法
は、前記金属膜として、Ti膜、Co膜、Ni膜、Pt
膜、Au膜、Cu膜、Zr膜、Hf膜、Pd膜、W膜、
Mo膜、Ta膜、TiN/Ti膜、TiN/Co膜、T
i/Co膜、Co/Ti膜の何れかを用いることができ
る。
In the method of manufacturing a semiconductor device according to the present invention, the metal film may be a Ti film, a Co film, a Ni film, or a Pt film.
Film, Au film, Cu film, Zr film, Hf film, Pd film, W film,
Mo film, Ta film, TiN / Ti film, TiN / Co film, T
Either an i / Co film or a Co / Ti film can be used.

【0021】本願の発明による半導体装置の製造方法で
は、金属膜の形成前のイオン注入で半導体基板の表面部
を非晶質化しているので、半導体基板と金属膜との反応
が均一に進行して、線幅の細い拡散層上に化合物膜を形
成しても化合物膜が凝集しにくい。
In the method of manufacturing a semiconductor device according to the present invention, since the surface of the semiconductor substrate is made amorphous by ion implantation before the formation of the metal film, the reaction between the semiconductor substrate and the metal film proceeds uniformly. Therefore, even when a compound film is formed on a diffusion layer having a small line width, the compound film is not easily aggregated.

【0022】しかも、金属膜の形成後のイオン注入で半
導体基板と金属膜との界面においてこれらを混合させて
いるので、半導体基板と金属膜との反応が進行し易くて
化合物膜の結晶粒が大きくなると考えられること等によ
って、耐熱性の高い化合物膜を形成することができる。
Moreover, since these are mixed at the interface between the semiconductor substrate and the metal film by ion implantation after the formation of the metal film, the reaction between the semiconductor substrate and the metal film is apt to proceed, and the crystal grains of the compound film are reduced. A compound film having high heat resistance can be formed by being considered to be large.

【0023】更に、非晶質化及び混合の何れのイオン注
入でも、半導体基板を構成している原子の径以上の径を
有する原子を用いているので、非晶質化及び混合のため
に必要なドーズ量が少なくてよい。このため、化合物膜
の形成に伴って形成される結晶欠陥が少なく、この結晶
欠陥をその後の熱処理で消滅させることができる。
In addition, in any of the ion implantation of the amorphization and the mixing, atoms having a diameter larger than the diameter of the atoms constituting the semiconductor substrate are used. The dose may be small. Therefore, few crystal defects are formed with the formation of the compound film, and the crystal defects can be eliminated by a subsequent heat treatment.

【0024】また、非晶質化のためのイオン注入におけ
る投影飛程を化合物膜の厚さの半分にすれば、半導体基
板のうちで後に化合物膜が形成される部分を効果的に非
晶質化することができる。このため、半導体基板と金属
膜との反応が更に均一に進行して、線幅の細い拡散層上
に化合物膜を形成しても化合物膜が更に凝集しにくい。
Further, if the projection range in ion implantation for amorphization is set to half the thickness of the compound film, the portion of the semiconductor substrate where the compound film is to be formed later can be effectively made amorphous. Can be For this reason, the reaction between the semiconductor substrate and the metal film proceeds more uniformly, and even when the compound film is formed on the diffusion layer having a small line width, the compound film is less likely to aggregate.

【0025】また、混合のためのイオン注入における投
影飛程を金属膜の厚さにすれば、半導体基板と金属膜と
を効果的に混合させることができる。このため、半導体
基板と金属膜との反応が更に進行し易くて化合物膜の結
晶粒が更に大きくなると考えられること等によって、耐
熱性の更に高い化合物膜を形成することができる。
If the projection range in the ion implantation for mixing is set to the thickness of the metal film, the semiconductor substrate and the metal film can be effectively mixed. For this reason, it is considered that the reaction between the semiconductor substrate and the metal film is more likely to proceed and the crystal grains of the compound film are further increased, so that a compound film having higher heat resistance can be formed.

【0026】また、非晶質化及び混合の何れのイオン注
入でもドーズ量を1×1015cm-2以下にすれば、化合
物膜の形成に伴って形成される結晶欠陥を効果的に減少
させることができ、この結晶欠陥をその後の熱処理で容
易に消滅させることができる。
In addition, when the dose is set to 1 × 10 15 cm −2 or less in any of the ion implantation of the amorphization and the mixing, the crystal defects formed along with the formation of the compound film can be effectively reduced. This crystal defect can be easily eliminated by a subsequent heat treatment.

【0027】[0027]

【発明の実施の形態】以下、CMOSトランジスタの製
造に適用した本願の発明の第1〜第4実施形態を、図
1、2を参照しながら説明する。図1が、化合物膜とし
てTiSi2 膜を形成する第1実施形態を示している。
この第1実施形態でも、図1(a)に示す様に、SiO
2 膜15でゲート電極の側壁スペーサを形成するまで
は、図3に示した一従来例と実質的に同様の工程を実行
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, first to fourth embodiments of the present invention applied to the manufacture of a CMOS transistor will be described with reference to FIGS. FIG. 1 shows a first embodiment in which a TiSi 2 film is formed as a compound film.
Also in the first embodiment, as shown in FIG.
Until the sidewall spacer of the gate electrode is formed by the two films 15, substantially the same steps as those of the conventional example shown in FIG. 3 are executed.

【0028】しかし、この第1実施形態では、その後、
2 ガスを4slmの割合で供給し800℃、10分の
熱酸化を施して、厚さ10nmのSiO2 膜31をSi
基板11の露出部の全面に形成する。
However, in the first embodiment,
O 2 gas is supplied at a rate of 4 slm, and thermal oxidation is performed at 800 ° C. for 10 minutes to form a SiO 2 film 31 having a thickness of 10 nm on Si.
It is formed on the entire exposed portion of the substrate 11.

【0029】そして、NMOSトランジスタの形成領域
を覆うレジスト(図示せず)と多結晶Si膜14及びS
iO2 膜12、15とをマスクにして、40keVの加
速エネルギー及び3×1015cm-2のドーズ量でBF2
をイオン注入して、PMOSトランジスタの形成領域に
P型の拡散層17を形成する。
Then, a resist (not shown) covering the formation region of the NMOS transistor, the polycrystalline Si film 14 and the S
Using the iO 2 films 12 and 15 as a mask, BF 2 is applied at an acceleration energy of 40 keV and a dose of 3 × 10 15 cm −2.
Is ion-implanted to form a P-type diffusion layer 17 in the formation region of the PMOS transistor.

【0030】次に、図1(b)に示す様に、SiO2
31を弗酸で除去した後、PMOSトランジスタの形成
領域を覆うレジスト(図示せず)と多結晶Si膜14及
びSiO2 膜12、15とをマスクにして、50keV
の加速エネルギー及び3×1015cm-2のドーズ量でA
sをイオン注入して、NMOSトランジスタの形成領域
にN型の拡散層16を形成する。そして、N2 雰囲気中
で1000℃、10秒の熱処理を施して、拡散層16、
17中の不純物を活性化させる。
Next, as shown in FIG. 1B, after removing the SiO 2 film 31 with hydrofluoric acid, a resist (not shown) covering the formation region of the PMOS transistor, the polycrystalline Si film 14 and the SiO 2 film 50 keV using the films 12 and 15 as a mask
A at an acceleration energy of 3 × 10 15 cm -2
s is ion-implanted to form an N-type diffusion layer 16 in the formation region of the NMOS transistor. Then, a heat treatment at 1000 ° C. for 10 seconds is performed in an N 2 atmosphere to form a diffusion layer 16.
The impurities in 17 are activated.

【0031】次に、緩衝弗酸で自然酸化膜(図示せず)
を除去してから、40keVの加速エネルギー及び3×
1014cm-2のドーズ量でSi基板11の全面にAsを
イオン注入して、Si基板11の表面部を非晶質化す
る。このときのAsの投影飛程は、後に形成するTiS
2 膜19の厚さの半分である。また、このときのドー
ズ量は1×1015cm-2以下であればよい。
Next, a natural oxide film (not shown) using buffered hydrofluoric acid
Is removed, the acceleration energy of 40 keV and 3 ×
As is ion-implanted into the entire surface of the Si substrate 11 at a dose of 10 14 cm -2 , the surface of the Si substrate 11 is made amorphous. At this time, the projection range of As is TiS to be formed later.
This is half the thickness of the i 2 film 19. The dose at this time may be 1 × 10 15 cm −2 or less.

【0032】そして、再び緩衝弗酸で自然酸化膜(図示
せず)を除去してから、図1(c)に示す様に、電力
0.5kW、温度150℃、Ar100sccm、圧力
0.47Paのスパッタ法で、厚さ30nmのTi膜1
8をSi基板11上の全面に形成する。
Then, after removing the natural oxide film (not shown) again with buffered hydrofluoric acid, as shown in FIG. 1 (c), power of 0.5 kW, temperature of 150 ° C., Ar of 100 sccm, and pressure of 0.47 Pa were applied. 30 nm thick Ti film 1 by sputtering
8 is formed on the entire surface of the Si substrate 11.

【0033】次に、図1(d)に示す様に、30keV
の加速エネルギー及び3×1014cm-2のドーズ量でS
iをイオン注入して、Si基板11とTi膜18との界
面にこれらの混合領域32を形成する。このときのSi
の投影飛程は、Ti膜18の厚さである。また、このと
きのドーズ量は1×1015cm-2以下であればよい。
Next, as shown in FIG.
At an acceleration energy of 3 and a dose of 3 × 10 14 cm -2
i is ion-implanted to form a mixed region 32 at the interface between the Si substrate 11 and the Ti film 18. Si at this time
Is the thickness of the Ti film 18. The dose at this time may be 1 × 10 15 cm −2 or less.

