JPH10169433A - Preheating control device for catalyst - Google Patents

Preheating control device for catalyst

Info

Publication number
JPH10169433A
JPH10169433A JP8329554A JP32955496A JPH10169433A JP H10169433 A JPH10169433 A JP H10169433A JP 8329554 A JP8329554 A JP 8329554A JP 32955496 A JP32955496 A JP 32955496A JP H10169433 A JPH10169433 A JP H10169433A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
engine
time
apu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8329554A
Other languages
Japanese (ja)
Other versions
JP3106982B2 (en
Inventor
Kazuteru Kurose
一輝 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP08329554A priority Critical patent/JP3106982B2/en
Publication of JPH10169433A publication Critical patent/JPH10169433A/en
Application granted granted Critical
Publication of JP3106982B2 publication Critical patent/JP3106982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform always appropriate catalyst preheating control so as to improve exhaust gas purifying performance by controlling in such a way as to select either the set operating time of a heating means obtained from catalyst temperature or the set operating time of the heating means obtained from engine state temperature. SOLUTION: Maps A, B related to current flowing time required for an electrically heated catalyst 13b to reach target activation temperature respectively on the basis of catalyst temperature and engine water temperature are set to an APU(auxiliary processor unit). In the APU 11, the current flowing time of heaters 13c are read from the maps A, B according to engine water temperature and catalyst temperature detected by sensors 14, 15, and both read current flowing time are compared with each other, and the longer one is selected and determined as actual operating time. A current is made flow to the heaters 13c of the electrically heated catalyst 13b only for the determined actual current flowing time so as to make the temperature of the catalyst 13b rise to the activation temperature before the start of an engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの始動時
前に触媒をその排ガス浄化性能が十分に発揮される温度
(活性温度)まで昇温させる触媒のプリヒート制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preheat control device for a catalyst, which raises the temperature of a catalyst to a temperature at which its exhaust gas purifying performance can be sufficiently exhibited (active temperature) before starting an engine.

【0002】[0002]

【従来の技術】エンジンを駆動源に用いた自動車は、触
媒を用いて、エンジンから排出される排ガスを浄化して
いるが、全ての走行状態において十分に排ガスを浄化す
るのは難しい。
2. Description of the Related Art Automobiles using an engine as a drive source purify exhaust gas discharged from the engine using a catalyst, but it is difficult to sufficiently purify exhaust gas in all running states.

【0003】そこで、電気自動車の開発が進められてい
る。電気自動車のほとんどは、車体に搭載されたバッテ
リーの電力でモータを駆動してタイヤを駆動させている
が、自動車の車体に搭載可能なバッテリーの電力量に対
する電力消費量の割合が大きいので、走行できる距離が
短いという難点をもっている。
[0003] Therefore, the development of electric vehicles has been promoted. Most electric vehicles drive the tires by driving the motor with the power of the battery mounted on the vehicle body.However, the ratio of power consumption to the power of the battery mounted on the vehicle body is large, The drawback is that the distance that can be achieved is short.

【0004】そこで、特開平7−71236号公報でも
示されるような普段はバッテリーだけの電力で走行し、
このバッテリーの電力が所定以下に低下すると、小排気
量のエンジンを作動させて発電機を駆動し、所定の電力
量になるまで充電しながら発電走行を行うという、バッ
テリーの状況に応じエンジンが作動・停止を繰り返して
電気走行を継続させるハイブリッド電気自動車が開発さ
れている。
[0004] Therefore, as shown in Japanese Patent Application Laid-Open No. 7-71236, the vehicle normally runs only with the power of the battery,
When the power of the battery falls below a predetermined level, the engine operates according to the state of the battery, in which the engine with a small displacement is driven to drive the generator, and the vehicle runs while generating power while charging until the predetermined power level is reached.・ Hybrid electric vehicles that repeatedly stop and continue electric running have been developed.

【0005】このようなハイブリッド電気自動車は、エ
ンジンが電気走行を維持するの必要な短い充電時間の間
だけ、定(軽)負荷の発電機を駆動するので、バッテリ
の欠点を補いつつ高い浄化性能が確保できる利点をも
つ。
[0005] Such a hybrid electric vehicle drives a generator with a constant (light) load only for a short charging time required for the engine to maintain the electric running, so that high purification performance can be achieved while compensating for the drawbacks of the battery. Has the advantage that it can be secured.

【0006】[0006]

【発明が解決しようとする課題】ところで、こうしたハ
イブリッド自動車は特に高い浄化性能が要求される。こ
のためには、エンジンの始動時において触媒が排ガス浄
化を十分に果たす活性温度に昇温されていることが望ま
しい。
Incidentally, such a hybrid vehicle is required to have a particularly high purification performance. For this purpose, it is desirable that the temperature of the catalyst be raised to the activation temperature at which the exhaust gas is sufficiently purified at the time of starting the engine.

【0007】そこで、特開平5−22925号公報に示
されるような触媒昇温用の加熱手段が付いた触媒、例え
ばEHCと称する電気加熱触媒(ヒータなど電気的に加
熱する部品が内蔵されているもの)を用いて、エンジン
の冷間始動時前に電気加熱触媒のヒータに通電して触媒
を昇温させる、いわゆるプリヒートと呼ばれる事前に触
媒を加熱する技術が提案されている。
Therefore, a catalyst provided with a heating means for raising the temperature of the catalyst as disclosed in Japanese Patent Application Laid-Open No. 5-22925, for example, an electric heating catalyst called an EHC (a component for electrically heating such as a heater is built-in. A technique of heating the catalyst in advance, called so-called preheating, has been proposed in which the temperature of the catalyst is raised by energizing the heater of the electrically heated catalyst before the cold start of the engine.

【0008】具体的には、特開平5−22925号公報
は、通常の自動車、すなわちエンジンの動力をタイヤに
そのまま伝えて走行させる自動車におけるエンジンの冷
間始動時の排ガス浄化性能を向上させるために、エンジ
ン水温をプリヒートをするか否かの判定信号として用い
て、エンジンの冷間時の始動前に、ヒータの通電で触媒
を昇温させ、触媒温度センサで、触媒の温度が所定温度
まで達すると、該ヒータの通電を終えるようにしてあ
る。
[0008] Specifically, Japanese Patent Application Laid-Open No. 5-22925 discloses a technique for improving exhaust gas purification performance at the time of a cold start of an engine in a normal automobile, that is, an automobile that travels by transmitting the power of the engine to tires as it is. Using the engine water temperature as a determination signal as to whether or not to preheat, before starting the engine in a cold state, the heater is energized to raise the temperature of the catalyst, and the temperature of the catalyst reaches a predetermined temperature with a catalyst temperature sensor. Then, the energization of the heater is terminated.

