JPH10169483A - Controller for transmission - Google Patents

Controller for transmission

Info

Publication number
JPH10169483A
JPH10169483A JP8333496A JP33349696A JPH10169483A JP H10169483 A JPH10169483 A JP H10169483A JP 8333496 A JP8333496 A JP 8333496A JP 33349696 A JP33349696 A JP 33349696A JP H10169483 A JPH10169483 A JP H10169483A
Authority
JP
Japan
Prior art keywords
temperature
torque
transmission
oil temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8333496A
Other languages
Japanese (ja)
Other versions
JP3691614B2 (en
Inventor
Masuo Kashiwabara
益夫 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP33349696A priority Critical patent/JP3691614B2/en
Priority to GB9726159A priority patent/GB2320339B/en
Priority to DE19755128A priority patent/DE19755128A1/en
Publication of JPH10169483A publication Critical patent/JPH10169483A/en
Application granted granted Critical
Publication of JP3691614B2 publication Critical patent/JP3691614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Fluid Gearings (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely suppress the temperature increase in transmission oil in a transmission equipped with a torque converter. SOLUTION: When an oil temperature detected value exceeds a prescribed level (S2), a torque down amount for reducing engine generation torque is set according to the oil temperature (S3). Then, the torque down amount is transmitted to a throttle control module(TCM), for electronic-controlling a throttle opening degree (S4), a controlled throttle opening degree is reduced according to the torque down amount and thereby engine generation torque is reduced. Associatively with torque reduction control, transmission to a higher speed stage is prohibited (S5) and, further, even if a gear is not in a highest speed state, expansion control for a lock-up area for executing locking-up is executed (S7 and S8).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変速機の制御装置に
関し、特に、トルクコンバータ付きの変速機における変
速機油の昇温防止の技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a transmission, and more particularly to a technique for preventing a temperature of transmission oil from rising in a transmission having a torque converter.

【0002】[0002]

【従来の技術】従来から、トルクコンバータを介して変
速機に機関の発生トルクが伝達される構成の自動変速機
において、自動変速機油(以下、ATFという)の温度
上昇によるATFの劣化や摩擦要素,シール部材の劣化
などを防止する方法として、ATFの温度が許容温度を
越えたときや許容温度を越えそうな状況のときに、前記
トルクコンバータに備えられたロックアップクラッチの
ロックアップ領域を拡大することで、トルクコンバータ
の滑りによる発熱量を減少させ、以て、ATFの温度上
昇を抑制する方法があった(特開昭62−205829
号公報,特開昭62−209265号公報,特開平5−
302671号公報等参照)。
2. Description of the Related Art Conventionally, in an automatic transmission having a configuration in which generated torque of an engine is transmitted to a transmission via a torque converter, deterioration of an ATF due to an increase in the temperature of an automatic transmission oil (hereinafter referred to as ATF) and frictional factors. As a method for preventing the deterioration of the seal member, the lock-up area of the lock-up clutch provided in the torque converter is expanded when the temperature of the ATF exceeds the allowable temperature or when the temperature is likely to exceed the allowable temperature. Thus, there has been a method of reducing the amount of heat generated due to slippage of the torque converter, thereby suppressing the temperature rise of the ATF (Japanese Patent Laid-Open No. Sho 62-205829).
JP, JP-A-62-209265, JP-A-5-209265
No. 302671).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、例えば
車両が登り坂を走行しているときには、車速の低下,ア
クセルからの足離し,変速などが頻繁に行われることに
なるため、ロックアップ領域を広げてもロックアップ領
域に長く留まっているとは限らず、ATFの昇温を確実
に防止することは困難であった。
However, when the vehicle is traveling on an uphill, for example, the vehicle speed is reduced, the foot is released from the accelerator, and the shift is frequently performed. However, it does not always remain in the lock-up region for a long time, and it has been difficult to reliably prevent the temperature of the ATF from rising.

【0004】また、自動変速機の変速動作やロックアッ
プを制御するコントロールユニットを変速機のケース内
に一体的に設ける構成とした場合には、電子部品の保護
のために、よりATFの昇温を低く抑える必要がある
が、ロックアップ領域の拡大のみでは、必要十分にAT
Fの昇温を抑えることは困難であった。本発明は上記問
題点に鑑みなされたものであり、コントロールユニット
を変速機のケース内に一体的に設ける構成とした場合で
あっても、ATFの温度を許容温度以内に確実に抑制で
きるようにすることを目的とする。
When a control unit for controlling the shift operation and lock-up of the automatic transmission is integrally provided in a case of the transmission, the temperature of the ATF is further increased to protect the electronic components. However, it is necessary to keep the AT
It was difficult to suppress the temperature rise of F. The present invention has been made in view of the above-described problems, and has a configuration in which the temperature of the ATF can be reliably suppressed to within an allowable temperature even when the control unit is integrally provided in a case of a transmission. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】そのため、請求項1記載
の発明は、図1に示すように構成される。図1におい
て、油温検出手段は、前記変速機の油温又は該油温に相
関する温度を検出する。そして、発生トルク低減手段
は、前記油温検出手段で検出された温度が所定温度以上
であるときに、機関の発生トルクを継続的に低減させ
る。
Therefore, the invention according to claim 1 is configured as shown in FIG. In FIG. 1, an oil temperature detecting means detects an oil temperature of the transmission or a temperature correlated to the oil temperature. The generated torque reducing means continuously reduces the generated torque of the engine when the temperature detected by the oil temperature detecting means is equal to or higher than a predetermined temperature.

【0006】かかる構成によると、変速機の油温が所定
温度(許容温度)以上になったときに、機関の発生トル
クを減少させてトルクコンバータにおける発熱量が抑制
される(図6参照)。一方、請求項2記載の発明は、図
2に示すように構成される。図2において、温度上昇予
測手段は、前記変速機の油温又は該油温に相関する温度
の所定温度以上への上昇を予測する。そして、発生トル
ク低減手段は、温度上昇予測手段で所定温度以上への上
昇が予測されたときに、機関の発生トルクを継続的に低
減させる。
According to this configuration, when the oil temperature of the transmission becomes equal to or higher than a predetermined temperature (allowable temperature), the generated torque of the engine is reduced to suppress the amount of heat generated in the torque converter (see FIG. 6). On the other hand, the invention according to claim 2 is configured as shown in FIG. In FIG. 2, the temperature rise prediction means predicts a rise in the oil temperature of the transmission or a temperature correlated with the oil temperature to a predetermined temperature or higher. The generated torque reducing means continuously reduces the generated torque of the engine when the temperature rise predicting means predicts a rise to a predetermined temperature or higher.

【0007】かかる構成によると、油温が所定温度(許
容温度)を越えると予測されるときには、機関の発生ト
ルクを低減させることでトルクコンバータにおける発熱
量を予め抑制し(図6参照)、油温が前記所定温度(許
容温度)を越えないようにする。尚、請求項1又は2に
おいて、油温に相関する温度とは、例えば、油の雰囲気
温度,変速機のケース温度などである。また、自動変速
機において、変速機のケース内に変速動作やロックアッ
プを制御するコントロールユニットを一体的に備える構
成であっても良い。
With this configuration, when the oil temperature is predicted to exceed a predetermined temperature (allowable temperature), the amount of heat generated in the torque converter is suppressed in advance by reducing the torque generated by the engine (see FIG. 6). The temperature does not exceed the predetermined temperature (allowable temperature). In the first and second aspects, the temperature correlated with the oil temperature is, for example, the ambient temperature of the oil, the case temperature of the transmission, and the like. Further, the automatic transmission may have a configuration in which a control unit that controls a shift operation and lock-up is integrally provided in a case of the transmission.

【0008】請求項3記載の発明では、前記発生トルク
低減手段が、温度及び/又は温度の上昇割合が高いとき
ほど、より大きく機関の発生トルクを低減させる構成と
した。かかる構成によると、油温が高くなるほど及び/
又は温度上昇が急激なときほどより大きな低減量で機関
の発生トルクが抑制され、油温が低く発生トルクの低減
要求が比較的小さいときには、発生トルクの低減量が低
く制限される。
[0008] In the invention according to claim 3, the generated torque reducing means is configured to reduce the generated torque of the engine more as the temperature and / or the rate of temperature rise is higher. According to such a configuration, the higher the oil temperature is, and / or
Alternatively, as the temperature rises more rapidly, the generated torque of the engine is suppressed by a larger reduction amount, and when the oil temperature is low and the request for reducing the generated torque is relatively small, the reduced amount of the generated torque is limited to a small amount.

【0009】請求項4記載の発明では、前記発生トルク
低減手段により機関の発生トルクを継続的に低減させて
いる間に、前記トルクコンバータに備えられたロックア
ップクラッチのロックアップ領域を拡大するロックアッ
プ領域拡大手段を設ける構成とした。かかる構成による
と、機関の発生トルクの低減と、ロックアップ(トルク
コンバータの入力側と出力側との機械的な直結)の積極
的な実行とが同時に行われ、双方の作用で油温の低下を
図る。
According to the present invention, while the generated torque of the engine is continuously reduced by the generated torque reducing means, a lock for expanding a lock-up region of a lock-up clutch provided in the torque converter is provided. A configuration is provided in which an up area expanding means is provided. According to this configuration, the reduction of the torque generated by the engine and the positive execution of lock-up (mechanical direct connection between the input side and the output side of the torque converter) are performed simultaneously, and the oil temperature is reduced by both actions. Plan.

【0010】請求項5記載の発明では、前記発生トルク
低減手段により機関の発生トルクを継続的に低減させて
いる間に、前記変速機の変速範囲を低速側に制限するダ
ウンシフト手段を設ける構成とした。かかる構成による
と、変速機が1速〜4速の変速段を有する自動変速機で
ある場合に、前記発生トルク低減手段で機関の発生トル
クを低減させているときには、例えば1速〜3速に変速
範囲を制限し、4速に変速されているときには、積極的
なダウンシフトを行わせる。ダウンシフトによって要求
機関トルクが低下するから、発生トルク低減手段による
低減分と加算されて、大きく発生トルクを低下させるこ
とが可能となる。
According to a fifth aspect of the present invention, a downshift means is provided for limiting the shift range of the transmission to a lower speed side while the generated torque of the engine is continuously reduced by the generated torque reducing means. And According to such a configuration, when the transmission is an automatic transmission having first to fourth speeds, and the generated torque of the engine is reduced by the generated torque reducing means, for example, the first to third speeds are set. The shift range is limited, and a positive downshift is performed when shifting to the fourth speed. Since the required engine torque is reduced by the downshift, the required torque is added to the reduction by the generated torque reducing means, and the generated torque can be greatly reduced.

【0011】請求項6記載の発明では、前記発生トルク
低減手段により機関の発生トルクを継続的に低減させて
いる状態を運転者に警告する警告手段を設ける構成とし
た。かかる構成によると、トルクコンバータの油温を下
げるために機関の発生トルクを強制的に低減させている
ときに、かかる制御の実行状態を例えば警告灯の点灯や
ブザーなどによって警告することで運転者が認知でき
る。
According to a sixth aspect of the present invention, there is provided a warning means for warning a driver that the generated torque of the engine is being continuously reduced by the generated torque reducing means. According to this configuration, when the torque generated by the engine is forcibly reduced in order to lower the oil temperature of the torque converter, the execution state of the control is warned by, for example, turning on a warning light or a buzzer, so that the driver Can be recognized.

【0012】[0012]

【発明の効果】請求項1記載の発明によると、トルクコ
ンバータ付きの変速機の油温が許容温度を越えたとき
に、機関の発生トルクを低減させることで前記油温の速
やかで確実な低下を図ることができるので、油温が高い
まま保持されて油の劣化等を招くことを防止でき、更
に、コントロールユニットが変速機と一体に設けられる
場合であってもコントロールユニットの電子部品の保護
を図れる程度に油温を低く制御できるという効果があ
る。
According to the first aspect of the present invention, when the oil temperature of the transmission with the torque converter exceeds the allowable temperature, the torque generated by the engine is reduced, whereby the oil temperature is quickly and surely lowered. As a result, it is possible to prevent deterioration of the oil due to the oil temperature being kept high, and to protect the electronic components of the control unit even when the control unit is provided integrally with the transmission. Thus, there is an effect that the oil temperature can be controlled to be low enough to reduce the oil temperature.

【0013】請求項2記載の発明によると、トルクコン
バータ付きの変速機の油温が許容温度を越えそうなとき
に、機関の発生トルクを予め低減させることで前記油温
が許容温度を越えることを未然に防止できるので、油温
が許容温度を越えて油の劣化等を招くことを防止でき、
更に、コントロールユニットが変速機と一体に設けられ
る場合であってもコントロールユニットの電子部品の保
護を図れる程度に油温を低く制御できるという効果があ
る。
According to the second aspect of the invention, when the oil temperature of the transmission with the torque converter is likely to exceed the allowable temperature, the torque generated by the engine is reduced in advance so that the oil temperature exceeds the allowable temperature. Can be prevented beforehand, so that it is possible to prevent the oil temperature from exceeding the allowable temperature and causing deterioration of the oil, etc.
Furthermore, even when the control unit is provided integrally with the transmission, there is an effect that the oil temperature can be controlled low enough to protect the electronic components of the control unit.