【0034】次に、図1(e)に示す様に、N2 ガスを
5slmの割合で供給し650℃、30秒の熱処理を施
して、Si基板11及び多結晶Si膜14とTi膜18
とを反応させてTiSi2 膜19を選択的に形成する。
そして、アンモニア過水に浸して、SiO2 膜12、1
5上に未反応のまま残っているTi膜18を除去した
後、再び、N2 ガスを5slmの割合で供給し800
℃、30秒の熱処理を施して、TiSi2 膜19を安定
化させる。
Next, as shown in FIG. 1E, a N 2 gas is supplied at a rate of 5 slm, and a heat treatment is performed at 650 ° C. for 30 seconds, so that the Si substrate 11, the polycrystalline Si film 14, and the Ti film 18 are formed.
To form a TiSi 2 film 19 selectively.
Then, it is immersed in ammonia peroxide to form the SiO 2 films 12 and 1.
After removing the unreacted Ti film 18 on the substrate 5, N 2 gas is again supplied at a rate of 5 slm to 800
The heat treatment is performed at 30 ° C. for 30 seconds to stabilize the TiSi 2 film 19.

【0035】次に、SiH4 /O2 ガス=0.03/
0.54slm、温度400℃、圧力10.2Paの減
圧CVD法で厚さ100nmのSiO2 膜を形成する
か、または、SiH2 Cl2 /NH3 /N2 ガス=0.
05/0.2/0.2slm、温度760℃、圧力70
Paの減圧CVD法で厚さ50nmのSiN膜を形成す
る。
Next, SiH 4 / O 2 gas = 0.03 /
Either a 100 nm thick SiO 2 film is formed by low pressure CVD at 0.54 slm, temperature of 400 ° C. and pressure of 10.2 Pa, or SiH 2 Cl 2 / NH 3 / N 2 gas = 0.
05 / 0.2 / 0.2 slm, temperature 760 ° C, pressure 70
An SiN film having a thickness of 50 nm is formed by the reduced pressure CVD method of Pa.

【0036】そして、O3 +TEOSガス=50scc
m、温度720℃、圧力40Paの減圧CVD法で厚さ
500nmのBPSG膜を形成する。以上のSiO2
またはSiN膜とBPSG膜とで、図1(f)に示す様
に、層間絶縁膜21を形成する。
Then, O 3 + TEOS gas = 50 scc
A BPSG film having a thickness of 500 nm is formed by low pressure CVD at a temperature of 720 ° C. and a pressure of 40 Pa. From the above SiO 2 film or SiN film and the BPSG film, an interlayer insulating film 21 is formed as shown in FIG.

【0037】その後、層間絶縁膜21上でレジスト(図
示せず)をパターニングし、このレジストをマスクにし
て、C4 8 ガス=50sccm、高周波電力1200
W、圧力2Paのドライエッチングを施して、層間絶縁
膜21に接続孔22を形成する。
Thereafter, a resist (not shown) is patterned on the interlayer insulating film 21, and using this resist as a mask, C 4 F 8 gas = 50 sccm, high frequency power 1200
A connection hole 22 is formed in the interlayer insulating film 21 by performing dry etching at W and a pressure of 2 Pa.

【0038】その後、接続孔22のマスクずれに対応す
るために、レジスト(図示せず)及び層間絶縁膜21を
マスクにして、NMOSトランジスタの形成領域の接続
孔22から露出しているSi基板11に50keVの加
速エネルギー及び3×1015cm-2のドーズ量でAsを
イオン注入する。
Thereafter, in order to cope with the mask displacement of the connection hole 22, the resist (not shown) and the interlayer insulating film 21 are used as a mask to expose the Si substrate 11 exposed from the connection hole 22 in the NMOS transistor formation region. As ions are implanted at an acceleration energy of 50 keV and a dose of 3 × 10 15 cm −2 .

【0039】また、PMOSトランジスタの形成領域の
接続孔22から露出しているSi基板11に50keV
の加速エネルギー及び3×1015cm-2のドーズ量でB
2をイオン注入する。そして、N2 雰囲気中で850
℃、30秒の熱処理を施して、接続孔22からSi基板
11にイオン注入した不純物を活性化させる。
Further, 50 keV is applied to the Si substrate 11 exposed from the connection hole 22 in the formation region of the PMOS transistor.
B at an acceleration energy of 3 × 10 15 cm -2
F 2 is ion-implanted. 850 in an N 2 atmosphere
A heat treatment is performed at 30 ° C. for 30 seconds to activate the impurities ion-implanted into the Si substrate 11 from the connection holes 22.

【0040】その後、電力8kW、温度150℃、Ar
100sccm、圧力0.47Paのスパッタ法で厚さ
10nmのTi膜を形成し、更に、電力5kW、Ar/
2=40/20sccm、圧力0.47Paの反応性
スパッタ法で厚さ70nmのTiN膜を形成して、接続
孔22内を含むSi基板11上の全面にTiN/Ti膜
23を形成する。
Thereafter, power 8 kW, temperature 150 ° C., Ar
A Ti film having a thickness of 10 nm was formed by a sputtering method at 100 sccm and a pressure of 0.47 Pa. Further, a power of 5 kW and Ar /
A TiN film having a thickness of 70 nm is formed by a reactive sputtering method at N 2 = 40/20 sccm and a pressure of 0.47 Pa, and a TiN / Ti film 23 is formed on the entire surface of the Si substrate 11 including the inside of the connection hole 22.

【0041】その後、Ar/N2 /H2 /WF6 ガス=
2200/300/500/75sccm、温度450
℃、圧力10640PaのCVD法で、厚さ400nm
のW膜24を形成する。そして、SF6 ガス=50sc
cm、高周波電力150W、圧力1.33Paのエッチ
バックを施して、TiN/Ti膜23及びW膜24で接
続孔22を埋める。
Then, Ar / N 2 / H 2 / WF 6 gas =
2200/300/500/75 sccm, temperature 450
400 nm in thickness by CVD method at 10 ° C. and pressure of 10640 Pa
Is formed. And SF 6 gas = 50 sc
The connection hole 22 is filled with a TiN / Ti film 23 and a W film 24 by performing an etch-back process with a high-frequency power of 150 W and a pressure of 1.33 Pa.

【0042】その後、電力4kW、温度150℃、Ar
100sccm、圧力0.47Paのスパッタ法で厚さ
30nmのTi膜25を形成し、更に、電力22.5k
W、温度150℃、Ar50sccm、圧力0.47P
aのスパッタ法で厚さ0.5μmのAl−Si膜26を
形成する。
Thereafter, power 4 kW, temperature 150 ° C., Ar
A Ti film 25 having a thickness of 30 nm is formed by a sputtering method at 100 sccm and a pressure of 0.47 Pa.
W, temperature 150 ° C, Ar 50 sccm, pressure 0.47P
An Al—Si film 26 having a thickness of 0.5 μm is formed by the sputtering method a.

【0043】その後、Al−Si膜26上でレジスト
(図示せず)をパターニングし、このレジストをマスク
にして、BCl3 /Cl2 ガス=60/90sccm、
マイクロ波電力1000W、高周波電力50W、圧力
0.016Paのドライエッチングを施して、Ti膜2
5及びAl−Si膜26で配線を形成する。そして、更
に従来公知の工程を実行して、NMOSトランジスタ2
7及びPMOSトランジスタ28を有するCMOSトラ
ンジスタ29を完成させる。
Thereafter, a resist (not shown) is patterned on the Al-Si film 26, and using this resist as a mask, BCl 3 / Cl 2 gas = 60/90 sccm,
Dry etching with a microwave power of 1000 W, a high frequency power of 50 W and a pressure of 0.016 Pa is performed to obtain a Ti film 2.
5 and the Al-Si film 26 are formed. Then, a conventionally well-known process is further performed, and the NMOS transistor 2
7 and a CMOS transistor 29 having a PMOS transistor 28 are completed.

【0044】図2が、化合物膜としてCoSi2 膜を形
成する第2実施形態の途中の工程であって上述の第1実
施形態における図1(c)〜(e)に対応する工程を示
している。この第2実施形態でも、Asのイオン注入で
Si基板11の表面部を非晶質化した後、緩衝弗酸で自
然酸化膜を除去するまでは、図1に示した第1実施形態
と実質的に同様の工程を実行する。
FIG. 2 shows a step in the course of the second embodiment for forming a CoSi 2 film as a compound film, and corresponds to FIGS. 1C to 1E in the first embodiment. I have. The second embodiment is substantially the same as the first embodiment shown in FIG. 1 until the surface portion of the Si substrate 11 is made amorphous by ion implantation of As and then the natural oxide film is removed with buffered hydrofluoric acid. A similar process is performed.

【0045】しかし、この第2実施形態では、その後、
図2(a)に示す様に、電力0.5kW、温度150
℃、Ar100sccm、圧力0.47Paのスパッタ
法で、厚さ20nmのCo膜33をSi基板11上の全
面に形成する。そして、図2(b)に示す様に、第1実
施形態と同様の工程を実行して、Si基板11とCo膜
33との界面にこれらの混合領域32を形成する。
However, in the second embodiment,
As shown in FIG. 2A, the power is 0.5 kW and the temperature is 150
A Co film 33 having a thickness of 20 nm is formed on the entire surface of the Si substrate 11 by a sputtering method at 100 ° C., Ar 100 sccm, and pressure 0.47 Pa. Then, as shown in FIG. 2B, the same steps as in the first embodiment are performed to form a mixed region 32 at the interface between the Si substrate 11 and the Co film 33.

【0046】次に、図2(c)に示す様に、N2 ガスを
5slmの割合で供給し550℃、30秒の熱処理を施
して、Si基板11及び多結晶Si膜14とCo膜33
とを反応させてCoSi2 膜34を選択的に形成する。
そして、硫酸過水に浸して、SiO2 膜12、15上に
未反応のまま残っているCo膜33を除去した後、再
び、N2 ガスを5slmの割合で供給し700℃、30
秒の熱処理を施して、CoSi2 膜34を安定化させ
る。
Next, as shown in FIG. 2C, a N 2 gas is supplied at a rate of 5 slm, and a heat treatment is performed at 550 ° C. for 30 seconds, so that the Si substrate 11, the polycrystalline Si film 14 and the Co film 33 are formed.
To form a CoSi 2 film 34 selectively.
Then, after immersing in sulfuric acid and hydrogen peroxide to remove the unreacted Co film 33 on the SiO 2 films 12 and 15, N 2 gas is again supplied at a rate of 5 slm to 700 ° C. and 30 ° C.
A second heat treatment is performed to stabilize the CoSi 2 film 34.

【0047】その後、再び、図1に示した第1実施形態
と実質的に同様の工程を実行して、NMOSトランジス
タ27とPMOSトランジスタ28とを有するCMOS
トランジスタ29を完成させる。
Thereafter, the steps substantially the same as those of the first embodiment shown in FIG. 1 are executed again, and a CMOS having an NMOS transistor 27 and a PMOS transistor 28 is formed.
The transistor 29 is completed.

【0048】次に、Si基板11の表面部の非晶質化及
び混合領域32の形成のためにSbをイオン注入する第
3実施形態を説明する。この第3実施形態でも、拡散層
16、17中の不純物を活性化させた後、緩衝弗酸で自
然酸化膜を除去するまでは、図1に示した第1実施形態
と実質的に同様の工程を実行する。
Next, a description will be given of a third embodiment in which Sb is ion-implanted for amorphizing the surface portion of the Si substrate 11 and forming the mixed region 32. Also in the third embodiment, after the impurities in the diffusion layers 16 and 17 are activated, the process is substantially the same as that of the first embodiment shown in FIG. 1 until the natural oxide film is removed with buffered hydrofluoric acid. Execute the process.

【0049】しかし、この第3実施形態では、その後、
40keVの加速エネルギー及び1×1014cm-2のド
ーズ量でSi基板11の全面にSbをイオン注入して、
Si基板11の表面部を非晶質化する。この場合、Sb
の原子の径がAsの原子の径よりも大きいので、非晶質
化のために必要なドーズ量が第1実施形態におけるAs
の3×1014cm-2よりも少なくてよい。
However, in the third embodiment,
Sb is ion-implanted into the entire surface of the Si substrate 11 at an acceleration energy of 40 keV and a dose of 1 × 10 14 cm −2 ,
The surface of the Si substrate 11 is made amorphous. In this case, Sb
Is larger than the diameter of the As atom, the dose required for amorphization is lower than that of the As in the first embodiment.
Less than 3 × 10 14 cm −2 .

【0050】そして、第1実施形態と同様の工程を実行
してTi膜18の形成までを行った後、30keVの加
速エネルギー及び1×1014cm-2のドーズ量でSbを
イオン注入して、Si基板11とTi膜18との界面に
これらの混合領域32を形成する。その後、再び、図1
に示した第1実施形態と実質的に同様の工程を実行し
て、NMOSトランジスタ27とPMOSトランジスタ
28とを有するCMOSトランジスタ29を完成させ
る。
After performing the same steps as in the first embodiment up to the formation of the Ti film 18, Sb is ion-implanted at an acceleration energy of 30 keV and a dose of 1 × 10 14 cm −2. The mixed region 32 is formed at the interface between the Si substrate 11 and the Ti film 18. Then again, FIG.
A CMOS transistor 29 having an NMOS transistor 27 and a PMOS transistor 28 is completed by executing substantially the same steps as those of the first embodiment shown in FIG.

【0051】次に、Co膜上にTiN膜またはTi膜を
積層させた構造から、化合物膜としてのCoSi2 膜を
形成する第4実施形態を説明する。この第4実施形態で
も、Asのイオン注入でSi基板11の表面部を非晶質
化した後、緩衝弗酸で自然酸化膜を除去するまでは、上
述の第2実施形態と実質的に同様の工程を実行する。
Next, a fourth embodiment in which a CoSi 2 film is formed as a compound film from a structure in which a TiN film or a Ti film is laminated on a Co film will be described. Also in this fourth embodiment, after the surface of the Si substrate 11 is made amorphous by ion implantation of As, the process is substantially the same as that of the above-described second embodiment until the natural oxide film is removed with buffered hydrofluoric acid. Is performed.

【0052】しかし、この第4実施形態では、その後、
電力1kW、Ar100sccm、圧力0.47Paの
スパッタ法で、厚さ10nmのCo膜をSi基板11上
の全面に形成する。そして、引き続き、電力5kW、A
r/N2 =40/20sccm、圧力0.47Paの反
応性スパッタ法で、厚さ20nmのTiN膜をCo膜上
の全面に形成する。
However, in the fourth embodiment,
A Co film having a thickness of 10 nm is formed on the entire surface of the Si substrate 11 by a sputtering method with a power of 1 kW, Ar of 100 sccm, and a pressure of 0.47 Pa. Then, continuously, power 5 kW, A
A TiN film having a thickness of 20 nm is formed on the entire surface of the Co film by a reactive sputtering method at r / N 2 = 40/20 sccm and a pressure of 0.47 Pa.

【0053】なお、電力0.5kW、Ar/N2 =40
/20sccm、圧力0.47Paのスパッタ法で、厚
さ10nmのTi膜を上述のTiN膜の代わりに形成し
てもよい。その後、再び、上述の第2実施形態と実質的
に同様の工程を実行して、NMOSトランジスタ27と
PMOSトランジスタ28とを有するCMOSトランジ
スタ29を完成させる。
The power is 0.5 kW, Ar / N 2 = 40.
A Ti film having a thickness of 10 nm may be formed by a sputtering method of / 20 sccm and a pressure of 0.47 Pa instead of the above-described TiN film. Thereafter, the steps substantially the same as those of the above-described second embodiment are executed again to complete the CMOS transistor 29 having the NMOS transistor 27 and the PMOS transistor 28.

【0054】この様な第4実施形態では、Co膜上のT
iN膜またはTi膜が、Co膜の表面の酸化を防止して
このCo膜の実質的な厚さが減少するのを防止すること
ができる。また、Si基板11の表面の自然酸化膜や吸
着された酸素を、TiN膜またはTi膜がCo膜を介し
て吸着して、Si基板11とCo膜とを均一に反応させ
ることができて、Si基板11に形成される結晶欠陥を
低減させることができる。
In the fourth embodiment, the T on the Co film
The iN film or the Ti film can prevent the surface of the Co film from being oxidized, thereby preventing the substantial thickness of the Co film from decreasing. Also, the natural oxide film or the adsorbed oxygen on the surface of the Si substrate 11 is adsorbed by the TiN film or the Ti film via the Co film, so that the Si substrate 11 and the Co film can react uniformly, Crystal defects formed in the Si substrate 11 can be reduced.

【0055】なお、以上の第1〜第4実施形態はCMO
Sトランジスタの製造に本願の発明を適用したものであ
るが、NMOSトランジスタまたはPMOSトランジス
タのみやバイポーラトランジスタやCCD撮像素子や液
晶表示素子等の製造にも本願の発明を適用することがで
きる。また、以上の第1〜第4実施形態ではTi膜18
やCo膜33をスパッタ法で形成しているが、これらの
膜をCVD法で形成してもよい。
It should be noted that the above-described first to fourth embodiments use the CMO
Although the invention of the present application is applied to the manufacture of an S transistor, the invention of the present application can also be applied to the manufacture of only an NMOS transistor or a PMOS transistor, a bipolar transistor, a CCD imaging device, a liquid crystal display device, and the like. In the first to fourth embodiments, the Ti film 18 is used.
Although the Co film 33 and the Co film 33 are formed by the sputtering method, these films may be formed by the CVD method.

【0056】また、以上の第1〜第4実施形態では、S
i基板11の表面部の非晶質化や混合領域32の形成の
ために、As、Si、Sbを用いているが、Ar、K
r、Xe、Ge等のうちの何れかを用いてもよい。
In the first to fourth embodiments, S
As, Si, and Sb are used for amorphization of the surface portion of the i-substrate 11 and formation of the mixed region 32.
Any of r, Xe, Ge and the like may be used.

【0057】また、以上の第1〜第4実施形態では、化
合物膜を形成するための金属膜として、Ti膜、Co
膜、TiN/Co膜、Ti/Co膜を用いているが、N
i膜、Pt膜、Au膜、Cu膜、Zr膜、Hf膜、Pd
膜、W膜、Mo膜、Ta膜、TiN/Ti膜、Co/T
i膜等のうちの何れかを用いてもよい。
In the first to fourth embodiments described above, a Ti film, a Co film,
Film, TiN / Co film and Ti / Co film are used.
i film, Pt film, Au film, Cu film, Zr film, Hf film, Pd
Film, W film, Mo film, Ta film, TiN / Ti film, Co / T
Any of the i-film and the like may be used.

【0058】[0058]

【発明の効果】本願の発明による半導体装置の製造方法
では、線幅の細い拡散層上に化合物膜を形成しても化合
物膜が凝集しにくいので、細線効果を抑制することがで
き、しかも、耐熱性の高い化合物膜を形成することがで
きるので、その後の熱処理の余裕が大きくて、高速、低
消費電力及び微細な半導体装置を高い歩留りで製造する
ことができる。
In the method of manufacturing a semiconductor device according to the present invention, even when a compound film is formed on a diffusion layer having a small line width, the compound film is not easily aggregated, so that the thin line effect can be suppressed. Since a compound film having high heat resistance can be formed, a margin for a subsequent heat treatment is large, and high-speed, low power consumption, and a fine semiconductor device can be manufactured with high yield.

【0059】更に、化合物膜の形成に伴って形成される
結晶欠陥をその後の熱処理で消滅させることができるの
で、拡散層における接合リーク電流が少なくて、特性の
優れた半導体装置を製造することができる。
Further, since the crystal defects formed during the formation of the compound film can be eliminated by the subsequent heat treatment, it is possible to manufacture a semiconductor device having a small junction leak current in the diffusion layer and excellent characteristics. it can.

【0060】また、非晶質化のためのイオン注入におけ
る投影飛程を化合物膜の厚さの半分にすれば、線幅の細
い拡散層上に化合物膜を形成しても化合物膜が更に凝集
しにくいので、細線効果を更に抑制することができて、
更に高速、低消費電力及び微細な半導体装置を製造する
ことができる。
If the projection range in ion implantation for amorphization is set to half the thickness of the compound film, the compound film is further aggregated even if the compound film is formed on a diffusion layer having a small line width. It is difficult to perform, so the fine line effect can be further suppressed,
Further, a high-speed, low power consumption, and fine semiconductor device can be manufactured.

【0061】また、混合のためのイオン注入における投
影飛程を金属膜の厚さにすれば、耐熱性の更に高い化合
物膜を形成することができるので、高速、低消費電力及
び微細な半導体装置を更に高い歩留りで製造することが
できる。
Further, if the projection range in the ion implantation for mixing is set to the thickness of the metal film, a compound film having higher heat resistance can be formed, so that high speed, low power consumption and fine semiconductor device can be achieved. Can be manufactured with a higher yield.

【0062】また、非晶質化及び混合の何れのイオン注
入でもドーズ量を1×1015cm-2以下にすれば、化合
物膜の形成に伴って形成される結晶欠陥をその後の熱処
理で容易に消滅させることができるので、拡散層におけ
る接合リーク電流が更に少なくて、特性の更に優れた半
導体装置を製造することができる。
When the dose is set to 1 × 10 15 cm −2 or less in any of the ion implantation of the amorphization and the mixing, the crystal defects formed along with the formation of the compound film can be easily formed by the subsequent heat treatment. Therefore, the junction leakage current in the diffusion layer is further reduced, and a semiconductor device having more excellent characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の発明の第1実施形態を順次に示す側断面
図である。
FIG. 1 is a side sectional view sequentially showing a first embodiment of the present invention.

【図2】本願の発明の第2実施形態の途中の工程であっ
て図1(c)〜(e)に対応する工程を順次に示す側断
面図である。
FIG. 2 is a side sectional view showing steps in the middle of a second embodiment of the present invention and corresponding to FIGS. 1 (c) to (e) in order.

【図3】本願の発明の一従来例を順次に示す側断面図で
ある。
FIG. 3 is a side sectional view sequentially showing one conventional example of the invention of the present application.

【符号の説明】[Explanation of symbols]

11 Si基板(半導体基板) 16、17 拡
散層 18 Ti膜(金属膜) 19 TiSi
2 膜(化合物膜) 32 混合領域 33 Co膜(金属膜) 34 Co
Si2 膜(化合物膜)
Reference Signs List 11 Si substrate (semiconductor substrate) 16, 17 Diffusion layer 18 Ti film (metal film) 19 TiSi
2 film (compound film) 32 mixed region 33 Co film (metal film) 34 Co
Si 2 film (compound film)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に金属膜を形成し、前記半
導体基板と前記金属膜とを反応させて前記半導体基板の
拡散層上に化合物膜を形成する半導体装置の製造方法に
おいて、 前記金属膜の形成前に、前記半導体基板を構成している
原子の径以上の径を有する原子を前記半導体基板にイオ
ン注入して、この半導体基板の表面部を非晶質化する工
程と、 前記金属膜の形成後に、前記半導体基板を構成している
原子の径以上の径を有する原子を前記半導体基板にイオ
ン注入して、この半導体基板と前記金属膜との界面にお
いてこれらを混合させる工程とを具備することを特徴と
する半導体装置の製造方法。
1. A method for manufacturing a semiconductor device, comprising: forming a metal film on a semiconductor substrate; and reacting the semiconductor substrate with the metal film to form a compound film on a diffusion layer of the semiconductor substrate. Prior to the formation of, the step of ion-implanting atoms having a diameter equal to or greater than the diameter of the atoms constituting the semiconductor substrate into the semiconductor substrate to amorphize a surface portion of the semiconductor substrate; After the formation of, a step of ion-implanting atoms having a diameter equal to or greater than the diameter of the atoms constituting the semiconductor substrate into the semiconductor substrate, and mixing them at the interface between the semiconductor substrate and the metal film. A method of manufacturing a semiconductor device.
【請求項2】 前記非晶質化のための前記イオン注入に
おける投影飛程が前記化合物膜の厚さの半分であること
を特徴とする請求項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein a projection range in said ion implantation for said amorphization is half the thickness of said compound film.
【請求項3】 前記混合のための前記イオン注入におけ
る投影飛程が前記金属膜の厚さであることを特徴とする
請求項1記載の半導体装置の製造方法。
3. The method according to claim 1, wherein a projection range in the ion implantation for the mixing is a thickness of the metal film.
【請求項4】 前記非晶質化のための前記イオン注入及
び前記混合のための前記イオン注入におけるドーズ量が
1×1015cm-2以下であることを特徴とする請求項1
記載の半導体装置の製造方法。
4. The method according to claim 1, wherein a dose in said ion implantation for said amorphousization and said ion implantation for said mixing is 1 × 10 15 cm −2 or less.
The manufacturing method of the semiconductor device described in the above.
【請求項5】 前記半導体基板としてSi基板を用い、 前記径を有する原子として、Si、Ar、Kr、Xe、
As、Ge、Sbの何れかを用いることを特徴とする請
求項1記載の半導体装置の製造方法。
5. An Si substrate is used as the semiconductor substrate, and Si, Ar, Kr, Xe,
2. The method for manufacturing a semiconductor device according to claim 1, wherein any one of As, Ge, and Sb is used.
【請求項6】 前記金属膜として、Ti膜、Co膜、N
i膜、Pt膜、Au膜、Cu膜、Zr膜、Hf膜、Pd
膜、W膜、Mo膜、Ta膜、TiN/Ti膜、TiN/
Co膜、Ti/Co膜、Co/Ti膜の何れかを用いる
ことを特徴とする請求項1記載の半導体装置の製造方
法。
6. The metal film as a Ti film, a Co film, a N film,
i film, Pt film, Au film, Cu film, Zr film, Hf film, Pd
Film, W film, Mo film, Ta film, TiN / Ti film, TiN /
2. The method according to claim 1, wherein one of a Co film, a Ti / Co film, and a Co / Ti film is used.
JP8342720A 1996-12-06 1996-12-06 Manufacture of semiconductor device Pending JPH10172920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8342720A JPH10172920A (en) 1996-12-06 1996-12-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8342720A JPH10172920A (en) 1996-12-06 1996-12-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH10172920A true JPH10172920A (en) 1998-06-26

Family

ID=18355975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8342720A Pending JPH10172920A (en) 1996-12-06 1996-12-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH10172920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399485B1 (en) 1999-07-28 2002-06-04 Nec Corporation Semiconductor device with silicide layers and method of forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399485B1 (en) 1999-07-28 2002-06-04 Nec Corporation Semiconductor device with silicide layers and method of forming the same

Similar Documents

Publication Publication Date Title
JPH10173177A (en) Manufacture of mis transistor
JPH07202195A (en) Manufacture of mos transistor with source / drain region of shallow joining and silicide
JPH11111642A (en) Manufacture of semiconductor device
JPH10284728A (en) Manufacture of mosfet having cobalt silicide film
US5741725A (en) Fabrication process for semiconductor device having MOS type field effect transistor
JP3149414B2 (en) Method of fabricating a semiconductor device having a shallow junction
JPH06112158A (en) Manufacture of semiconductor device
JP2679579B2 (en) Method for manufacturing semiconductor device
JP2000091570A (en) Manufacture of semiconductor device
JPH11224863A (en) Semiconductor device and its manufacture
JP3295931B2 (en) Method for manufacturing semiconductor device
JP3336604B2 (en) Method for manufacturing semiconductor device
JPH0917998A (en) Mos transistor manufacturing method
JPH09289249A (en) Fabrication method of semiconductor device
JPH09298300A (en) Manufacture of semiconductor device
JPH10172920A (en) Manufacture of semiconductor device
JPH07115198A (en) Method of manufacturing semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
JP3640079B2 (en) Manufacturing method of CMOS transistor
JP2006352127A (en) Method of forming self-aligned silicide film by using multiple heat treatment processes
JPH08274185A (en) Manufacture of mos transistor
JP2001015754A (en) Method for forming conductive line of semiconductor device
JP2561026B2 (en) Method for manufacturing semiconductor device
JP3920959B2 (en) Method for manufacturing complementary semiconductor device
JP2582337B2 (en) Method of manufacturing MOS transistor having source / drain regions and silicide with shallow junction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050520

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050610