【0009】ところが、ハイブリッド電気自動車は、こ
のようなエンジン駆動式自動車とは異なり、エンジンの
冷間時、温間時のいずれにもにかかわらず、バッテリの
充電が必要となるエンジンの始動時前には触媒を活性温
度にまで昇温させることが求められる。
However, the hybrid electric vehicle differs from such an engine-driven vehicle in that the battery needs to be charged regardless of whether the engine is cold or hot before starting the engine. Requires that the temperature of the catalyst be raised to the activation temperature.

【0010】このため、触媒のプリヒートが適切に行わ
れないことがある。すなわち、触媒温度を検知する触媒
温度センサは、触媒の活性温度(600℃位)に対応す
る高温検出に適した高温センサが用いられるので、低温
域の温度検出は正確でない。
For this reason, the preheating of the catalyst may not be performed properly. That is, since a high temperature sensor suitable for detecting a high temperature corresponding to the activation temperature of the catalyst (about 600 ° C.) is used as the catalyst temperature sensor for detecting the catalyst temperature, temperature detection in a low temperature range is not accurate.

【0011】このため、触媒の温度が低温、例えば10
℃で、かつエンジンが暖まっている状態のときにエンジ
ンの始動が求められた場合におけるプリヒートの有無
は、エンジン水温だけの判定に頼るために、プリヒート
が必要であるにもかかわらず、プリヒートが不要である
という信号が出力されてしまう。
For this reason, when the temperature of the catalyst is low, for example, 10
Preheating is not required when the engine is required to be started when the engine is warm at ℃ and the engine is warmed up. Is output.

【0012】それ故、上記のような触媒温度だけに依存
するプリヒートの制御では、厳しい排ガス浄化性能が求
められるハイブリッド自動車には対応できなく、これに
代わる高精度なプリヒートの制御性が求められている。
[0012] Therefore, the preheat control depending only on the catalyst temperature as described above cannot cope with a hybrid vehicle that requires strict exhaust gas purification performance, and instead, a high-precision preheat controllability is required. I have.

【0013】本発明は上記事情に着目してなされたもの
で、その目的とするところは、どのような触媒の温度状
態、エンジンの温度状態にかかわらず、常に適正な触媒
のプリヒート制御を行わせることができる触媒のプリヒ
ート制御装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to always perform appropriate preheating control of a catalyst regardless of the temperature state of the catalyst and the temperature state of the engine. It is an object of the present invention to provide a catalyst preheating control device which can perform the preheating control.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載した発明は、エンジンの始動時前に、
排ガス浄化用の加熱手段を作動させて触媒を所定温度ま
で昇温させる制御手段を有し、この制御手段を、エンジ
ンの状態温度を検出して触媒を目標温度まで昇温させる
のに必要な加熱手段の作動時間を求める第1の設定手段
と、触媒の状態温度を検出して該触媒を目標温度まで昇
温させるのに必要な加熱手段の作動時間を求める第2の
設定手段と、第1および第2の設定手段で求めた各作動
時間を比較していずれかを選択して実作動時間に定める
決定手段と、定めた実作動時間にしたがって加熱手段を
作動させる作動手段とを有し構成して、高温域、低温域
のいずれにおいても、検出精度が期待できるパラメータ
で求めた作動時間で、プリヒート制御が行われるように
した。
In order to achieve the above-mentioned object, the invention described in claim 1 is provided before starting the engine.
It has control means for operating a heating means for purifying exhaust gas to raise the temperature of the catalyst to a predetermined temperature. The control means detects a state temperature of the engine and controls heating required to raise the temperature of the catalyst to a target temperature. First setting means for determining the operation time of the means, second setting means for detecting the state temperature of the catalyst and determining the operation time of the heating means required to raise the temperature of the catalyst to the target temperature, and And operating means for comparing the operating times obtained by the second setting means and selecting one of them to determine the actual operating time, and operating means for operating the heating means in accordance with the determined actual operating time. Then, in both the high-temperature range and the low-temperature range, the preheat control is performed with the operation time obtained by using the parameter for which the detection accuracy can be expected.

【0015】すなわち、この請求項1に記載の発明によ
ると、エンジンを始動させるときには、触媒が目標温度
になるまでの加熱手段の作動時間が、触媒の状態温度に
基づく系統と、エンジンの状態温度に基づく系統との2
つから求められる。
That is, according to the first aspect of the present invention, when the engine is started, the operating time of the heating means until the catalyst reaches the target temperature depends on the system based on the state temperature of the catalyst, and the state temperature of the engine. 2 with the system based on
Required from one.

【0016】ついで、双方の作動時間の比較から、いず
れかを作動時間を実作動時間として選択する。好ましく
は長い方の作動時間を実作動時間として決定する。
Next, one of the operation times is selected as the actual operation time from a comparison between the two operation times. Preferably, the longer operation time is determined as the actual operation time.

【0017】そして、この実作動時間にしたがい加熱手
段の作動が制御され、触媒を所定温度(活性温度)まで
昇温させるプリヒートが行われる。これにより、触媒の
状態温度が、高温、すなわちエンジンの状態温度からで
は、到底、検出できない高温度が検出される領域では、
検出精度が期待できる触媒の温度状態から求めた作動時
間によるプリヒートの制御が行われる。
Then, the operation of the heating means is controlled in accordance with the actual operation time, and preheating for raising the temperature of the catalyst to a predetermined temperature (active temperature) is performed. Thereby, the state temperature of the catalyst is high, that is, from the state temperature of the engine, in a region where a high temperature that cannot be detected at all is detected,
Preheating control is performed based on the operating time obtained from the temperature state of the catalyst where detection accuracy can be expected.

【0018】また逆に触媒の状態温度が、低温、すなわ
ち触媒の状態温度からでは、到底、検出できない低温度
が検出される領域では、検出精度が期待できるエンジン
の温度状態から求めた作動時間によるプリヒートの制御
が行われる。具体的には、触媒の温度が低温(例えば1
0℃)で、かつエンジンが暖まっている状態(例えば3
5℃)のときにエンジンの始動が求められたときは、エ
ンジンの状態温度から求めた作動時間によるプレヒート
制御が行われる。
On the other hand, when the state temperature of the catalyst is low, that is, in the region where a low temperature that cannot be detected at all from the state temperature of the catalyst is detected, the operating time obtained from the engine temperature state where detection accuracy can be expected is obtained. Preheat control is performed. Specifically, when the temperature of the catalyst is low (for example, 1
0 ° C) and the engine is warm (for example, 3
If the start of the engine is required at 5 ° C.), the preheat control is performed based on the operation time obtained from the state temperature of the engine.

【0019】これにより、どのような触媒の温度状態、
エンジンの温度状態にもかかわらず、常に良好なプリヒ
ート制御が行われる。それ故、ハイブリッド自動車が求
めている厳しい排ガス浄化性能が得られるようになる。
Thus, what kind of temperature condition of the catalyst,
Good preheat control is always performed regardless of the temperature state of the engine. Therefore, the strict exhaust gas purification performance required for a hybrid vehicle can be obtained.

【0020】[0020]

【発明の実施の形態】以下、本発明を図1ないし図4に
示す第1の実施形態にもとづいて説明する。図1は本発
明を適用したハイブリッド電気自動車(ハイブリッド電
気車両)の概略構成図を示し、図中1は例えば前輪2,
2間に配置された走行用モータ、3は同モータ1の出力
部に連結されたトランスミッションである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on a first embodiment shown in FIGS. FIG. 1 is a schematic configuration diagram of a hybrid electric vehicle (hybrid electric vehicle) to which the present invention is applied.
A traveling motor 3 disposed between the two is a transmission connected to an output section of the motor 1.

【0021】トランスミッション3の出力部は、例えば
差動装置(図示しない)を介して、それぞれ前輪2,2
に接続されていて、走行用モータ1を動力として前輪
2,2を駆動できるようにしてある。
The output of the transmission 3 is connected to the front wheels 2, 2 via a differential (not shown), for example.
And the front wheels 2 and 2 can be driven using the traveling motor 1 as power.

【0022】車体(図示しない)の中央にはバッテリー
4が搭載されている。そして、このバッテリー4の出力
端子は、走行用モータ1の接続端子から延びる配線5,
5に接続されていて、バッテリー4の電力を走行用モー
タ1へ供給できるようにしてある。
A battery 4 is mounted at the center of a vehicle body (not shown). The output terminal of the battery 4 is connected to a wiring 5 extending from a connection terminal of the traveling motor 1.
5 so that the electric power of the battery 4 can be supplied to the traveling motor 1.

【0023】後輪6,6間には、水冷式のエンジン(冷
却水がラジエータとエンジン本体内のジャケットを循環
する冷却構造を採用したエンジン)、例えば水冷式の電
子制御エンジン7(以後、単にエンジン7と称す)が搭
載されている。このエンジン7の出力部には、発電機8
が連結されていて、エンジン7を駆動源として発電でき
るようにしてある。
Between the rear wheels 6, 6, a water-cooled engine (an engine having a cooling structure in which cooling water circulates through a radiator and a jacket in the engine body), for example, a water-cooled electronically controlled engine 7 (hereinafter simply referred to as an engine) Engine 7). The output of the engine 7 includes a generator 8
Are connected so that power can be generated using the engine 7 as a drive source.

【0024】発電機8の出力端子は、配線5,5の延出
端に接続されていて、配線5,5を通じて、発電機8で
発電される電力をバッテリー4、走行用モータ1へ供給
できるようにしてある。
The output terminal of the generator 8 is connected to the extending ends of the wires 5, 5, so that the power generated by the generator 8 can be supplied to the battery 4 and the traveling motor 1 through the wires 5, 5. It is like that.

【0025】一方、9は走行用モータ1に接続されたM
CU(モータコントロールユニット)、10はバッテリ
ー4に接続されたBCU(バッテリーコントロールユニ
ット)、11は発電機8に接続されたAPU(オグジャ
リープロセッサーユニット)、12はエンジン7に接続
されたECU(エンジンコントロールユニット)を示し
ている。
On the other hand, reference numeral 9 denotes M connected to the traveling motor 1.
A CU (Motor Control Unit), 10 is a BCU (Battery Control Unit) connected to the battery 4, 11 is an APU (Auxiliary Processor Unit) connected to the generator 8, and 12 is an ECU (Engine) connected to the engine 7. Control unit).

【0026】このうち、MCU9は、走行用モータ1の
作動をアクセルペダル(図示しない)の開度にしたがっ
て制御する機能を有している。BCU10はバッテリ4
の容量をモニタしていて、バッテリー4の電力量が所定
値以下の電力値まで低下すると、イグニションスイッチ
のオンに相当するエンジン始動指令信号を出力する。
The MCU 9 has a function of controlling the operation of the traveling motor 1 according to the opening of an accelerator pedal (not shown). BCU 10 is battery 4
When the amount of power of the battery 4 is reduced to a power value equal to or less than a predetermined value, an engine start command signal corresponding to turning on an ignition switch is output.

【0027】APU11は、エンジン7の始動を制御す
る機能、エンジン7のスロットルを制御する機能、発電
を制御する機能、エンジン7の排気管7aに、三元触媒
13aと共に介装してある加熱式触媒、例えば電気加熱
式触媒(EHC)13bのヒータ13c(加熱手段)を
制御する機能を有している。なお、三元触媒13aと電
気加熱式触媒13bとは同一の容器13d内に収容し
て、1つの触媒コンバータをなしているものである。
The APU 11 has a function of controlling the start of the engine 7, a function of controlling the throttle of the engine 7, a function of controlling the power generation, and a heating type which is interposed in the exhaust pipe 7 a of the engine 7 together with the three-way catalyst 13 a. It has a function of controlling a catalyst, for example, a heater 13c (heating means) of an electrically heated catalyst (EHC) 13b. The three-way catalyst 13a and the electrically heated catalyst 13b are housed in the same container 13d to form one catalytic converter.

【0028】ECU12は、エンジン7の運転を制御す
る機能を有している。こうしたMCU9、BCU10、
APU11、ECU12が連携して、つぎのようなハイ
ブリッド電気自動車を走行させるのに必要な機能を得て
いる。 (イ)普段はバッテリー4の電力だけで走行させる機
能。 (ロ)バッテリー4の電力が所定値以下まで低下する
と、BCU10からAPU10へエンジン始動指令信号
を出力する機能。 (ハ)このエンジン駆動指令に伴い、電気加熱式触媒1
3bを所定温度(活性温度)までプリヒートさせる機
能。 (ニ)プリヒート後、エンジン7を始動させる機能。 (ホ)エンジン7を排ガス浄化に好適な回転域で運転さ
せる機能。 (ヘ)発電機8からの発電を適正に制御して、発電しな
がら走行させる機能。 (ト)バッテリー4が所定の電力量まで充電されると、
エンジン7を停止させる機能。
The ECU 12 has a function of controlling the operation of the engine 7. These MCU9, BCU10,
The APU 11 and the ECU 12 cooperate to obtain the following functions necessary for running a hybrid electric vehicle. (B) A function that allows the vehicle to run only with the electric power of the battery 4. (B) A function of outputting an engine start command signal from the BCU 10 to the APU 10 when the power of the battery 4 drops below a predetermined value. (C) In accordance with this engine drive command, the electrically heated catalyst 1
The function of preheating 3b to a predetermined temperature (activation temperature). (D) Function to start the engine 7 after preheating. (E) A function of operating the engine 7 in a rotation range suitable for exhaust gas purification. (F) A function of appropriately controlling the power generation from the generator 8 and running while generating power. (G) When the battery 4 is charged to a predetermined amount of power,
Function to stop the engine 7.

【0029】上記(ハ)の機能は、APU11に格納さ
れていて、本発明の要部となる触媒のプリヒート制御装
置を構成している。このプリヒート制御装置について説
明すれば、APU11には、エンジン7に設けた水温セ
ンサ14(冷却水の温度を検出するセンサで、エンジン
の状態温度を検知するもの)で検出したエンジン冷却水
温(以後、エンジン水温と称す)が、ECU12を通じ
て、APU11へ入力されるようにしてある。つまり、
最も顕著にエンジンの状態温度を表わすエンジン水温を
APU11へ入力させるようにしてある。
The function (c) described above is stored in the APU 11 and constitutes a catalyst preheating control device which is an essential part of the present invention. Describing this preheat control device, the APU 11 has an engine cooling water temperature (hereinafter, referred to as a sensor for detecting the temperature of the cooling water, which detects the state temperature of the engine) provided in the engine 7 (hereinafter, referred to as a cooling water temperature sensor 14). The engine water temperature is input to the APU 11 through the ECU 12. That is,
The engine water temperature, which most notably indicates the state temperature of the engine, is input to the APU 11.

【0030】またAPU11には、触媒コンバータの容
器13dに設けた触媒温度センサ15(例えば高温セン
サから構成されるもの)が接続されていて、触媒温度セ
ンサ15で検出した触媒の温度がAPU11へ入力され
るようにしてある。
The APU 11 is connected to a catalyst temperature sensor 15 (for example, a high temperature sensor) provided in the container 13d of the catalytic converter, and the temperature of the catalyst detected by the catalyst temperature sensor 15 is input to the APU 11. It is to be done.

【0031】さらにAPU11には、様々な触媒の状態
温度,エンジンの状態温度下で、適正な触媒のプリヒー
トが行えるよう、それぞれ触媒温度センサ15の出力
(触媒温度)をパラメータとして求めたヒータ13cの
通電時間(作動時間)と、水温センサ14の出力(エン
ジン水温)をパラメータとして求めたヒータ13c(電
気加熱触媒13b)の通電時間(作動時間)とがマップ
形式で設定してある。
Further, the APU 11 is provided with a heater 13c having the output (catalyst temperature) of the catalyst temperature sensor 15 as a parameter so that proper catalyst preheating can be performed at various catalyst state temperatures and engine state temperatures. The energization time (operation time) and the energization time (operation time) of the heater 13c (electric heating catalyst 13b) obtained by using the output of the water temperature sensor 14 (engine water temperature) as a parameter are set in a map format.

【0032】具体的には、APU11には図2中の実線
Aで示されるような触媒温度に基づき電気加熱触媒13
bが目標とする活性温度に到達するのに要する通電時間
(触媒温度/EHC通電時間マップ)と、破線Bで示さ
れるようなエンジン水温に基づき電気加熱触媒13bが
目標とする活性温度に到達するのに要する通電時間(エ
ンジン水温/EHC通電時間マップ)とが設定してある
(第1の設定手段、第2の設定手段に相当)。
Specifically, the APU 11 has an electric heating catalyst 13 based on the catalyst temperature as shown by a solid line A in FIG.
The electric heating catalyst 13b reaches the target activation temperature based on the energization time required for b to reach the target activation temperature (catalyst temperature / EHC energization time map) and the engine water temperature as indicated by the broken line B. (Engine water temperature / EHC energization time map) is set (corresponding to the first setting means and the second setting means).

【0033】さらに述べれば、実線Aのマップは、触媒
温度センサ15を構成する高温センサの特性上、高温
域、例えば30〜500℃(触媒がもたらす温度)の範
囲では、高精度な結果が得られるが、それ以下のエンジ
ン水温側の温度域(低温域)では正確な結果が得られな
い線図となる。
More specifically, the map indicated by the solid line A shows that a high-precision result can be obtained in a high temperature range, for example, in the range of 30 to 500 ° C. (temperature brought by the catalyst) due to the characteristics of the high temperature sensor constituting the catalyst temperature sensor 15. However, an accurate result cannot be obtained in the temperature range (low temperature range) on the engine water temperature side lower than that.

【0034】また破線Bのマップは、逆に水温センサ1
4の特性上、低温域、例えば−56〜156℃(エンジ
ンがもたらす温度)の範囲までは、高精度が結果が得ら
れるが、それ以上の触媒活性温度側の温度域(高温域)
では正確な結果が得られない線図となる。
On the other hand, the map indicated by the broken line B indicates that the water temperature sensor 1
Due to the characteristics of No. 4, high accuracy can be obtained up to a low temperature range, for example, a range of -56 to 156 ° C. (temperature brought by the engine), but a temperature range higher than the catalyst activation temperature side (high temperature range).
Will result in a diagram that will not give accurate results.

【0035】こうした双方のマップA,Bの組み合せに
より、「ガソリンエンジン7の状態温度〜電気加熱触媒
13bの状態温度」の全範囲をカバーするような、電気
加熱触媒13bの通電マップを得ている。
By the combination of the two maps A and B, an energization map of the electric heating catalyst 13b is obtained which covers the entire range of "state temperature of gasoline engine 7 to state temperature of electric heating catalyst 13b". .

【0036】またAPU11には、上記検出したエンジ
ン水温、触媒温度にしたがって、これらマップA,Bか
らそれぞれヒータ13cの通電時間を読込む機能が設定
されている。
The APU 11 has a function of reading the energizing time of the heater 13c from the maps A and B according to the detected engine water temperature and catalyst temperature.

【0037】さらにAPU11には、エンジン水温から
求めた通電時間、触媒温度から求めた通電時間とを比較
して、長い方を実作動時間として選択決定する機能が設
定され、エンジンの状態温度では達し得ない高温域の温
度が検出されるときは、触媒温度に依存した通電時間を
実通電時間(実作動時間)として定め、触媒の状態温度
からは検出が困難な低温域の温度が検出されるとき(触
媒温度センサ15の特性による)は、エンジン水温(エ
ンジンの状態温度)に依存した通電時間を実通電時間
(実作動時間)として定めるようにしてある(決定手
段)。
Further, the APU 11 is provided with a function of comparing the energization time obtained from the engine water temperature and the energization time obtained from the catalyst temperature, and selecting and determining the longer one as the actual operation time. When an unobtainable high-temperature temperature is detected, the energization time that depends on the catalyst temperature is determined as the actual energization time (actual operation time), and a low-temperature temperature that is difficult to detect is detected from the state temperature of the catalyst. At this time (depending on the characteristics of the catalyst temperature sensor 15), the energization time dependent on the engine water temperature (engine state temperature) is determined as the actual energization time (actual operation time) (determination means).

【0038】加えてAPU11には、決定された実通電
時間だけ、電気加熱触媒13bのヒータ13cを通電す
る機能が設定されていて、エンジン始動指令を受ける
と、エンジン始動時前において電気加熱触媒13bを活
性温度に昇温させておくようにしてある(作動手段)。
In addition, the APU 11 is provided with a function of energizing the heater 13c of the electric heating catalyst 13b for the determined actual energizing time. When an engine start command is received, the electric heating catalyst 13b is activated before the engine starts. Is raised to the activation temperature (operating means).

【0039】なお、APU11には、触媒温度が異常を
判定する判定温度まで昇温すると、ヒータ13cの通電
を強制的に停止させる機能が設定してある(触媒異常加
熱防止)。
The APU 11 has a function of forcibly stopping the energization of the heater 13c when the catalyst temperature rises to a judgment temperature for judging abnormality (prevention of abnormal heating of the catalyst).

【0040】この電気加熱触媒13bのプリヒート制御
が、図3のフローチャートに示されている。つぎに、こ
のプリヒート制御を、ハイブリッド電気自動車の走行と
関連づけながら説明する。
The preheating control of the electric heating catalyst 13b is shown in the flowchart of FIG. Next, the preheat control will be described with reference to running of the hybrid electric vehicle.

【0041】すなわち、今、バッテリー4の残存容量が
100%(フル充填状態)であるとする。この状態で、
乗員がアクセルペダルを操作すると、MCU9の制御に
より、バッテリー4からアクセルペダル開度応じた電力
が走行用モータ1へ供給され、ハイブリッド自動車はバ
ッテリー4だけの電力で走行する。
That is, it is assumed that the remaining capacity of the battery 4 is 100% (fully charged state). In this state,
When the occupant operates the accelerator pedal, under the control of the MCU 9, electric power corresponding to the accelerator pedal opening is supplied from the battery 4 to the traveling motor 1, and the hybrid vehicle runs with electric power of only the battery 4.

【0042】バッテリー4の残存容量は、こうした電気
走行(EV走行)に伴い、図4に示されるように次第に
低下していく。この後、バッテリー4が所定の容量値X
まで低下すると、BCU10からAPU11へエンジン
始動指令信号(イグニションオンに相当)が出力され
る。
The remaining capacity of the battery 4 gradually decreases as shown in FIG. 4 with such electric running (EV running). Thereafter, the battery 4 has a predetermined capacity value X.
When it is lowered, the BCU 10 outputs an engine start command signal (corresponding to ignition ON) to the APU 11.

【0043】APU11は、この信号を受けると、触媒
温度を排ガス浄化に適した温度にすべく、電気加熱式触
媒13b(EHC)のプリヒート制御に入る。すると、
APU11は、ステップS1に示されるようにマップA
(触媒温度/EHC通電時間マップ)から、現在の触媒
温度センサ15から検出される触媒温度に対する通電時
間Tccを読取る。続いてステップS2に示されるよう
にマップB(エンジン水温/EHC通電時間マップ)か
ら、現在のエンジン水温に対する通電時間Twtを読取
る。
When this signal is received, the APU 11 enters a preheating control of the electrically heated catalyst 13b (EHC) in order to set the catalyst temperature to a temperature suitable for exhaust gas purification. Then
The APU 11 generates the map A as shown in step S1.
From the (catalyst temperature / EHC energization time map), the energization time Tcc for the catalyst temperature detected by the current catalyst temperature sensor 15 is read. Subsequently, as shown in step S2, the energization time Twt for the current engine water temperature is read from the map B (engine water temperature / EHC energization time map).

【0044】これにより、触媒温度から求めた通電時間
Tccとエンジンの状態温度から求めた通電時間Twt
との2つ通電時間が読取られる。具体的には、例えば触
媒温度センサ15の検出温度が10℃で、かつ水温セン
サ14からの検出信号が10℃のような冷間エンジン状
態であれば、図2中T1のようにエンジン水温から求め
た通電時間Twt1 だけが読み取られる。また例えば触
媒温度センサ15の検出温度が250℃で、かつ水温セ
ンサ14からの検出信号が35℃のような温間エンジン
状態であれば、T2 のような触媒温度から求めた通電時
間Tcc1 と、T3 のようなエンジン水温から求めた通
電時間Twt2 とが読み取られる。さらに例えば触媒温
度センサ15の検出温度が400℃で、水温センサ14
からの検出信号が160℃のような温間エンジン状態で
あれば、触媒温度から求めた通電時間Tcc2 だけが読
取られる。
As a result, the energizing time Tcc obtained from the catalyst temperature and the energizing time Twt obtained from the state temperature of the engine are obtained.
Are read. Specifically, for example, if the detection temperature of the catalyst temperature sensor 15 is 10 ° C. and the detection signal from the water temperature sensor 14 is a cold engine state such as 10 ° C., the engine water temperature is changed from T 1 in FIG. Only the determined energizing time Twt1 is read. Further, for example, if the detection temperature of the catalyst temperature sensor 15 is 250 ° C. and the detection signal from the water temperature sensor 14 is a warm engine state such as 35 ° C., the energization time Tcc1 calculated from the catalyst temperature such as T2, The energizing time Twt2 obtained from the engine water temperature such as T3 is read. Further, for example, when the detection temperature of the catalyst temperature sensor 15 is 400 ° C. and the water temperature sensor 14
If the detection signal is a warm engine state such as 160 ° C., only the energizing time Tcc2 obtained from the catalyst temperature is read.

【0045】ついで、ステップS3からステップS4あ
るいはステップS5へと進み、APU11は2つの通電
時間Tccと通電時間Twtのうちのいずれか、具体的
には長い方の通電時間を実通電時間Tとして選択する。
Then, the process proceeds from step S3 to step S4 or step S5, and the APU 11 selects one of the two energizing times Tcc and Twt, specifically, the longer energizing time as the actual energizing time T. I do.

【0046】この通電時間の選択により、エンジン水温
では達し得ない高温域の温度の検出を含むときは、触媒
温度を基にした通電時間が実通電時間Tとして定められ
るようになり、触媒温度センサ14で検出が困難な低温
域の温度を含むときは、エンジン水温を基にした通電時
間が実通電時間Tとして定められるようになる。
When the selection of the energization time includes detection of a temperature in a high temperature range that cannot be reached by the engine coolant temperature, the energization time based on the catalyst temperature is determined as the actual energization time T, and the catalyst temperature sensor When the temperature in the low-temperature range, which is difficult to detect in 14, is included, the energization time based on the engine coolant temperature is determined as the actual energization time T.

【0047】具体的には、上記触媒温度センサ15の検
出温度が10℃で、かつ水温センサ14からの検出信号
が10℃のときは、通電時間Twt1 が実作動時間Tと
なり、上記触媒温度センサ15の検出温度が250℃
で、かつ水温センサ14からの検出信号が35℃のとき
は、通電時間Twt2 が実作動時間Tとなり、上記触媒
温度センサ15の検出温度が400℃で、水温センサ1
4からの検出信号が160℃のときは、通電時間Tcc
2 が実作動時間Tとなる。
Specifically, when the detected temperature of the catalyst temperature sensor 15 is 10 ° C. and the detection signal from the water temperature sensor 14 is 10 ° C., the energizing time Twt1 becomes the actual operating time T, and 15 detected temperature is 250 ℃
When the detection signal from the water temperature sensor 14 is 35 ° C., the energizing time Twt 2 is the actual operating time T, the detected temperature of the catalyst temperature sensor 15 is 400 ° C., and the water temperature sensor 1
4 is 160 ° C., the energizing time Tcc
2 is the actual operation time T.

【0048】ついで、ステップS6に進み、APU11
は、電気加触媒13bのヒータ13cを通電する。これ
により、電気触媒13b、三元触媒13bは加熱され
る。
Then, the process proceeds to step S6, where the APU 11
Turns on the heater 13c of the electric catalyst 13b. Thereby, the electric catalyst 13b and the three-way catalyst 13b are heated.

【0049】この加熱中、APU11は、ステップS7
のように触媒温度センサ15からの触媒温度Tsで、異
常判定値をなす触媒異常判定温度Tcまで昇温したか否
かを監視しながら、ステップS8のように定めた作動時
間Tが0になるまでカウントしている。
During this heating, the APU 11 proceeds to step S7
As described above, the operation time T determined in step S8 becomes 0 while monitoring whether or not the temperature has risen to the catalyst abnormality determination temperature Tc forming an abnormality determination value with the catalyst temperature Ts from the catalyst temperature sensor 15. Counting up.

【0050】なお、このとき触媒温度Tsが触媒異常判
定温度Tcに達するようなことがあれば、異常とみな
し、ステップS10へ進み、直ちに電気加熱触媒13b
のヒータ13cの通電を停止して、触媒が異常に昇温さ
れるのを防ぐ。
If the catalyst temperature Ts reaches the catalyst abnormality determination temperature Tc at this time, it is regarded as abnormal and the process proceeds to step S10, where the electric heating catalyst 13b
Of the heater 13c is stopped to prevent the temperature of the catalyst from rising abnormally.

【0051】作動時間Tが0になると、APU11は、
電気加熱触媒13bが所定の活性温度にまで昇温された
と判定して、ステップS10へ進み、ヒータ13cの通
電を切る。
When the operation time T becomes 0, the APU 11
It is determined that the temperature of the electric heating catalyst 13b has been raised to the predetermined activation temperature, and the process proceeds to step S10, in which the power supply to the heater 13c is stopped.

【0052】この触媒のプリヒートの終了に伴い、ガソ
リンエンジン7がスタータ(図示しない)を通じて始動
され、発電機8で発電された電力をバッテリー4、走行
用モータ1の双方に供給する。
With the end of the preheating of the catalyst, the gasoline engine 7 is started through a starter (not shown), and the electric power generated by the generator 8 is supplied to both the battery 4 and the traveling motor 1.

【0053】なお、所定の容量値Yまでバッテリー4が
回復(充電)すると、BCU10からイグニションオフ
に相当するエンジン停止信号がAPU11へ出力され、
エンジン7を停止させて、再びバッテリー4の電力だけ
でハイブリッド自動車を走行させていく。
When the battery 4 recovers (charges) to the predetermined capacity value Y, the BCU 10 outputs an engine stop signal corresponding to ignition off to the APU 11,
The engine 7 is stopped, and the hybrid vehicle is run again using only the power of the battery 4.

【0054】このように触媒温度から求めたヒータ13
cの設定通電時間、エンジン水温から求めたヒータ13
aの設定通電時間のいずれかを選択する制御により、高
い触媒温度の領域、低いエンジン水温の領域のいずれに
おいても、検出精度が期待できるパラメータから求めた
通電時間で、プリヒート制御が行われる。
The heater 13 obtained from the catalyst temperature as described above
heater 13 calculated from the set energizing time of c and the engine water temperature
According to the control for selecting any one of the set energization times a, the preheat control is performed in the high catalyst temperature region and the low engine water temperature region with the energization time obtained from the parameter for which the detection accuracy can be expected.

【0055】したがって、どのような触媒の温度状態、
エンジンの温度状態にもかかわらず、常に良好なプリヒ
ート制御を行うことができる。特に、ハイブリッド自動
車が求めている厳しい排ガス浄化性能の実現には有効で
ある。
Therefore, what temperature condition of the catalyst,
Good preheat control can always be performed regardless of the temperature state of the engine. In particular, it is effective in realizing the strict exhaust gas purification performance required by hybrid vehicles.

【0056】なお、上述した実施形態では、本発明をハ
イブリッド電気自動車の触媒のプリヒートに適用した例
を挙げたが、もちろん図5に示す第2の実施形態のよう
なエンジン7の動力でタイヤを駆動して走行させる自動
車にも適用してもよいことはいうまでもない。この場
合、APU11に設定した各種の機能はECU12に設
定されることになる。
In the above-described embodiment, an example in which the present invention is applied to preheating of a catalyst of a hybrid electric vehicle has been described. Needless to say, a tire is powered by the engine 7 as in the second embodiment shown in FIG. It goes without saying that the present invention may be applied to a car that is driven to run. In this case, various functions set in the APU 11 are set in the ECU 12.

【0057】但し、図5において第1の実施形態と同じ
部分には同一符号を付してその説明を省略した。なお、
第1の実施形態、第2の実施形態共、電気加熱触媒を用
いて、プリヒートする例を挙げたが、これに限らず、燃
料をバーナーで燃焼させて、触媒を加熱(昇温)させる
構造でもよく、触媒を昇温させる構造には限定されるも
のではない。
However, in FIG. 5, the same portions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In addition,
In both the first embodiment and the second embodiment, an example of preheating using an electric heating catalyst has been described. However, the present invention is not limited to this, and a structure in which fuel is burned by a burner to heat (heat) the catalyst is used. However, the structure for raising the temperature of the catalyst is not limited.

【0058】[0058]

【発明の効果】以上説明したように請求項1に記載の発
明によれば、触媒温度から求めた加熱手段の設定作動時
間、エンジン状態温度から求めた加熱手段の設定作動時
間のいずれかを選択する制御により、高温域、低温域の
いずれにおいても、検出精度が期待できるパラメータで
求めた作動時間で、プリヒート制御を行うことができ
る。
As described above, according to the first aspect of the present invention, one of the set operation time of the heating means obtained from the catalyst temperature and the set operation time of the heating means obtained from the engine state temperature is selected. With this control, the preheat control can be performed in any of the high-temperature range and the low-temperature range with the operation time determined by the parameter that can be expected to have the detection accuracy.

【0059】この結果、どのような触媒の温度状態、エ
ンジンの温度状態にかかわらず、常に適正な触媒のプリ
ヒート制御を行わせることができる。特に、このプリヒ
ート制御は、ハイブリッド自動車が求めている厳しい排
ガス浄化性能の実現には有効である。
As a result, appropriate preheat control of the catalyst can always be performed regardless of the temperature state of the catalyst and the temperature state of the engine. In particular, this preheat control is effective for realizing the strict exhaust gas purification performance required by hybrid vehicles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の触媒のプリヒート制
御装置の概略構成を、適用したハイブリッド電気自動車
と共に示す図。
FIG. 1 is a diagram showing a schematic configuration of a catalyst preheating control device according to a first embodiment of the present invention, together with a hybrid electric vehicle to which it is applied.

【図2】同プリヒート制御装置に設定された各触媒温
度、エンジン水温から求めた電気加熱触媒の通電時間を
示すマップ。
FIG. 2 is a map showing the energization time of an electrically heated catalyst obtained from each catalyst temperature and engine water temperature set in the preheat control device.

【図3】同マップに用いて、プリヒートが行われるまで
の制御を説明するためのフローチャート。
FIG. 3 is a flowchart for explaining control until preheating is performed using the map.

【図4】ハイブリッド電気自動車が走行しているときの
バッテリの変化を示す線図。
FIG. 4 is a diagram showing a change in battery when the hybrid electric vehicle is running.

【図5】本発明の第2の実施形態の要部を説明するため
の図。
FIG. 5 is a diagram for explaining a main part of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…走行用モータ 4…バッテリ 7…ガソリンエンジン(エンジン) 11…APU(制御手段、第1の設定手段、第2の設定
手段、決定手段、作動手段) 13b…電気加熱触媒(触媒) 13c…ヒータ(加熱手段) 14…水温センサ(エンジンの状態温度を検出する手
段) 15…触媒温度センサ(触媒の状態温度を検出する手
段)。
DESCRIPTION OF SYMBOLS 1 ... Running motor 4 ... Battery 7 ... Gasoline engine (engine) 11 ... APU (Control means, 1st setting means, 2nd setting means, determination means, operation means) 13b ... Electric heating catalyst (catalyst) 13c ... Heater (heating means) 14 ... Water temperature sensor (means for detecting the state temperature of the engine) 15 ... Catalyst temperature sensor (means for detecting the state temperature of the catalyst).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジンから排出された排ガスを浄化す
る触媒と、 この触媒を加熱する加熱手段と、 エンジンの始動時前に、前記加熱手段を作動させ前記触
媒を所定温度まで昇温させる制御手段とを有し、 前記制御手段は、 前記エンジンを始動させるときに該エンジンの状態温度
を検出して、前記触媒を目標温度まで昇温させるのに必
要な前記加熱手段の作動時間を求める第1の設定手段
と、 同じくエンジンを始動させるときに前記触媒の状態温度
を検出して、前記触媒を目標温度まで昇温させるのに必
要な前記加熱手段の作動時間を求める第2の設定手段
と、 前記第1および第2の設定手段で求めた各作動時間を比
較していずれかを選択して実作動時間に定める決定手段
と、 前記定めた実作動時間にしたがって前記加熱手段を作動
させる作動手段と、 を具備してなることを特徴とする触媒のプリヒート制御
装置。
1. A catalyst for purifying exhaust gas discharged from an engine, a heating means for heating the catalyst, and a control means for operating the heating means to raise the temperature of the catalyst to a predetermined temperature before starting the engine. Wherein the control means detects a state temperature of the engine when starting the engine, and determines an operation time of the heating means required to raise the temperature of the catalyst to a target temperature. A second setting means for detecting a state temperature of the catalyst when the engine is started and calculating an operation time of the heating means necessary to raise the temperature of the catalyst to a target temperature; and Determining the actual operation time by comparing each operation time obtained by the first and second setting means, and activating the heating means in accordance with the actual operation time determined; Preheating control device of a catalyst characterized by being provided with actuating means.
JP08329554A 1996-12-10 1996-12-10 Catalyst preheat control device Expired - Lifetime JP3106982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08329554A JP3106982B2 (en) 1996-12-10 1996-12-10 Catalyst preheat control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08329554A JP3106982B2 (en) 1996-12-10 1996-12-10 Catalyst preheat control device

Publications (2)

Publication Number Publication Date
JPH10169433A true JPH10169433A (en) 1998-06-23
JP3106982B2 JP3106982B2 (en) 2000-11-06

Family

ID=18222663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08329554A Expired - Lifetime JP3106982B2 (en) 1996-12-10 1996-12-10 Catalyst preheat control device

Country Status (1)

Country Link
JP (1) JP3106982B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167875A (en) * 2008-01-15 2009-07-30 Toyota Motor Corp Control device of electric heating type catalyst and method
JP2009196510A (en) * 2008-02-22 2009-09-03 Toyota Motor Corp Abnormality decision device for electrically heated catalyst
JP2009248946A (en) * 2008-04-11 2009-10-29 Toyota Motor Corp Controller for hybrid vehicle
JP2010236544A (en) * 2009-03-13 2010-10-21 Toyota Motor Corp Exhaust emission control device and method for hybrid vehicle
WO2012104985A1 (en) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 Vehicle and method for controlling temperature of catalytic device
WO2013094039A1 (en) * 2011-12-21 2013-06-27 トヨタ自動車株式会社 Abnormality detection device for electrically heated catalyst
WO2017013989A1 (en) * 2015-07-17 2017-01-26 株式会社 豊田自動織機 Exhaust gas purifier
CN110657006A (en) * 2018-06-28 2020-01-07 罗伯特·博世有限公司 Heating system
GB2585951A (en) * 2019-07-26 2021-01-27 Bamford Excavators Ltd System for working machine
US11293362B2 (en) 2018-12-10 2022-04-05 J. C. Bamford Excavators Limited Engine system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874449B2 (en) 1992-05-15 1999-03-24 三菱自動車工業株式会社 Operating method of internal combustion engine for power generation of hybrid vehicle

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167875A (en) * 2008-01-15 2009-07-30 Toyota Motor Corp Control device of electric heating type catalyst and method
US8438836B2 (en) 2008-02-22 2013-05-14 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus for electrically heated catalyst
JP2009196510A (en) * 2008-02-22 2009-09-03 Toyota Motor Corp Abnormality decision device for electrically heated catalyst
JP2009248946A (en) * 2008-04-11 2009-10-29 Toyota Motor Corp Controller for hybrid vehicle
JP2010236544A (en) * 2009-03-13 2010-10-21 Toyota Motor Corp Exhaust emission control device and method for hybrid vehicle
JP5626368B2 (en) * 2011-02-01 2014-11-19 トヨタ自動車株式会社 Temperature control method for vehicle and catalyst device
WO2012104985A1 (en) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 Vehicle and method for controlling temperature of catalytic device
US8925301B2 (en) 2011-02-01 2015-01-06 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling catalyst device in temperature
WO2013094039A1 (en) * 2011-12-21 2013-06-27 トヨタ自動車株式会社 Abnormality detection device for electrically heated catalyst
CN103998732A (en) * 2011-12-21 2014-08-20 丰田自动车株式会社 Abnormality detection device for electrically heated catalyst
JPWO2013094039A1 (en) * 2011-12-21 2015-04-27 トヨタ自動車株式会社 Anomaly detector for electrically heated catalyst
CN103998732B (en) * 2011-12-21 2016-09-07 丰田自动车株式会社 The abnormal detector of electrical heating type catalyst
WO2017013989A1 (en) * 2015-07-17 2017-01-26 株式会社 豊田自動織機 Exhaust gas purifier
CN110657006A (en) * 2018-06-28 2020-01-07 罗伯特·博世有限公司 Heating system
US11293362B2 (en) 2018-12-10 2022-04-05 J. C. Bamford Excavators Limited Engine system
US11698039B2 (en) 2018-12-10 2023-07-11 J. C. Bamford Excavators Limited Engine system
GB2585951A (en) * 2019-07-26 2021-01-27 Bamford Excavators Ltd System for working machine
US11473467B2 (en) 2019-07-26 2022-10-18 J.C. Bamford Excavators Limited System for working machine
GB2585951B (en) * 2019-07-26 2023-02-01 Bamford Excavators Ltd System for working machine

Also Published As

Publication number Publication date
JP3106982B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
CN100413719C (en) Control apparatus and control method of vehicle
JP4396763B2 (en) Vehicle and control method thereof
EP1199206B1 (en) Hybrid vehicle and method in which the engine is preheated before start
US6470985B1 (en) Generator control device for an electrical automobile
KR100827585B1 (en) Vehicle and method for controlling same
EP3300977B1 (en) Control apparatus of hybrid vehicle
US20080209886A1 (en) Method for Controlling an Operation of a Heatable Exhaust-Gas Sensor of a Motor Vehicle
US8438836B2 (en) Abnormality determination apparatus for electrically heated catalyst
WO2008023245A2 (en) Battery control system and battery control method
JP5359373B2 (en) Vehicle control device
CN102003258A (en) Catalyst temperature control systems and methods for hybrid vehicles
US5404720A (en) Alternator powered electrically heated catalyst
JP5720713B2 (en) Automobile
JP3106982B2 (en) Catalyst preheat control device
JPH1089053A (en) Hybrid type vehicle
JPH05328528A (en) Controller for engine-driven generator of hybrid vehicle
JPH10169535A (en) Starting controller for engine and hybrid electric vehicle using thereof
JP3180506B2 (en) Air conditioning control device for hybrid vehicle
JP3016335B2 (en) Internal combustion engine warm-up system for hybrid electric vehicles
JPH0779503A (en) Battery warmer for hybrid vehicle
JP2007137328A (en) Automobile and control method thereof
JP2012106660A (en) Hybrid vehicle
JP2874449B2 (en) Operating method of internal combustion engine for power generation of hybrid vehicle
JP4172295B2 (en) Warming-up promoting device for vehicle internal combustion engine
US20230042626A1 (en) Control apparatus for internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 14

EXPY Cancellation because of completion of term