【0014】請求項3記載の発明によると、変速機の油
の温度上昇を抑制するために機関の発生トルクを低減さ
せるときに、油温の上昇を確実に回避しつつ、必要以上
に機関の発生トルクが低減されてしまうことを回避でき
るという効果がある。請求項4記載の発明によると、機
関の発生トルクの低減と、ロックアップクラッチのロッ
クアップ領域の拡大との双方により、変速機の油の温度
低下を図るので、比較的大きな温度低下要求に対しても
確実に対応でき、コントロールユニットが変速機と一体
に設けられる場合であってもコントロールユニットの電
子部品の保護を図れる程度に油温を低く制御できるとい
う効果がある。
According to the third aspect of the present invention, when the torque generated in the engine is reduced to suppress the increase in the oil temperature of the transmission, the increase in the oil temperature is prevented more than necessary while reliably avoiding the increase in the oil temperature. There is an effect that reduction in generated torque can be avoided. According to the fourth aspect of the invention, the oil temperature of the transmission is reduced by both reducing the torque generated by the engine and expanding the lock-up region of the lock-up clutch. Even if the control unit is provided integrally with the transmission, the oil temperature can be controlled low enough to protect the electronic components of the control unit.

【0015】請求項5記載の発明によると、機関の発生
トルクの低減と、シフトダウンとの双方により、変速機
の油の温度低下を図るので、比較的大きな温度低下要求
に対しても確実に対応でき、コントロールユニットが変
速機と一体に設けられる場合であってもコントロールユ
ニットの電子部品の保護を図れる程度に油温を低く制御
できるという効果がある。
According to the fifth aspect of the present invention, the oil temperature of the transmission is reduced by both reducing the generated torque of the engine and downshifting, so that even a relatively large temperature reduction request can be ensured. Accordingly, even when the control unit is provided integrally with the transmission, there is an effect that the oil temperature can be controlled low enough to protect the electronic components of the control unit.

【0016】請求項6記載の発明によると、変速機の油
温を低下させるための機関発生トルクの低減制御が実行
されていることを運転者が認知でき、以て、前記低減制
御による発生トルクの低下を機関不調によるものと誤認
することを回避できるという効果がある。
According to the present invention, the driver can recognize that the control for reducing the engine generated torque for reducing the oil temperature of the transmission is being executed, so that the torque generated by the reduction control can be recognized. There is an effect that it is possible to avoid erroneously recognizing the decrease in the number as a result of an engine malfunction.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図3は、本発明による変速機の制御装置の実施の
形態を示すシステム構成図である。ここで、図示しない
車両に搭載される内燃機関1のトルクは、自動有段変速
機2を介して駆動輪(図示省略)に伝達される構成であ
り、前記自動有段変速機2は、ロックアップクラッチを
備えたトルクコンバータを介して歯車式変速機にトルク
を伝達する構成となっている。
Embodiments of the present invention will be described below. FIG. 3 is a system configuration diagram showing an embodiment of a transmission control device according to the present invention. Here, the torque of the internal combustion engine 1 mounted on the vehicle (not shown) is transmitted to driving wheels (not shown) via the automatic stepped transmission 2, and the automatic stepped transmission 2 is locked. The configuration is such that torque is transmitted to a gear transmission via a torque converter having an up clutch.

【0018】尚、変速機は、トルクコンバータを介して
無段変速機に機関トルクを伝達する構成のものであって
も良い。内燃機関1の吸気通路には、モータ3で開閉駆
動されるスロットル弁4が介装されており、該スロット
ル弁4の開度によって機関1の吸入空気量が調整され
る。
The transmission may be configured to transmit engine torque to a continuously variable transmission via a torque converter. A throttle valve 4 that is opened and closed by a motor 3 is interposed in an intake passage of the internal combustion engine 1, and an intake air amount of the engine 1 is adjusted by an opening degree of the throttle valve 4.

【0019】前記モータ3は、スロットル・コントロー
ル・モジュール(以下、TCMという)5からの制御信
号によって動作する。前記TCM5には、運転者によっ
て操作されるアクセルベダルの踏込み量を検出するアク
セル開度センサ9からのアクセル開度信号ACCが入力
され、該アクセル開度ACCに応じて目標スロットル弁
開度TVOtaを設定し、スロットルセンサ6で検出され
る実際のスロットル弁開度TVOが、前記目標スロット
ル弁開度TVOtaに一致するように、モータ3をフィー
ドバック制御する。
The motor 3 is operated by a control signal from a throttle control module (hereinafter, referred to as TCM) 5. The TCM 5 receives an accelerator opening signal ACC from an accelerator opening sensor 9 for detecting an amount of depression of an accelerator pedal operated by a driver, and sets a target throttle valve opening TVOta in accordance with the accelerator opening ACC. Then, the motor 3 is feedback-controlled so that the actual throttle valve opening TVO detected by the throttle sensor 6 matches the target throttle valve opening TVOta.

【0020】一方、前記自動有段変速機2の変速動作や
ロックアップの制御を行う自動変速機コントロールユニ
ット(以下、A/T−C/Uという)7は、自動有段変
速機2の作動油圧を制御する各種ソレノイドバルブや該
ソレノイドバルブを駆動するパワートランジタなどと共
に、前記自動有段変速機2のケース内に一体的に備えら
れている。
On the other hand, an automatic transmission control unit (hereinafter, referred to as A / TC / U) 7 for controlling the shift operation and lock-up of the automatic stepped transmission 2 operates the automatic stepped transmission 2. Along with various solenoid valves for controlling the hydraulic pressure and a power transistor for driving the solenoid valves, they are integrally provided in the case of the automatic stepped transmission 2.

【0021】また、前記A/T−C/U7には、車速セ
ンサ8からの車速信号VSP、前記アクセル開度センサ
9からのアクセル開度信号ACC、機関1の回転数Ne
(rpm)を検出する回転センサ10からの機関回転数信号N
e、更に、前記自動有段変速機2の油(以下、ATFと
いう)の温度を検出する油温センサ11(油温検出手段)
からの油温信号Tatf 等が入力されるようになってい
る。
The A / TC / U 7 includes a vehicle speed signal VSP from a vehicle speed sensor 8, an accelerator opening signal ACC from the accelerator opening sensor 9, and a rotation speed Ne of the engine 1.
(Rpm) the engine speed signal N from the speed sensor 10 for detecting
e, an oil temperature sensor 11 (oil temperature detecting means) for detecting the temperature of the oil (hereinafter referred to as ATF) of the automatic stepped transmission 2
, And the like.

【0022】そして、前記A/T−C/U7は、前記各
種の信号に基づいて自動変速制御やロックアップ制御を
行うと共に、図4のフローチャートに示すようにして、
前記油温Tatf が許容温度を越えることを抑止する制御
を行うようになっている。尚、本実施の形態において、
前記A/T−C/U7は、発生トルク低減手段,ロック
アップ領域拡大手段,ダウンシフト手段としての機能
を、前記図4のフローチャートに示すように備えてい
る。
The A / TC / U 7 performs automatic shift control and lock-up control based on the various signals, and performs the following operations as shown in the flowchart of FIG.
Control is performed to prevent the oil temperature Tatf from exceeding an allowable temperature. In the present embodiment,
The A / TC / U 7 has functions as a generated torque reducing means, a lock-up area enlarging means, and a downshifting means as shown in the flowchart of FIG.

【0023】図4のフローチャートにおいて、まず、ス
テップ1(図中にはS1と記してある。以下同様)で
は、前記油温センサ11で検出されたATFの油温Tatf
を読み込む。ステップ2では、前記ステップ1で読み込
んだ油温Tatf と所定温度(許容温度)ts とを比較す
る。そして、現在の油温Tatf が所定温度ts 未満であ
るときには、本ルーチンをそのまま終了させるが、現在
の油温Tatf が所定温度ts以上であるときには、ステ
ップ3へ進む。
In the flowchart of FIG. 4, first, in step 1 (denoted by S1 in the figure, the same applies hereinafter), the oil temperature Tatf of the ATF detected by the oil temperature sensor 11 is used.
Read. In step 2, the oil temperature Tatf read in step 1 is compared with a predetermined temperature (allowable temperature) ts. When the current oil temperature Tatf is lower than the predetermined temperature ts, this routine is terminated as it is. When the current oil temperature Tatf is higher than the predetermined temperature ts, the routine proceeds to step 3.

【0024】ステップ3では、機関1の発生トルクを強
制的に低減することで前記油温Tatf の低下を図るべ
く、前記油温Tatf に応じてトルクダウン量を設定す
る。前記トルクダウン量(%)は、図5に示すように、
現在の油温Tatf が所定温度(図5における100 ℃)よ
りも高いほどより大きく設定されるようにしてあり、こ
れにより、油温Tatf が比較的低い状態での過剰なトル
クダウンを回避しつつ、油温Tatf が比較的高いときに
は大きく発生トルクを低減させて、油温Tatf の速やか
な低下を図る。
In step 3, in order to reduce the oil temperature Tatf by forcibly reducing the torque generated by the engine 1, a torque reduction amount is set according to the oil temperature Tatf. The torque reduction amount (%) is, as shown in FIG.
As the current oil temperature Tatf is higher than a predetermined temperature (100 ° C. in FIG. 5), the oil temperature is set to be larger, thereby avoiding excessive torque reduction when the oil temperature Tatf is relatively low. When the oil temperature Tatf is relatively high, the generated torque is greatly reduced, and the oil temperature Tatf is rapidly reduced.

【0025】図6に示すように、機関1の発生トルクT
e及び機関1の回転数Neがトルクコンバータの発熱量
に影響し、発生トルクが大きいときほど発熱量が多くな
るから、発生トルクを減少させることでトルクコンバー
タの発熱量を減少させ、以て、変速機の油温を低下させ
ることができるものである。次のステップ4では、前記
ステップ3で設定したトルクダウン量をTCM5に送信
する。TCM5では、アクセル開度に応じた通常の目標
スロットル弁開度TVOtaを前記トルクダウン量に応じ
て減少補正し、該減少補正後の目標スロットル弁開度T
VOtaに基づいてスロットル弁4の開度を制御する。こ
れにより、油温Tatf が所定温度を越えている間、機関
1の吸入空気量を強制的に減少させ、これにより機関1
の発生トルクが継続的に低減され、以て、油温Tatf の
所定温度以下への低下が図られる。
As shown in FIG. 6, the generated torque T of the engine 1
e and the rotation speed Ne of the engine 1 affect the heat generation amount of the torque converter, and the heat generation amount increases as the generated torque increases. Therefore, the heat generation amount of the torque converter is reduced by reducing the generated torque. The oil temperature of the transmission can be reduced. In the next step 4, the torque down amount set in step 3 is transmitted to the TCM 5. In the TCM 5, the normal target throttle valve opening TVOta corresponding to the accelerator opening is corrected to decrease in accordance with the torque reduction amount, and the target throttle valve opening T after the decrease correction is corrected.
The opening of the throttle valve 4 is controlled based on VOta. As a result, while the oil temperature Tatf exceeds the predetermined temperature, the intake air amount of the engine 1 is forcibly reduced.
Is continuously reduced, thereby lowering the oil temperature Tatf to a predetermined temperature or lower.

【0026】また、次のステップ5では、最高速側の変
速段に3速をセットすることで、通常の変速範囲である
1速〜4速を用いずに、低速側の1速〜3速に制限して
自動変速制御を行わせるようにする。これにより、通常
のシフトスケジュールに因れば、4速に変速される運転
条件において、3速にシフトダウンされることになり、
該シフトダウンは、図6において回転が上昇し、発生ト
ルクが減少する方向の制御となるから、トルクコンバー
タにおける発熱量が減少することになる。
In the next step 5, the third gear is set to the highest gear, so that the first gear to the third gear, which is the normal gear range, is not used. And automatic transmission control is performed. As a result, according to the normal shift schedule, downshifting to third speed is performed under operating conditions in which shifting to fourth speed is performed,
In the downshift, the rotation is increased in FIG. 6 and the generated torque is reduced, so that the amount of heat generated in the torque converter is reduced.

【0027】従って、前記ステップ3,4におけるトル
クダウン制御と前記ステップ5におけるシフトダウン制
御とを併用することで、前記ステップ3,4のトルクダ
ウン制御のみを行わせる場合よりも、より一層トルクコ
ンバータにおける発熱量を低下させることが可能とな
り、以て、油温Tatf の速やかな低下が図れ、ATFの
劣化防止が図られると共に、変速機2と一体に設けられ
るA/T−C/U7の保護を図れる。
Therefore, by using the torque down control in the steps 3 and 4 and the shift down control in the step 5 together, the torque converter is more improved than when only the torque down control in the steps 3 and 4 is performed. At the same time, the oil temperature Tatf can be rapidly lowered, the ATF can be prevented from deteriorating, and the A / T-C / U7 provided integrally with the transmission 2 can be protected. Can be achieved.

【0028】また、ステップ6では、そのときの車速V
SPが所定車速を越えているか否かを判別し、所定車速
以上であればステップ7へ進んで、トルクコンバータに
備えられたロックアップクラッチのロックアップを実行
させる。通常のロックアップ制御においては、4速がロ
ックアップの条件となるが、上記のように4速への変速
を禁止されているから、上記のロックアップ制御は、4
速以外(3速)でロックアップを行わせることになり、
ロックアップ領域の拡大に相当する。
In step 6, the current vehicle speed V
It is determined whether or not SP exceeds a predetermined vehicle speed. If the vehicle speed is equal to or higher than the predetermined vehicle speed, the process proceeds to step 7, where lock-up of a lock-up clutch provided in the torque converter is performed. In the normal lock-up control, the fourth speed is a lock-up condition. However, since the shift to the fourth speed is prohibited as described above, the lock-up control is
Will be locked up at speed other than 3rd speed.
This corresponds to the expansion of the lockup area.

【0029】ロックアップが行われると、トルクコンバ
ータにおける入力側と出力側とが機械的に直結されるこ
とになるから、トルクコンバータの滑りによる発熱を回
避できることになる。また、車速が低くロックアップが
行えないときには、前記ステップ3〜5の処理でトルク
コンバータの発熱量が抑制されることになる。尚、油温
Tatf が高いときに、ロックアップ領域の拡大を行い、
該拡大されたロックアップ領域から外れたときにのみ、
機関1の発生トルクを減少させる制御や強制的なシフト
ダウン制御(最高速段への変速の禁止)を行わせる構成
としても良い。
When the lock-up is performed, the input side and the output side of the torque converter are mechanically directly connected, so that heat generation due to slippage of the torque converter can be avoided. Further, when the lockup cannot be performed due to the low vehicle speed, the amount of heat generated by the torque converter is suppressed in the processes of steps 3 to 5. When the oil temperature Tatf is high, the lock-up region is expanded,
Only when deviating from the enlarged lockup area,
A configuration may be employed in which control for reducing the torque generated by the engine 1 or forcible downshift control (prohibition of shifting to the highest speed) is performed.

【0030】また、ステップ8では、油温Tatf を低下
させるための機関発生トルクの低減制御や最高速段への
変速の禁止が行われていることを運転者に認知させるべ
く、例えば運転席の計器部分に設けた警告灯12を点灯さ
せる(警告手段)。これにより、油温を低下させるため
の発生トルクの低減制御を機関不調と運転者が誤認して
しまうことを回避できる。
In step 8, in order to make the driver aware that reduction control of the engine-generated torque for lowering the oil temperature Tatf and prohibition of shifting to the highest speed are performed, for example, in the driver's seat. The warning light 12 provided on the instrument section is turned on (warning means). Thus, it is possible to prevent the driver from erroneously recognizing the control for reducing the generated torque for lowering the oil temperature as an engine malfunction.

【0031】ところで、前記ステップ3におけるトルク
ダウン量の設定を、図7に示すようにして行わせる構成
としても良い。図7において、(A)は、図6のトル
ク,回転数と発熱量との相関を示す図における許容発熱
量の特性線を取り出し、かつ、回転数NeとトルクTe
との相関に対応するスロットル開度TVOを示したもの
であり、この(A)から、回転数Ne毎にトルクコンバ
ータの発熱量を許容値内に制限するためのスロットル弁
開度TVOの上限値が、回転数Neが高いときほど大き
な値として決定されること、即ち、回転数Neが低いと
きほどスロットル開度TVOをより低く制限する必要が
あることが分かる。
By the way, the setting of the torque reduction amount in step 3 may be performed as shown in FIG. In FIG. 7, (A) shows the characteristic line of the allowable heat generation amount in the graph showing the correlation between the torque, the rotation speed and the heat generation amount in FIG. 6, and shows the rotation speed Ne and the torque Te.
And the upper limit of the throttle valve opening TVO for limiting the calorific value of the torque converter to an allowable value for each rotation speed Ne from this (A). It can be seen that the higher the rotation speed Ne, the larger the value is determined, that is, the lower the rotation speed Ne, the lower the throttle opening TVO needs to be limited.

【0032】また、定常的には、油温Tatf が許容温度
を越えることのない発熱量であっても、油温Tatf が高
いときには、より発熱量を小さくした方が速やかな油温
Tatf の低下を図れるから、(B)に示すように、回転
数Neが低いときほど、また、そのときの油温Tatf が
高いほどスロットル開度の上限値を低く設定し、該上限
値をトルクダウン量としてTCM5に出力させるように
しても良い。TCM5では、前記目標スロットル開度T
VOtaが前記上限値を上回ることがないように制限し、
実際のスロットル開度を制御する。
Further, even when the oil temperature Tatf is a calorific value that does not exceed the allowable temperature, the lower the calorific value is, the higher the oil temperature Tatf is, the lower the oil temperature Tatf is reduced. Therefore, as shown in (B), the lower the rotation speed Ne and the higher the oil temperature Tatf at that time, the lower the upper limit of the throttle opening is set, and the upper limit is used as the torque reduction amount. You may make it output to TCM5. In TCM5, the target throttle opening T
VOta is limited so as not to exceed the upper limit,
Control the actual throttle opening.

【0033】また、上記のようにスロットル開度の上限
値を設定させる代わりに、図7(C)に示すように、ア
クセル開度を目標スロットル弁開度TVOtaに変換する
ときのゲインを、(B)の場合と同様な傾向となるよう
に設定しても良い。即ち、(C)の場合には、回転数N
eが低いときほど、また、そのときの油温Tatf が高い
ほど前記ゲインを小さくして、アクセル開度が大きい場
合であっもスロットル開度を小さく制限して発生トルク
を低減させる。
Instead of setting the upper limit of the throttle opening as described above, as shown in FIG. 7 (C), the gain for converting the accelerator opening to the target throttle valve opening TVOta is represented by ( It may be set so as to have the same tendency as in the case B). That is, in the case of (C), the rotation speed N
The lower the value of e and the higher the oil temperature Tatf at that time, the smaller the gain, and even when the accelerator opening is large, the throttle opening is limited to a small value to reduce the generated torque.

【0034】ところで、上記実施の形態は、油温センサ
11で検出されるそのときの油温Tatf が許容温度を越え
たときに機関の発生トルクを低減させる制御などを行わ
せる構成としたが、油温Tatf が許容温度を越えること
を予測して、許容温度を越えそうな状況のときに予め機
関の発生トルクを低減させる制御(及びシフトダウン制
御,ロックアップ領域の拡大)を行う構成とすることも
できる。
In the above embodiment, the oil temperature sensor
When the oil temperature Tatf detected at 11 exceeds the allowable temperature, control is performed to reduce the torque generated by the engine, but the oil temperature Tatf is predicted to exceed the allowable temperature. When the temperature is likely to exceed the allowable temperature, control for reducing the generated torque of the engine (and downshift control and expansion of the lockup region) may be performed in advance.

【0035】図8は、前記温度上昇予測を行う実施の形
態(温度上昇予測手段)を示すブロック図であり、油温
センサ11からの検出信号がA/D変換され、変換テーブ
ル等により前記A/D変換値が温度データに変換され
る。そして、前記温度データの微分値が求められ、前記
微分値のデータと温度データの瞬時値とに基づいてトル
クダウン量が決定される。前記トルクダウン量は、図9
に示すように、そのときの油温Tatf が高いほど、ま
た、油温Tatf の上昇割合が急激であるほど、トルクダ
ウン量(%)として大きな値が設定される。
FIG. 8 is a block diagram showing an embodiment (temperature rise predicting means) for performing the temperature rise prediction. The detection signal from the oil temperature sensor 11 is A / D converted and the A / D conversion is performed by a conversion table or the like. The / D conversion value is converted to temperature data. Then, a differential value of the temperature data is obtained, and the torque down amount is determined based on the differential value data and the instantaneous value of the temperature data. The torque down amount is shown in FIG.
As shown in (2), the larger the oil temperature Tatf at that time, and the sharper the rate of increase of the oil temperature Tatf, the greater the value set as the torque down amount (%).

【0036】上記構成によれば、そのときの油温Tatf
が許容温度内であっても、急激な上昇変化を示している
ときには、いずれは許容温度を越えるようになるものと
の予測から、実際に許容温度を越える前に温度低下を図
るトルクダウン制御を行わせることができ、以て、許容
温度を越えること若しくは許容温度を大きく越えてしま
うことを防止できる。
According to the above configuration, the oil temperature at that time Tatf
Even if the temperature is within the allowable temperature, if a rapid increase is indicated, it is predicted that the temperature will eventually exceed the allowable temperature. This can prevent the temperature from exceeding the allowable temperature or greatly exceeding the allowable temperature.

【0037】また、温度上昇の予測(温度上昇予測手
段)は、図10に示すような構成によっても行うことがで
きる。図10において、まず、機関回転数Neと機関発生
トルクTeとからトルクコンバータにおける瞬時発熱量
Qを求める。前記機関発生トルクTeは、スロットル開
度やシリンダ吸入空気量などで代表させることができ
る。
The prediction of the temperature rise (temperature rise predicting means) can also be performed by a configuration as shown in FIG. In FIG. 10, first, an instantaneous heat generation amount Q in the torque converter is obtained from the engine speed Ne and the engine generated torque Te. The engine generated torque Te can be represented by a throttle opening, a cylinder intake air amount, and the like.

【0038】次に、前記瞬時発熱量Qを所定時間だけ積
分し、該発熱量Qの積分値と前記油温センサ11で検出さ
れた油温Tatf とに基づいてトルクダウン量を決定す
る。ここでも、前記積分値が大きく急激な温度上昇が見
込まれるときには、たとえそのときの油温Tatf が低い
場合であっても、機関の発生トルクを低減させるべくト
ルクダウン量を決定し、実際に油温Tatf が許容温度を
越える前から温度上昇を抑制する制御を行わせる。
Next, the instantaneous heat generation amount Q is integrated for a predetermined time, and the torque reduction amount is determined based on the integrated value of the heat generation amount Q and the oil temperature Tatf detected by the oil temperature sensor 11. Here, when the integral value is large and a sharp temperature rise is expected, even if the oil temperature Tatf at that time is low, the torque reduction amount is determined to reduce the torque generated by the engine, and the oil is actually reduced. Before the temperature Tatf exceeds the allowable temperature, a control for suppressing the temperature rise is performed.

【0039】前記瞬時発熱量Qは、 Q=K・Ne・Te・(1−η) として、トルクコンバータにおける損失分として演算す
ることができる。ここで、Kは定数、Neは機関回転数
(rpm)、Teは機関発生トルク、ηはトルクコンバータ
の効率である。ここで、機関発生トルクTeは、機関の
吸入空気流量をQaとしたときに、Te=k×Qa/N
e(kは定数)と見做せるから、前記瞬時発熱量Qは、 Q=K’・Qa・(1−η) として求めることができる。
The instantaneous heat generation amount Q can be calculated as a loss in the torque converter, where Q = K · Ne · Te · (1−η). Here, K is a constant, Ne is the engine speed (rpm), Te is the engine generated torque, and η is the efficiency of the torque converter. Here, the engine generated torque Te is expressed as Te = k × Qa / N, where Qa is the intake air flow rate of the engine.
Since it can be regarded as e (k is a constant), the instantaneous heat generation amount Q can be obtained as Q = K ′ · Qa · (1−η).

【0040】また、簡易には、予め機関回転数Neとス
ロットル開度(又はシリンダ吸入空気量Qa/Ne)に
応じて瞬時発熱量Qを記憶したマップを備え、該マップ
を参照して瞬時発熱量Qを求めることもできる。尚、上
記実施の形態では、スロットル弁の開度を減少させるこ
とで機関の吸入空気量を減少させ、以て、機関の発生ト
ルクを低減する構成としたが、例えば点火時期を遅角さ
せたり、空燃比をリーン化させるなどして機関1の発生
トルクを低減させる構成であっても良い。
For simplicity, there is provided a map in which the instantaneous heat generation Q is stored in advance according to the engine speed Ne and the throttle opening (or the cylinder intake air amount Qa / Ne). The quantity Q can also be determined. In the above-described embodiment, the intake air amount of the engine is reduced by reducing the opening of the throttle valve, thereby reducing the torque generated by the engine. Alternatively, the torque generated by the engine 1 may be reduced by making the air-fuel ratio lean.

【0041】また、油温Tatf を検出する代わりに、A
TFの雰囲気の温度や、変速機2のケースの温度を検出
させる構成としても良い。
Also, instead of detecting the oil temperature Tatf, A
The configuration may be such that the temperature of the atmosphere of the TF or the temperature of the case of the transmission 2 is detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の変速機の制御装置の基本構成を
示すブロック図。
FIG. 1 is a block diagram showing a basic configuration of a control device for a transmission according to claim 1.

【図2】請求項2記載の変速機の制御装置の基本構成を
示すブロック図。
FIG. 2 is a block diagram showing a basic configuration of a control device for a transmission according to claim 2;

【図3】実施の形態における変速機のシステム構成図。FIG. 3 is a system configuration diagram of a transmission according to the embodiment.

【図4】実施の形態における油温制御の内容を示すフロ
ーチャート。
FIG. 4 is a flowchart showing details of oil temperature control in the embodiment.

【図5】実施の形態における油温とトルクダウン量との
相関を示す線図。
FIG. 5 is a diagram showing a correlation between an oil temperature and a torque down amount in the embodiment.

【図6】機関トルク,回転数とトルクコンバータの発熱
量との相関を示す線図。
FIG. 6 is a diagram showing a correlation between the engine torque and the number of revolutions and the amount of heat generated by the torque converter.

【図7】スロットル上限値又はゲインの設定によりトル
ク低減を図る実施形態を示す線図。
FIG. 7 is a diagram showing an embodiment for reducing torque by setting a throttle upper limit value or a gain.

【図8】油温の微分値に基づく油温の上昇予測によって
トルク低減制御を行う実施の形態を示す制御ブロック
図。
FIG. 8 is a control block diagram illustrating an embodiment in which torque reduction control is performed by predicting an increase in oil temperature based on a differential value of oil temperature.

【図9】油温の微分値と油温の瞬時値とに基づくトルク
ダウン量の特性を示す線図。
FIG. 9 is a diagram showing characteristics of a torque reduction amount based on a differential value of an oil temperature and an instantaneous value of the oil temperature.

【図10】瞬時発熱量の積分値に基づく油温の上昇予測に
よってトルク低減制御を行う実施の形態を示す制御ブロ
ック図。
FIG. 10 is a control block diagram illustrating an embodiment in which torque reduction control is performed by predicting a rise in oil temperature based on an integrated value of instantaneous heat generation.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 自動有段変速機 3 モータ 4 スロットル弁 5 TCM 6 スロットルセンサ 7 A/T−C/U 8 車速センサ 9 アクセル開度センサ 10 回転センサ 11 油温センサ 12 警告灯 DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Automatic stepped transmission 3 Motor 4 Throttle valve 5 TCM 6 Throttle sensor 7 A / TC / U 8 Vehicle speed sensor 9 Accelerator opening sensor 10 Rotation sensor 11 Oil temperature sensor 12 Warning light

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】トルクコンバータ付き変速機の制御装置で
あって、 前記変速機の油温又は該油温に相関する温度を検出する
油温検出手段と、 該油温検出手段で検出された温度が所定温度以上である
ときに、機関の発生トルクを継続的に低減させる発生ト
ルク低減手段と、 を含んで構成されたことを特徴とする変速機の制御装
置。
1. A control device for a transmission with a torque converter, comprising: oil temperature detecting means for detecting an oil temperature of the transmission or a temperature correlated with the oil temperature; and a temperature detected by the oil temperature detecting means. And a generated torque reducing means for continuously reducing the generated torque of the engine when the temperature is equal to or higher than a predetermined temperature.
【請求項2】トルクコンバータ付き変速機の制御装置で
あって、 前記変速機の油温又は該油温に相関する温度の所定温度
以上への上昇を予測する温度上昇予測手段と、 該温度上昇予測手段で所定温度以上への上昇が予測され
たときに、機関の発生トルクを継続的に低減させる発生
トルク低減手段と、 を含んで構成されたことを特徴とする変速機の制御装
置。
2. A control device for a transmission with a torque converter, comprising: a temperature rise predicting means for predicting a rise in an oil temperature of the transmission or a temperature correlated to the oil temperature to a predetermined temperature or higher; A control device for a transmission, comprising: a generating torque reducing unit that continuously reduces the generated torque of the engine when the predicting unit predicts a rise to a predetermined temperature or higher.
【請求項3】前記発生トルク低減手段が、温度及び/又
は温度の上昇割合が高いときほど、より大きく機関の発
生トルクを低減させることを特徴とする請求項1又は2
に記載の変速機の制御装置。
3. The generated torque reducing means according to claim 1, wherein the generated torque of the engine is reduced more as the temperature and / or the rate of temperature rise is higher.
2. The control device for a transmission according to claim 1.
【請求項4】前記発生トルク低減手段により機関の発生
トルクを継続的に低減させている間に、前記トルクコン
バータに備えられたロックアップクラッチのロックアッ
プ領域を拡大するロックアップ領域拡大手段を設けたこ
とを特徴とする請求項1〜3のいずれか1つに記載の変
速機の制御装置。
4. A lock-up area enlarging means for enlarging a lock-up area of a lock-up clutch provided in the torque converter while the generated torque of the engine is continuously reduced by the generated torque reducing means. The control device for a transmission according to any one of claims 1 to 3, wherein:
【請求項5】前記発生トルク低減手段により機関の発生
トルクを継続的に低減させている間に、前記変速機の変
速範囲を低速側に制限するダウンシフト手段を設けたこ
とを特徴とする請求項1〜4のいずれか1つに記載の変
速機の制御装置。
5. A downshift means for limiting a shift range of the transmission to a lower speed side while the generated torque of the engine is continuously reduced by the generated torque reducing means. Item 5. A control device for a transmission according to any one of Items 1 to 4.
【請求項6】前記発生トルク低減手段により機関の発生
トルクを継続的に低減させている状態を運転者に警告す
る警告手段を設けたことを特徴とする請求項1〜5のい
ずれか1つに記載の変速機の制御装置。
6. A warning means for warning a driver of a state in which the generated torque of the engine is continuously reduced by the generated torque reducing means. 2. The control device for a transmission according to claim 1.
JP33349696A 1996-12-13 1996-12-13 Transmission control device Expired - Fee Related JP3691614B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33349696A JP3691614B2 (en) 1996-12-13 1996-12-13 Transmission control device
GB9726159A GB2320339B (en) 1996-12-13 1997-12-10 Control system for controlling temperature of transmission fluid in an automatic power transmission with a torque converter
DE19755128A DE19755128A1 (en) 1996-12-13 1997-12-11 Control system for controlling the temperature of the transmission fluid in an automatic powershift transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33349696A JP3691614B2 (en) 1996-12-13 1996-12-13 Transmission control device

Publications (2)

Publication Number Publication Date
JPH10169483A true JPH10169483A (en) 1998-06-23
JP3691614B2 JP3691614B2 (en) 2005-09-07

Family

ID=18266715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33349696A Expired - Fee Related JP3691614B2 (en) 1996-12-13 1996-12-13 Transmission control device

Country Status (3)

Country Link
JP (1) JP3691614B2 (en)
DE (1) DE19755128A1 (en)
GB (1) GB2320339B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207606A (en) * 2005-01-25 2006-08-10 Fuji Heavy Ind Ltd Oil temperature control device for vehicle
US7217222B2 (en) 2005-04-05 2007-05-15 Ford Global Technologies, Llc Method and system for inferring and controlling transmission fluid temperature
JP2008038892A (en) * 2006-08-02 2008-02-21 Hyundai Motor Co Ltd Method for controlling engine torque of automatic transmission for vehicles and system thereof
JP2008101705A (en) * 2006-10-19 2008-05-01 Honda Motor Co Ltd Gear shift control device for automatic transmission
WO2009028223A1 (en) * 2007-08-30 2009-03-05 Aisin Aw Co., Ltd. Surplus temperature rise prevention device of torque converter in automatic transmission for vehicle with torque converter
JP2010236382A (en) * 2009-03-30 2010-10-21 Honda Motor Co Ltd Liquid temperature warning system for engine
WO2019239885A1 (en) * 2018-06-14 2019-12-19 ジヤトコ株式会社 Control device for automatic transmission

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834532A1 (en) * 1998-07-31 2000-02-03 Bayerische Motoren Werke Ag Method for influencing the torque of an internal combustion engine
DE19844618A1 (en) * 1998-09-29 2000-03-30 Zahnradfabrik Friedrichshafen Method for reducing the thermal load on an automatic transmission for a motor vehicle in an emergency mode
DE19849058A1 (en) 1998-10-24 2000-04-27 Zahnradfabrik Friedrichshafen Method for controlling high temperature mode of operation of electronically controlled automatic gears selects temperature reducing gear changing programme if temperature is high
DE19932755A1 (en) * 1999-07-14 2001-02-01 Luk Lamellen & Kupplungsbau Control device
EP1217261B1 (en) 2000-12-20 2010-02-17 Sew-Eurodrive GmbH & Co. KG Optimization of the time intervals for oil change of a transmission
DE10142751B4 (en) * 2000-12-20 2012-04-12 Sew-Eurodrive Gmbh & Co. Kg Device for a drive and method for the device
DE10259142B4 (en) 2002-03-05 2022-03-31 Sew-Eurodrive Gmbh & Co Kg Drive Component and Method
DE10214546A1 (en) * 2002-04-02 2003-10-16 Volkswagen Ag Overheating protection method for components in motor vehicles with temperature within component determined dependent upon temperature model and movement parameters
JP3910122B2 (en) * 2002-08-30 2007-04-25 ジヤトコ株式会社 Engine output torque control device for vehicle transmission system
GB2396080B (en) 2002-11-26 2006-03-01 Nec Technologies Improvements in standby time for dual mode mobile communication devices
DE10306896B4 (en) * 2003-02-18 2019-01-24 Volkswagen Ag Method for controlling the operation of a clutch of a motor vehicle
DE102004002761B4 (en) * 2004-01-20 2017-01-05 Daimler Ag Method for operating a drive train of a motor vehicle
DE102004021575A1 (en) * 2004-05-03 2005-12-01 Adam Opel Ag Automatic railcar gearbox system controlling method, involves finding difference between actual acceleration and reference acceleration of railcar, and changing peak program into standard switch program, if difference exceeds preset value
US7223205B2 (en) * 2005-02-17 2007-05-29 General Motors Corporation Method for controlling engine and/or transmission temperature
US7315775B2 (en) * 2005-04-20 2008-01-01 Gm Global Technology Operations, Inc. Automotive transmission control system and method
DE102005042363A1 (en) * 2005-09-07 2007-03-15 Zf Friedrichshafen Ag Automatic gearbox switching control method for motor vehicle, involves determining actual temperature of heated friction switching unit before switching process, and disabling heat treatment of unit based on actual temperature
SE529237C2 (en) 2005-10-21 2007-06-05 Scania Cv Abp engine Control Systems
US8147378B2 (en) * 2008-04-29 2012-04-03 GM Global Technology Operations LLC Airflow based idle speed control power security
CN102114817B (en) * 2010-07-15 2013-03-13 浙江吉利汽车研究院有限公司 Method for controlling automatic transmission to enter different hot mode levels
DE102011115279A1 (en) 2011-09-29 2012-12-20 Audi Ag Drive arrangement for motor vehicle, has electric motor and transmission, where electric motor has cooling circuit with cooling medium and transmission has lubricating circuit with lubricating medium
FR2981140B1 (en) * 2011-10-06 2013-11-01 Renault Sa METHOD AND SYSTEM FOR CONTROLLING A MOTOR POWERTRAIN ACCORDING TO THE TEMPERATURE OF A HYDRAULIC TORQUE CONVERTER.
FR3041405B1 (en) * 2015-09-18 2018-08-31 Renault S.A.S METHOD FOR CONTROLLING FUNCTIONAL FLUID TEMPERATURE
US11111999B2 (en) 2019-10-01 2021-09-07 Allison Transmission, Inc. Transmission systems to control heat exchangers to manage transmission sump temperature
DE102022211333A1 (en) 2022-10-26 2024-05-02 Stellantis Auto Sas Gear selection procedure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659791B2 (en) * 1985-12-05 1994-08-10 トヨタ自動車株式会社 Vehicle engine torque control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207606A (en) * 2005-01-25 2006-08-10 Fuji Heavy Ind Ltd Oil temperature control device for vehicle
US7217222B2 (en) 2005-04-05 2007-05-15 Ford Global Technologies, Llc Method and system for inferring and controlling transmission fluid temperature
JP2008038892A (en) * 2006-08-02 2008-02-21 Hyundai Motor Co Ltd Method for controlling engine torque of automatic transmission for vehicles and system thereof
JP2008101705A (en) * 2006-10-19 2008-05-01 Honda Motor Co Ltd Gear shift control device for automatic transmission
US8483920B2 (en) 2006-10-19 2013-07-09 Honda Motor Co., Ltd Shift control device for automatic transmission
DE102007043436B4 (en) 2006-10-19 2020-07-16 Honda Motor Co., Ltd. Shift control device for automatic transmission
WO2009028223A1 (en) * 2007-08-30 2009-03-05 Aisin Aw Co., Ltd. Surplus temperature rise prevention device of torque converter in automatic transmission for vehicle with torque converter
JP2010236382A (en) * 2009-03-30 2010-10-21 Honda Motor Co Ltd Liquid temperature warning system for engine
WO2019239885A1 (en) * 2018-06-14 2019-12-19 ジヤトコ株式会社 Control device for automatic transmission

Also Published As

Publication number Publication date
JP3691614B2 (en) 2005-09-07
GB2320339B (en) 1999-03-03
DE19755128A1 (en) 1998-06-25
GB2320339A (en) 1998-06-17
GB9726159D0 (en) 1998-02-11

Similar Documents

Publication Publication Date Title
JPH10169483A (en) Controller for transmission
US6773372B2 (en) Vehicle drive control apparatus and method
JP4119613B2 (en) Automatic transmission lockup control device
US7044890B2 (en) Control apparatus and method for automatic transmission
KR20070122555A (en) Automatic gear control device
JPH1151162A (en) Gear change control method of continuously variable transmission for vehicle
US6478717B1 (en) Damper clutch control method for automatic transmission
US6714850B2 (en) Method of controlling shift action in up-shift mode operation of automatic transmission for vehicles
JP3759780B2 (en) Lock-up control device for continuously variable transmission
US20020082139A1 (en) Shift control method for shifting an automatic transmission to a forward driving range while driving in a reverse driving range
JP2005098314A (en) Control device of vehicle with automatic transmission
JP2010249190A (en) Control device of automatic transmission for vehicle
JP2005172078A (en) Lock-up control device for torque converter
US6383117B1 (en) Damper clutch control method for automatic transmission
KR100460867B1 (en) Method for engine torque reduction controlling in automatic transmission
JP2004257442A (en) Vehicular control device
KR100461277B1 (en) Method of controlling kick-down shift for an antomatic transmission in vehicles
JPH0942440A (en) Deterioration detection device of frictional engagement device
JP2699593B2 (en) Line pressure control device for automatic transmission
JPH04100740A (en) Integrated control device of engine with automatic transmission for vehicle
JP2833400B2 (en) Automatic transmission overheating prevention device
JP2699592B2 (en) Line pressure control device for automatic transmission
KR100345127B1 (en) Method for engine idle speed controlling of automatic transmission of vehicle
JPH06193726A (en) Slip control device for lock-up clutch
JPH1137279A (en) Lock-up controller of automatic transmission

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees