JPH10169094A - Base isolation post - Google Patents

Base isolation post

Info

Publication number
JPH10169094A
JPH10169094A JP33426496A JP33426496A JPH10169094A JP H10169094 A JPH10169094 A JP H10169094A JP 33426496 A JP33426496 A JP 33426496A JP 33426496 A JP33426496 A JP 33426496A JP H10169094 A JPH10169094 A JP H10169094A
Authority
JP
Japan
Prior art keywords
column
post
leg
curvature
post body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33426496A
Other languages
Japanese (ja)
Other versions
JP3656346B2 (en
Inventor
Tetsuya Hanzawa
徹也 半澤
Takanori Sato
孝典 佐藤
Takehiko Terada
岳彦 寺田
Tomomi Kanemitsu
知巳 兼光
Tatsumi Horie
竜巳 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP33426496A priority Critical patent/JP3656346B2/en
Publication of JPH10169094A publication Critical patent/JPH10169094A/en
Application granted granted Critical
Publication of JP3656346B2 publication Critical patent/JP3656346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a base isolating function by providing a cylindrical member at the end of a post to form a structure, and curving the internal surface of the hole of the cylindrical member so as to have a diameter gradually increased in a direction from one end of the post to the other end thereof. SOLUTION: A base isolation post 4 is made of a post body 6 formed out of steel tube encased concrete having small flexural rigidity for an axial bearing force, and cylindrical members 7 and 8 arranged respectively on the head and the leg of the post body 6. In addition, the cylindrical member 7 laid on the head of the post body 6 is integrated with the lower side of a building upper part 2, and a hole 9 for inserting the post body 6 is formed along a center axial line. The internal surface of the hole 9 is formed to have curvature A, so as to have an inner diameter gradually increased toward the leg of the post body 6. Furthermore, the cylindrical member 8 laid on the leg of the post body 6 is buried in the ground G, and the internal surface of a hole 10 to insert the leg of the post body 6 is curved to have an inner diameter gradually increased toward the head of the post body 6. According to this construction, the base isolation function of the whole of a structure can be increased, due to the base isolation post 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばビル等、各
種構造物の柱として用いて好適な免震柱に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation column suitable for use as a pillar of various structures such as a building.

【0002】[0002]

【従来の技術】周知のように、ビル等の各種構造物にお
いて地震や強風に起因する揺れを抑えるためには、構造
物を構成する柱・梁等からなる架構の強度を高めるとい
う手法が基本的にとられている。架構の強度を高めるに
は、柱・梁そのものの強度を高める他に、例えば、耐震
壁や補強ブレースといった補強部材を設けたりするもの
がある。
2. Description of the Related Art As is well known, in order to suppress shaking caused by an earthquake or a strong wind in various structures such as buildings, a method of increasing the strength of a frame including columns and beams constituting the structures is basically used. Has been taken. In order to increase the strength of the frame, besides increasing the strength of the columns and beams themselves, for example, there is a method in which a reinforcing member such as an earthquake-resistant wall or a reinforcing brace is provided.

【0003】しかし、例えばビル内に設けられたピロテ
ィや屋内駐車場等は、柱のみからなり、補強ブレースは
もちろんのこと壁も設けることができない。このような
柱のみからなる空間は、ビル全体で見ると弱い層となっ
ており、強大な地震等が発生した場合にはこの層に変形
が集中することが予測される。したがって、従来、この
ようなピロティ等、柱のみで架構を構成せざるを得ない
層においては、柱の剛性・耐力を向上させることで、他
の層との強度バランスを取っていた。
[0003] However, for example, a piloti or an indoor parking lot provided in a building is composed of only pillars, and not only a reinforcing brace but also a wall cannot be provided. The space consisting of only such pillars is a weak layer when viewed as a whole building, and it is expected that when a strong earthquake or the like occurs, deformation will concentrate on this layer. Therefore, conventionally, in a layer, such as the piloti, in which a frame must be formed only by columns, the rigidity and proof stress of the columns are improved to balance the strength with other layers.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たような従来の技術においては、以下のような問題が存
在する。すなわち、ピロティ等においては強度を高める
ために柱の剛性・耐力を向上させていたが、これでは柱
が太くなるために空間が狭められてしまい、さらには、
過大な外力が作用した場合に柱が損壊等の被害を受ける
のを防止するフェイルセーフ機構も備えられていないと
いう問題もある。本発明は、以上のような点を考慮して
なされたもので、空間を狭めることなく構造物の耐震性
を高めることができ、また、万一の場合のフェイルセー
フ機構を具備した免震柱を提供することを課題とする。
However, the above-described conventional techniques have the following problems. In other words, in the case of piloti, etc., the rigidity and proof stress of the column were improved in order to increase the strength, but in this case, the space was narrowed because the column became thick, and furthermore,
There is also a problem that a fail-safe mechanism for preventing the column from being damaged or the like when an excessive external force is applied is not provided. The present invention has been made in consideration of the above points, and can improve the seismic resistance of a structure without narrowing a space, and furthermore, a seismic isolation column having a fail-safe mechanism in an emergency. The task is to provide

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
構造物を構成する柱の端部に、筒状でその中心軸線に沿
って形成された孔に前記柱が挿入された筒状部材が配設
され、前記孔の内周面が、前記柱の前記筒状部材が位置
する側の端部から他方の端部側に向けて径寸法が漸次増
大する湾曲面とされていることを特徴としている。
The invention according to claim 1 is
At the end of the pillar that constitutes the structure, a tubular member in which the pillar is inserted into a hole formed in a cylindrical shape along the central axis is disposed, and the inner peripheral surface of the hole is It is characterized by a curved surface whose diameter dimension gradually increases from the end on the side where the cylindrical member is located to the other end.

【0006】請求項2に係る発明は、請求項1記載の免
震柱において、前記湾曲面の曲率が、前記柱に降伏歪が
生じたときの該柱の側面の曲率に一致する構成とされ
て、該曲率が式 φf=(|cεy|+|tεy|)/D φf;曲率 cεy;降伏点における曲げ圧縮歪t εy;降伏点における曲げ引張り歪 D;柱せい で示されることを特徴としている。
According to a second aspect of the present invention, in the seismic isolation column according to the first aspect, the curvature of the curved surface coincides with the curvature of the side surface of the column when a yield strain occurs in the column. Te, curvature is formula φf = (| c ε y | + | t ε y |) / D φf; curvature c epsilon y; compressive strain bending at yield point t epsilon y; sei pillars; flexural tensile strain D at yield point It is characterized by being shown by.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る免震柱の実施
の形態の一例を、図1ないし図3を参照して説明する。
ここでは、本発明に係る免震柱を、例えば、ビルのピロ
ティの柱として用いた場合について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a seismic isolation column according to the present invention will be described below with reference to FIGS.
Here, a case will be described in which the seismic isolation column according to the present invention is used, for example, as a pillar of a piloti of a building.

【0008】図1に示すように、ビル(構造物)1は、
例えば地上2階部分以上のビル上部2については通常通
り壁3があるものの、地上1階部分については壁がなく
免震柱4のみから構成されたピロティ5となっている。
As shown in FIG. 1, a building (structure) 1
For example, the upper part 2 of the building above the second floor above the building has the wall 3 as usual, but the first floor above the building has no wall and the piloti 5 is composed only of the seismic isolation columns 4.

【0009】図2に示すように、免震柱4は、軸耐力に
対して曲げ剛性が小さい鋼管充填コンクリート造からな
る柱本体(柱)6と、この柱本体6の頭部6aと脚部6
bとに配設された支持部材(筒状部材)7,8とから構
成されている。
As shown in FIG. 2, a seismic isolation column 4 has a column main body (column) 6 made of steel pipe-filled concrete having a small bending rigidity with respect to the axial strength, a head 6a and a leg portion of the column main body 6. 6
b and support members (tubular members) 7 and 8 disposed at the same position.

【0010】柱本体6は、その頭部6aが、ビル上部2
を構成する図示しない柱の下端部に接続されており、脚
部2bは地盤G中に埋設されている。
The pillar body 6 has a head 6a which is located at the upper part 2 of the building.
And the leg 2b is buried in the ground G.

【0011】柱本体6の頭部6aに配設された支持部材
7は、ビル上部2の下面に一体に取り付けられている。
この支持部材7は、例えば鉄筋コンクリート造からなる
筒状で、柱本体6の頭部6aが挿入される孔9が中心軸
線に沿って形成されている。そして、孔9の内周面は、
柱本体6の頭部6a側から脚部6b側に向けて、その径
寸法が漸次大きくなるよう形成された湾曲面Aとされ、
柱本体6の側面から漸次離間するようになっている。
A support member 7 disposed on the head 6a of the column body 6 is integrally attached to the lower surface of the upper part 2 of the building.
The support member 7 has a cylindrical shape made of, for example, reinforced concrete, and has a hole 9 into which the head 6a of the column body 6 is inserted, formed along the central axis. And the inner peripheral surface of the hole 9
From the head 6a side of the column main body 6 toward the leg 6b side, a curved surface A is formed such that its diameter dimension gradually increases,
The main body 6 is gradually separated from the side surface.

【0012】一方、柱本体6の脚部6bに配設された支
持部材8は、地盤Gに埋設されている。この支持部材8
は、例えば鉄筋コンクリート造からなり底版8aを有し
た有底筒状とされ、柱本体6の脚部6bが挿入される孔
10が中心軸線に沿って形成されている。孔10の内周
面は、柱本体6の脚部6b側から脚部6a側に向けて、
その径寸法が漸次大きくなるよう形成された湾曲面Bと
され、柱本体6の側面から漸次離間するようになってい
る。
On the other hand, the support member 8 provided on the leg 6b of the column body 6 is buried in the ground G. This support member 8
Is made of, for example, reinforced concrete and has a bottomed cylindrical shape having a bottom plate 8a, and a hole 10 into which the leg 6b of the column body 6 is inserted is formed along the central axis. The inner peripheral surface of the hole 10 extends from the leg 6b side of the pillar body 6 toward the leg 6a side,
The curved surface B is formed so that its diameter dimension is gradually increased, and is gradually separated from the side surface of the column main body 6.

【0013】前記支持部材7,8の孔9,10を形成す
る湾曲面A,Bは、その曲率が柱本体6に降伏歪が生じ
たときの柱本体6の側面の曲率にほぼ一致するよう形成
されている。これについて詳述すると、このビル1にお
いて柱本体6に降伏歪が発生した時のその側面の曲率φ
は、柱本体6の「せい(柱せい)」をDとすると、一般
に、 φ=(|εc|+|εt|)/D (ただし、εcは柱本体6の曲げ圧縮歪、εtは曲げ引張
歪)で表される。したがって、柱本体6における降伏の
発生箇所をその上下端部と考えると、図3のグラフに示
すように、この部分に最大モーメントMが生じるときの
降伏点における柱本体6の側面の曲率φfは、 φf=(|cεy|+|tεy|)/D (ただし、cεyは降伏点での曲げ圧縮歪、tεyは降伏点
での曲げ引張歪)で表される。すなわち、支持部材7,
8の孔9,10を形成する湾曲面A,Bの曲率φf’
は、柱本体6の頭部6a,脚部6bに最大モーメントM
が生じるときの降伏点における前記曲率φfに一致する
よう設定されている(φf’=φf)。
The curvatures of the curved surfaces A and B forming the holes 9 and 10 of the support members 7 and 8 are substantially the same as the curvatures of the side surfaces of the column body 6 when the column body 6 undergoes yield strain. Is formed. This will be described in detail. In this building 1, when a yield strain occurs in the column main body 6, the curvature φ of the side surface is generated.
Is generally D = (| ε c | + | ε t |) / D (where ε c is the bending compressive strain of the column body 6 and ε t is represented by bending tensile strain). Therefore, assuming that the location where the yield occurs in the column body 6 is the upper and lower ends thereof, as shown in the graph of FIG. 3, the curvature φf of the side surface of the column body 6 at the yield point when the maximum moment M is generated in this portion is , φf = (| c ε y | + | t ε y |) / D ( although, c epsilon y flexural compressive strain at yield, is t epsilon y flexural tensile strain at yield) represented by. That is, the support members 7,
Of the curved surfaces A and B forming the holes 9 and 10 of FIG.
Is the maximum moment M on the head 6a and the leg 6b of the pillar body 6.
Is set to coincide with the curvature φf at the yield point when φ occurs (φf ′ = φf).

【0014】このように、支持部材7,8の孔9,10
の曲率を、柱本体6に降伏歪が生じたときの柱本体6の
側面の曲率φfに一致させると、柱本体6は地震や風力
等の外力によって以下のような挙動を示す。地震や風力
などによってまず初めに最大モーメントが生じる柱本体
6の頭部6aの上端部,脚部6bの下端部の微少断面に
おける歪が上記曲率φfに達した場合に、この微少断面
は、柱本体6の側面に沿って位置する支持部材7,8の
孔9,10に接触してその変形が強制的に拘束される。
すると、柱本体6の頭部6a,脚部6bと孔9,10と
の接触点は、柱本体6の長さ方向中央部寄りに移行す
る。これに伴って、最大モーメントが生じる位置が前記
微少断面に隣接する他の微少断面に移行し、その部分の
柱本体6の側面についても、支持部材7,8の孔9,1
0に接触することになって、その変形が強制的に拘束さ
れることとなる。
As described above, the holes 9, 10 of the support members 7, 8 are provided.
Is matched with the curvature .phi.f of the side surface of the column body 6 when yield strain occurs in the column body 6, the column body 6 exhibits the following behavior due to an external force such as an earthquake or wind force. First, when the strain in the micro-section at the upper end of the head 6a and the lower end of the leg 6b of the column main body 6 at which the maximum moment occurs due to an earthquake or wind force reaches the above-mentioned curvature φf, this micro-section is The deformation is forcibly restrained by contacting the holes 9, 10 of the support members 7, 8 located along the side surface of the main body 6.
Then, the contact point between the heads 6a and the leg portions 6b of the pillar body 6 and the holes 9 and 10 shifts toward the center in the length direction of the pillar body 6. Along with this, the position where the maximum moment occurs is shifted to another minute section adjacent to the minute section, and the side surfaces of the column body 6 at that part also have holes 9, 1 of the support members 7, 8.
As a result, the deformation is forcibly restrained.

【0015】このようにして、柱本体6が頭部6a,脚
部6bにおいて降伏点に達するところで、これら柱本体
6の頭部6a,脚部6bの側面が支持部材7,8の孔
9,10の内周面に当接することによってその変形が拘
束されるようになっている。
As described above, when the column body 6 reaches the yield point at the head 6a and the leg 6b, the side surfaces of the head 6a and the leg 6b of the column body 6 correspond to the holes 9 of the support members 7,8. By contacting the inner peripheral surface of 10, the deformation thereof is restrained.

【0016】ところで、柱本体6の入力せん断力Qは、 Q=2・Mmax/L (Mmax;最大モーメント、L;柱本体6の有効長さ)
で表される。そして、前記したように、柱本体6が頭部
6a,脚部6bにおいて降伏点に達するところで、これ
ら柱本体6の頭部6a,脚部6bの側面が支持部材7,
8の孔9,10の内周面に当接する点、すなわち最大モ
ーメントの生じる支承点が柱本体6の長さ方向中央部寄
りに順次移行していくと、これに伴って柱本体6の有効
長さLが漸次減少する。すると、その結果、柱本体6の
せん断力Qが増大することとなる。
By the way, the input shear force Q of the column body 6 is as follows: Q = 2 · Mmax / L (Mmax: maximum moment, L: effective length of the column body 6)
It is represented by As described above, when the pillar body 6 reaches the yield point at the head 6a and the leg 6b, the side surfaces of the head 6a and the leg 6b of the pillar body 6 are supported by the support member 7,
When the point of contact with the inner peripheral surfaces of the holes 9 and 10 of the 8, that is, the bearing point where the maximum moment occurs, gradually shifts toward the center in the longitudinal direction of the column body 6, the column body 6 becomes effective accordingly. The length L gradually decreases. Then, as a result, the shearing force Q of the column main body 6 increases.

【0017】上述したように、ビル1のピロティ5を構
成する各免震柱4が、柱本体6と、その頭部6a,脚部
6bに配設した支持部材7、8とから構成され、支持部
材7,8に形成された孔9,10が湾曲面A,Bで形成
されて、その曲率が、柱本体6に降伏歪発生時の柱本体
6の側面の曲率φfに一致するよう設定されている。こ
れにより、地震や風により強大な外力が作用した場合
に、柱本体6が降伏点に達するところで支持部材7,8
によってその変形を阻止することができる。このように
して、柱本体6の頭部6a,脚部6bにエネルギーを集
中させずに、この部分における降伏を回避してエネルギ
ーを分散させることができる。したがって、免震柱4
は、このような支持部材7,8を備えない単なる柱に比
較して、弾性域を飛躍的に拡大することが可能となり、
万一の場合のフェイルセーフ機能を備えたものとなる。
この結果、このような免震柱4によって構成されるピロ
ティ5の層崩壊を防ぐことができ、ビル1全体としての
強度バランスをとってその耐震性を高めることができ
る。しかも、免震柱4においては、柱本体6の全長を部
材として有効に用いることができ、その断面を拡大する
必要もないので、空間の有効利用を図ることができると
共に高い経済メリットを得ることもできる。
As described above, each seismic isolation column 4 constituting the piloty 5 of the building 1 is composed of the column main body 6 and the supporting members 7 and 8 disposed on the head 6a and the leg 6b, Holes 9 and 10 formed in the support members 7 and 8 are formed with curved surfaces A and B, and the curvature thereof is set to match the curvature φf of the side surface of the column main body 6 when yield strain occurs in the column main body 6. Have been. Thus, when a strong external force is applied due to an earthquake or wind, the support members 7, 8 are provided when the column body 6 reaches the yield point.
The deformation can be prevented. In this way, without concentrating the energy on the head 6a and the leg 6b of the column main body 6, it is possible to avoid yielding at this portion and disperse the energy. Therefore, seismic isolation column 4
Makes it possible to dramatically expand the elastic range as compared with a simple column without such support members 7 and 8,
It has a fail-safe function in case of an emergency.
As a result, it is possible to prevent the layered collapse of the piloty 5 constituted by the seismic isolation columns 4 and to improve the earthquake resistance of the building 1 as a whole while maintaining the strength balance. Moreover, in the seismic isolation column 4, the entire length of the column main body 6 can be effectively used as a member, and there is no need to enlarge the cross section, so that effective use of space can be achieved and high economic merit can be obtained. Can also.

【0018】なお、上記実施の形態において、本発明に
係る免震柱を、地上1階部分のピロティ5を構成する免
震柱4として適用する例を用いたが、その設置位置は何
ら限定するものではなく、例えば地下駐車場の柱として
用いる場合や、例えば地上2階以上に位置するエントラ
ンスホール等の柱として用いる場合にも同様に適用する
ことが可能である。特にそのような場合、上記実施の形
態において、支持部材8を地盤G中に埋設する構成とし
たが、これを地盤中に構築した各種基礎上や地下躯体,
下層階の柱等に設置しても良い。また、支持部材7,8
は、ビル上部2あるいは基礎,地下躯体,柱等に一体に
埋設するようにしてもよい。また、免震柱4を構成する
柱本体6,支持部材7,8の材質については何ら限定す
るものではなく、所定の耐力と剛性を有していれば良
く、例えば全体を金属のみで形成したり、表面のみを金
属で被覆したりしてもよい。さらに支持部材7,8の湾
曲面A,Bの曲率は、上記した柱本体6の降伏歪発生時
における曲率φfに一致させなくとも、より小さな値と
してもよい。
In the above-described embodiment, the example in which the seismic isolation column according to the present invention is applied as the seismic isolation column 4 constituting the piloty 5 on the first floor above ground is used, but the installation position is not limited at all. For example, the present invention can be similarly applied to a case where it is used as a pillar of an underground parking lot or a case where it is used as a pillar of an entrance hall or the like located at two or more floors above the ground. In particular, in such a case, in the above-described embodiment, the support member 8 is buried in the ground G. However, the support member 8 is constructed on various foundations and underground skeletons constructed in the ground.
It may be installed on a pillar or the like on the lower floor. Also, the support members 7, 8
May be buried integrally in the upper part 2 of the building or in the foundation, underground frame, pillar or the like. Further, the material of the column body 6, the supporting members 7, 8 constituting the seismic isolation column 4 is not limited at all, as long as it has a predetermined strength and rigidity. Alternatively, only the surface may be coated with a metal. Further, the curvatures of the curved surfaces A, B of the support members 7, 8 may not be equal to the curvature φf at the time of the occurrence of the yield strain of the column body 6, and may be smaller.

【0019】[0019]

【発明の効果】以上説明したように、請求項1に係る免
震柱によれば、構造物を構成する柱の端部に筒状部材を
配設し、筒状部材の孔の内周面を、柱の端部から他方の
端部側に向けて径寸法が漸次増大する湾曲面とする構成
となっている。また、請求項2に係る免震柱によれば、
湾曲面の曲率を、柱に降伏歪が生じたときの柱の側面の
曲率に一致させる構成となっている。このような構成の
免震柱では、地震や風により強大な外力が作用した場合
に、柱が降伏点に達するところでその変形を拘束するこ
とができ、柱の弾性域を飛躍的に拡大することが可能と
なり、筒状部材が万一の場合のフェイルセーフ機能を果
たすものとなる。この結果、例えばピロティのような壁
のない層等がある構造物においても、この層に上記免震
柱を適用することによって構造物全体の耐震性を高める
ことができ、しかも、柱の断面を拡大する必要もないの
で、空間の有効利用を図ることができると共に高い経済
メリットを得ることもできる。
As described above, according to the seismic isolation column according to the first aspect, the cylindrical member is disposed at the end of the column constituting the structure, and the inner peripheral surface of the hole of the cylindrical member is provided. Is a curved surface whose diameter dimension gradually increases from the end of the pillar toward the other end. According to the seismic isolation column according to claim 2,
The curvature of the curved surface is configured to match the curvature of the side surface of the column when yield strain occurs in the column. In the case of a seismic isolation column with such a structure, when a strong external force is applied due to an earthquake or wind, the deformation of the column can be restrained when it reaches the yield point, and the elastic range of the column can be dramatically expanded. And a fail-safe function in the event that the cylindrical member should be used. As a result, even in a structure having a layer without walls such as piloti, for example, the seismic isolation of the entire structure can be improved by applying the seismic isolation column to the layer, and the cross section of the column can be reduced. Since there is no need to expand the space, effective use of space can be achieved and high economic merit can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る免震柱を適用した構造物の一例
を示す立断面図である。
FIG. 1 is a vertical sectional view showing an example of a structure to which a seismic isolation column according to the present invention is applied.

【図2】 前記免震柱を示す立断面図である。FIG. 2 is an elevational sectional view showing the seismic isolation column.

【図3】 柱におけるモーメントと降伏歪との関係を示
す図である。
FIG. 3 is a diagram showing a relationship between moment and yield strain in a column.

【符号の説明】[Explanation of symbols]

1 ビル(構造物) 4 免震柱 6 柱本体(柱) 7,8 支持部材(筒状部材) 9,10 孔 A,B 湾曲面 DESCRIPTION OF SYMBOLS 1 Building (structure) 4 Seismic isolation column 6 Column main body (column) 7, 8 Support member (tubular member) 9, 10 holes A, B Curved surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兼光 知巳 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 堀江 竜巳 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tomomi Kanemitsu 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Corporation (72) Inventor Tatsumi Horie 1-2-3 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 構造物を構成する柱の端部に、筒状でそ
の中心軸線に沿って形成された孔に前記柱が挿入された
筒状部材が配設され、前記孔の内周面が、前記柱の前記
筒状部材が位置する側の端部から他方の端部側に向けて
径寸法が漸次増大する湾曲面とされていることを特徴と
する免震柱。
1. A cylindrical member having a cylindrical hole formed along a central axis and having the column inserted therein is disposed at an end of the column constituting the structure, and an inner peripheral surface of the hole. However, the seismic isolation column is characterized in that the column has a curved surface whose diameter gradually increases from the end on the side where the tubular member is located to the other end.
【請求項2】 請求項1記載の免震柱において、前記湾
曲面の曲率が、前記柱に降伏歪が生じたときの該柱の側
面の曲率に一致する構成とされて、該曲率が式 φf=(|cεy|+|tεy|)/D φf;曲率 cεy;降伏点における曲げ圧縮歪t εy;降伏点における曲げ引張り歪 D;柱せい で示されることを特徴とする免震柱。
2. The seismic isolation column according to claim 1, wherein a curvature of the curved surface is equal to a curvature of a side surface of the column when a yield strain occurs in the column, and the curvature is expressed by an equation. φf = (| c ε y | + | t ε y |) / D φf; curvature c epsilon y; wherein the indicated due pillar; flexural tensile strain D at yield point; flexural compressive strain t epsilon y at yield point And seismic isolation columns.
JP33426496A 1996-12-13 1996-12-13 Seismic isolation column Expired - Fee Related JP3656346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33426496A JP3656346B2 (en) 1996-12-13 1996-12-13 Seismic isolation column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33426496A JP3656346B2 (en) 1996-12-13 1996-12-13 Seismic isolation column

Publications (2)

Publication Number Publication Date
JPH10169094A true JPH10169094A (en) 1998-06-23
JP3656346B2 JP3656346B2 (en) 2005-06-08

Family

ID=18275404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33426496A Expired - Fee Related JP3656346B2 (en) 1996-12-13 1996-12-13 Seismic isolation column

Country Status (1)

Country Link
JP (1) JP3656346B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240488A (en) * 2007-03-29 2008-10-09 Kajima Corp Concrete type bar-shaped damper structure
JP2011080293A (en) * 2009-10-08 2011-04-21 Kajima Corp Seismic response controlled bridge pier
JP2013133683A (en) * 2011-12-27 2013-07-08 Kajima Corp Method of manufacturing damper structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240488A (en) * 2007-03-29 2008-10-09 Kajima Corp Concrete type bar-shaped damper structure
JP4735585B2 (en) * 2007-03-29 2011-07-27 鹿島建設株式会社 Concrete rod-shaped damper structure
JP2011080293A (en) * 2009-10-08 2011-04-21 Kajima Corp Seismic response controlled bridge pier
JP2013133683A (en) * 2011-12-27 2013-07-08 Kajima Corp Method of manufacturing damper structure

Also Published As

Publication number Publication date
JP3656346B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP2007046410A (en) Vibration proof device
JP4758146B2 (en) Multi-story shear wall
JP3226492B2 (en) Seismic isolation structure of high-rise building
JP2000110399A (en) Earthquake resistant construction of building for detached house
JPH10169094A (en) Base isolation post
JP2005139894A (en) Steel frame connecting member
JPH0874317A (en) Skeleton structure of building
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP2003293596A (en) Building reinforcing structure
JP2000328810A (en) Vibration control frame
JPH09158490A (en) Existing building reinforcing structure
JP2004225309A (en) Building structure
JP2001317215A (en) Earthquake-resisting reinforcing construction method for existing building
JP3306226B2 (en) Attached column base structure of multi-story shear wall
JPH0932343A (en) Additional damper combining steel elastic and plastic damper with oil damper
JP2003328585A (en) Vibration control structure for building having piloti
JP3728646B2 (en) Vibration control structure
JPS647193B2 (en)
JPS6229588B2 (en)
JP2001140497A (en) Earthquake-resistant house
JP3170538B2 (en) Structure to reduce the degree of fixing of column bases and column bases with multi-story shear walls
JP2691238B2 (en) Connection between column and beam
JP4074972B2 (en) Seismic building
JP2992496B2 (en) Seismic device
JP2000257300A (en) Building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080318

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees