JPH10165971A - Pressure downward injection type multistage ozone contact tank and control thereof - Google Patents

Pressure downward injection type multistage ozone contact tank and control thereof

Info

Publication number
JPH10165971A
JPH10165971A JP32807996A JP32807996A JPH10165971A JP H10165971 A JPH10165971 A JP H10165971A JP 32807996 A JP32807996 A JP 32807996A JP 32807996 A JP32807996 A JP 32807996A JP H10165971 A JPH10165971 A JP H10165971A
Authority
JP
Japan
Prior art keywords
ozone
hydrogen peroxide
water
contact tank
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32807996A
Other languages
Japanese (ja)
Other versions
JP3977885B2 (en
Inventor
Shoichi Samejima
正一 鮫島
Hiroshi Shimazaki
弘志 島崎
Tetsufumi Watanabe
哲文 渡辺
Hiroshi Tsukura
洋 津倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP32807996A priority Critical patent/JP3977885B2/en
Publication of JPH10165971A publication Critical patent/JPH10165971A/en
Application granted granted Critical
Publication of JP3977885B2 publication Critical patent/JP3977885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an actual scale corresponding pressure downward injection type multistage ozone contact tank enhancing the absorbing efficiency of ozone gas to water to be treated without being accompanied by scaling-up and not generating an absorbing efficiency lowering phenomenon with the elapse of time. SOLUTION: A branch pipe 15a is fitted to the midway part of the inflow pipe sending water 20 to be treated into an up and down counterflow type multistage ozone contact tank 11 to arrange a pressure vortex pump 17 supplying water to be treated and ozone gas to the branch pipe 15a in a mixed state and the rapid contraction valve 19 for adjusting the pressure in the output pipe thereof to connect the output pipe to the lower injection pipe 21 vertically inserted and arranged into the first tank 11a of a multistage ozone contact tank 11 through the water sending pipe of the water 20 to be treated and, further, by introducing a hydrogen peroxide injection pipe 22 into the flooding part 11d of the multistage ozone contact tank 11, OH free radicals are formed from dissolved ozone and hydrogen peroxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は上下水道の処理方法
としての有用な促進酸化処理を組み合わせた加圧型下方
注入式多段オゾン接触槽とその制御方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized downward injection type multi-stage ozone contact tank combined with an accelerated oxidation treatment useful as a water and sewage treatment method and a control method therefor.

【0002】[0002]

【従来の技術】近年における都市部での水環境の悪化に
伴って河川とか湖沼の水質汚濁が進んでおり、従来の凝
集沈澱とか砂濾過処理及び塩素処理との組み合わせだけ
では、水道用原水中の色度,臭気の除去作用に限界点が
生じている現状にある。特に我国の水道水として利用さ
れる水源の約70%は、地表水と呼ばれる湖沼水,ダム
水及び河川水に依存しており、これら湖沼水とかダムに
は富栄養化に伴う生物活動が活発化することによるカビ
臭とか藻臭の発生があり、他方の河川水には各種排水に
含まれている有機物とかアンモニア性窒素が流入され、
河川の自然浄化作用によってこれらの流入物を完全に浄
化することは期待できない状況にある。
2. Description of the Related Art Water pollution in rivers and lakes has been progressing with the deterioration of the water environment in urban areas in recent years. Raw water for tap water can be obtained only by the conventional combination of coagulation sedimentation, sand filtration and chlorination. There is a point where the chromaticity and odor removing action of the odor have a limit. In particular, about 70% of the water sources used as tap water in Japan depend on surface water, such as lakes, dams and river water, and these lakes and dams have active biological activities associated with eutrophication. There is a generation of mold odor and algae odor due to the formation of organic substances and ammonia nitrogen contained in various wastewater into the other river water,
It is impossible to completely purify these inflows by the natural purification action of rivers.

【0003】このような高度経済成長に伴う水源の水質
悪化に対処するため、前塩素処理が一般的に採用されて
いるが、前塩素処理を採用した浄水過程で発生する有機
塩素化合物であるトリハロメタン(THM)が発ガン性
を有していることが知られている。このような水源のカ
ビ臭とか藻臭の消去、及びトリハロメタン等発ガン物質
対策として、浄水の操作工程中にオゾン処理、又はオゾ
ン処理と活性炭処理との複合処理を導入する高度浄水シ
ステムが検討されている。
[0003] In order to cope with the deterioration of the water quality of the water source due to such high economic growth, pre-chlorination is generally adopted. Trihalomethane which is an organic chlorine compound generated in a water purification process employing pre-chlorination is used. (THM) is known to have carcinogenicity. Advanced water purification systems that introduce ozone treatment or a combined treatment of ozone treatment and activated carbon treatment during the water purification operation are being studied as measures to eliminate mold and algal odors from such water sources and to take measures against carcinogens such as trihalomethane. ing.

【0004】オゾンガスはそれ自身の持つ強力な酸化力
で水中に溶解している溶存性の有害物質を酸化除去する
作用があり、近時は上水のみならず下水処理にも採用さ
れている。しかしオゾン処理は塩素処理に比して約2倍
のコスト増となるため、オゾンガスの処理効果をより一
層高めることが要求され、そのため無数の微細なオゾン
ガスの気泡を作ることによって水とオゾンガスとの接触
効率を上げて、効率良くオゾンガスを水中に溶解吸収さ
せることが必須の要件となっている。
[0004] Ozone gas has an action of oxidizing and removing dissolved harmful substances dissolved in water by its own strong oxidizing power, and has recently been adopted not only for water supply but also for sewage treatment. However, the cost of ozone treatment is about twice as high as that of chlorination, and it is required to further enhance the effect of ozone gas treatment. Therefore, by forming countless fine ozone gas bubbles, water and ozone gas It is an essential requirement to increase the contact efficiency and to efficiently dissolve and absorb ozone gas in water.

【0005】従来からオゾンガスの接触効率及び吸収効
率を上げるための手段として、散気管型オゾン接触槽と
か下方注入式オゾン接触槽(Uチューブ型オゾン接触
槽)が知られている。上記散気管型オゾン接触槽の一例
として、例えば「オゾン利用水処理技術」(宗宮 功,
公害対策技術同好会,1989年5月)には、図10に
示したように上下対向流式のオゾン接触槽の例が開示さ
れている。
Conventionally, as means for increasing the contact efficiency and absorption efficiency of ozone gas, a diffuser type ozone contact tank or a downward injection type ozone contact tank (U tube type ozone contact tank) is known. As an example of the above-mentioned aeration tube type ozone contact tank, for example, “Ozone water treatment technology” (Isao Soumiya,
The Pollution Control Technology Association, May 1989) discloses an example of a vertically opposed ozone contact tank as shown in FIG.

【0006】この例ではオゾン接触槽1の内部に底面か
ら立ち上がる隔壁2,2と、上面から垂下された隔壁
3,3が配設されていて、この隔壁2,3によって気相
部が分離されているとともに液相部が相互に連通された
越流式の複数の反応室が構成されている。そして各室の
内方底面近傍に数十μmの微細孔を持つセラミック等の
散気管4.4が配置されていて、図外のオゾン発生装置
から得られるオゾンガスが該散気管4.4に送り込ま
れ、流入口5から流入する被処理水とオゾンガスとが矢
印A,Aに示すように対向流として接触することによっ
て該オゾンガスの接触効率が高められ、オゾン処理水1
0として流出する。
In this example, partitions 2 and 2 rising from the bottom and partitions 3 and 3 hanging down from the top are disposed inside the ozone contact tank 1, and the gas phase is separated by the partitions 2 and 3. And a plurality of overflow type reaction chambers in which the liquid phase portions communicate with each other. An air diffusion pipe 4.4 made of ceramic or the like having fine holes of several tens of μm is arranged near the inner bottom surface of each chamber, and ozone gas obtained from an ozone generator (not shown) is sent into the air diffusion pipe 4.4. When the water to be treated and the ozone gas flowing from the inflow port 5 come into contact with each other as a counterflow as shown by arrows A and A, the contact efficiency of the ozone gas is increased, and the ozone-treated water 1
Flows out as 0.

【0007】他方の下方注入式オゾン反応槽(Uチュー
ブ型オゾン反応槽)は別名インジェクター型オゾン接触
槽とも呼称され、図11に示したように縦長のオゾン接
触槽1の内方に内管6が配置されていて、オゾン発生装
置7で得られるオゾンガスがガス放出管8を介して内管
6の上部から送り込まれる。そしてオゾンガス接触槽1
の側方の流入口5から流入する被処理水とオゾンガスと
が内管6内で下降流として継続的に接触して所望のオゾ
ン処理が行われ、そのまま内管6の外壁面に沿って上昇
してオゾン接触槽1の上方部からオゾン処理水10とし
て流出する。未反応のオゾンガスは排オゾン処理装置9
に送り込まれて清浄化処理される。
The other downward injection type ozone reaction tank (U tube type ozone reaction tank) is also called an injector type ozone contact tank, and as shown in FIG. Is disposed, and the ozone gas obtained by the ozone generator 7 is sent from the upper part of the inner pipe 6 through the gas discharge pipe 8. And the ozone gas contact tank 1
The water to be treated and the ozone gas flowing from the inlet 5 on the side of the inner pipe 6 continuously contact as a downward flow in the inner pipe 6 to perform a desired ozone treatment, and rise as it is along the outer wall surface of the inner pipe 6 Then, it flows out as ozonized water 10 from the upper part of the ozone contact tank 1. Unreacted ozone gas is discharged to the ozone treatment device 9
To be cleaned.

【0008】上記オゾン接触槽1の縦方向の長さは20
〜30メートルと可成長くなっていて、これによって内
管6内の水圧が2.0〜2.5(kgf/cm2)のレベ
ルに保持される。
The vertical length of the ozone contact tank 1 is 20.
The water pressure in the inner tube 6 is maintained at a level of 2.0 to 2.5 (kgf / cm 2 ).

【0009】このUチューブ型オゾン接触槽は、内管6
で発生する乱流によってオゾンガスと被処理水との気液
接触効果が高められ、オゾンガスが内管6内を流下する
につれて増大する水圧によって該オゾンガスの水中への
溶解が促進されるので、散気管方式に較べてオゾン溶解
効率で5〜10%向上しており、オゾンガスと被処理水
との接触時間を約5倍以上取ることができるとともに反
応槽内での滞留時間は1/5以下に短縮することができ
るという特徴を有している。又、オゾン接触槽が縦長で
あるため、オゾン処理施設の設置スペースが散気管方式
の1/5ですむという利点を有している。
This U-tube type ozone contact tank has an inner pipe 6
The gas-liquid contact effect between the ozone gas and the water to be treated is enhanced by the turbulent flow generated in the step, and the water pressure that increases as the ozone gas flows down in the inner pipe 6 promotes the dissolution of the ozone gas into the water. The ozone dissolution efficiency is improved by 5 to 10% compared to the system, the contact time between ozone gas and the water to be treated can be about 5 times or more, and the residence time in the reaction tank is reduced to 1/5 or less. It has the feature that it can be done. Further, since the ozone contact tank is vertically long, there is an advantage that the installation space of the ozone treatment facility is only 1/5 that of the air diffuser system.

【0010】かかるオゾン反応槽を用いることにより、
塩素よりもはるかに酸化力の強力なオゾンガスによって
被処理水の異臭味とか色度除去、有害物質の酸化除去が
行われる(上記Uチューブ型オゾン処理装置に関して
は、第2回日本オゾン協会年次研究講演会講演集の第7
6頁〜第77頁,鳥山ら「Uチューブ型オゾン接触槽の
有機物除去特性」を参照)。
[0010] By using such an ozone reaction tank,
Ozone gas, which has much more oxidizing power than chlorine, removes off-flavors and chromaticity of the water to be treated, and oxidizes and removes harmful substances. (For the U-tube type ozone treatment equipment, the 2nd Annual Ozone Association of Japan Research Lecture Series No. 7
Pages 6 to 77, see Toriyama et al., "Organic matter removal characteristics of U-tube ozone contact tank").

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記した
高度浄水システム等に採用されるオゾン接触槽は、被処
理水に対するオゾンガスの吸収効率を上げるための制御
方法が確立されていないため、経時的な吸収効率低下現
象が発生する惧れがある外、オゾン接触槽の滞留時間を
長くする必要があり、装置の大型化等に起因するコスト
アップを招来してしまうという課題がある。
However, the ozone contact tank employed in the above-mentioned advanced water purification system or the like does not have a control method for increasing the efficiency of absorbing ozone gas with respect to the water to be treated. In addition to the possibility that a reduction in efficiency may occur, the residence time of the ozone contact tank needs to be lengthened, resulting in a problem that the cost increases due to an increase in the size of the apparatus.

【0012】例えば図10に示した散気管型オゾン接触
槽は、処理が進むにつれて散気管4の表面にオゾンガス
によって酸化された鉄とかマンガンが付着して、散気管
4の目詰まりに起因する経時的なオゾン吸収効率低下現
象を引き起こす惧れがあり、これに対処して散気管自体
の交換が必要になるという問題がある。更にオゾンガス
による反応時間を充分に取るためには、接触槽を大型化
しなければならないので、設備費等に要するコストアッ
プを招来するとともに、装置を設置するための大きな敷
地面積を要することになり、都市部における浄水場のよ
うに用地確保が困難な地区での採用が難しい。
For example, in the diffuser type ozone contact tank shown in FIG. 10, iron or manganese oxidized by the ozone gas adheres to the surface of the diffuser tube 4 as the treatment proceeds, and the time elapses due to clogging of the diffuser tube 4. There is a fear that the ozone absorption efficiency may be reduced, and it is necessary to replace the air diffuser itself in order to cope with this. Furthermore, in order to take sufficient reaction time with ozone gas, the contact tank must be enlarged, which leads to an increase in equipment costs and the like, and also requires a large site area for installing the apparatus. It is difficult to adopt in areas where land is difficult to secure, such as water purification plants in urban areas.

【0013】他方の図11に示したUチューブ型オゾン
接触槽は、散気管型オゾン接触槽に比較してオゾン溶解
効率で5〜10%程度向上しており、且つオゾンガスと
被処理水との接触時間も5倍以上長く取ることができる
とともに接触槽内での滞留時間は1/5以下に短縮する
ことができるという利点があるが、前記したようにオゾ
ン接触槽の水深が20〜30メートルと可成長くなって
いるので、散気管方式よりも施設の建設工事が複雑にな
るという問題があり、更に接触槽内に貯留される堆積物
の除去とか槽内の清掃が簡便に行えない上、接触槽の底
部近傍で何等かの障害が発生しても直ちに処置すること
ができないという難点を有している。
On the other hand, the U-tube type ozone contact tank shown in FIG. 11 has an ozone dissolving efficiency improved by about 5 to 10% as compared with the diffuser ozone contact tank, and the ozone gas and the water to be treated are not mixed. The contact time can be increased by 5 times or more, and the residence time in the contact tank can be reduced to 1/5 or less. However, as described above, the water depth of the ozone contact tank is 20 to 30 meters. The construction of the facility is more complicated than the air diffuser method, and the removal of sediment stored in the contact tank and the cleaning of the tank cannot be performed easily. However, there is a disadvantage that even if some trouble occurs near the bottom of the contact tank, it cannot be immediately treated.

【0014】ここで別の観点からオゾンの反応過程を考
察してみると、このオゾン反応過程はオゾンの拡散が律
速する初期段階と、オゾン反応が律速する後期段階とに
大別することができる。従って気液反応接触槽もこれら
の特性を踏まえた装置であることが理想的であり、例え
ばオゾン反応の初期時には拡散効率を高めるための大き
な接触面積と強力な撹拌機構を備え、オゾン反応の後期
時には十分な反応を得るための滞留時間が確保される装
置であることが望ましい。
Considering the reaction process of ozone from another point of view, the ozone reaction process can be roughly classified into an initial stage in which the diffusion of ozone is rate-limiting and a late stage in which the ozone reaction is rate-determining. . Therefore, it is ideal that the gas-liquid reaction contact tank is also a device based on these characteristics.For example, at the beginning of the ozone reaction, it has a large contact area and a strong stirring mechanism to increase the diffusion efficiency, and Sometimes it is desirable to have a device that ensures a residence time for obtaining a sufficient reaction.

【0015】前記2種類のオゾン接触槽の反応過程を考
慮すると、オゾン反応の初期時にはUチューブ型オゾン
接触槽が適しており、オゾン反応の後期時には散気管型
オゾン接触槽が適しているものといえる。
Considering the reaction processes of the two types of ozone contact tanks, a U-tube type ozone contact tank is suitable at the beginning of the ozone reaction, and a diffuser ozone contact tank is suitable at the latter stage of the ozone reaction. I can say.

【0016】更に近時はオゾンの酸化力を高めるため
に、促進酸化処理法(AOP法と略称される)が開発さ
れている。この促進酸化処理法を大別すると、「オゾン
・過酸化水素処理」,「オゾン・紫外線処理」が挙げら
れる。このような併用処理の特徴は処理時間の短縮とか
処理装置の小型化をはかる点にあり、特に「オゾン・過
酸化水素処理」方法は欧米で実用化されている。
Further, recently, in order to increase the oxidizing power of ozone, an accelerated oxidation treatment method (abbreviated as AOP method) has been developed. The accelerated oxidation treatment method is roughly classified into "ozone / hydrogen peroxide treatment" and "ozone / ultraviolet treatment". The feature of such a combined treatment is to shorten the treatment time and to reduce the size of the treatment apparatus. In particular, the "ozone / hydrogen peroxide treatment" method has been put to practical use in Europe and the United States.

【0017】そこで本発明は上記に鑑みてなされたもの
であり、装置の大型化を伴わずに被処理水に対するオゾ
ンガスの吸収効率を高め、コストの低廉化がはかれる
上、経時的な吸収効率低下現象が生じることがなく、且
つ促進酸化処理を適用した際のオゾンと過酸化水素が過
剰注入にならないようにした実規模対応の加圧型下方注
入式オゾン接触槽とその制御方法を提供することを目的
とするものである。
Accordingly, the present invention has been made in view of the above, and it is possible to increase the absorption efficiency of ozone gas to the water to be treated without increasing the size of the apparatus, to reduce the cost, and to reduce the absorption efficiency over time. It is an object of the present invention to provide a real-scale pressurized down-injection type ozone contact tank capable of preventing occurrence of a phenomenon and preventing over-injection of ozone and hydrogen peroxide when an accelerated oxidation treatment is applied, and a control method thereof. It is the purpose.

【0018】[0018]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1により、上下対向流式の多段オ
ゾン接触槽に被処理水を送り込む流入管の中途部に分岐
管を設けて、該分岐管に被処理水とオゾンガスとを気液
混合する加圧渦流ポンプ及び該加圧渦流ポンプの出力管
内の圧力を調整するための急縮弁を配備して、該出力管
を被処理水の送水管を介して多段オゾン接触槽の第1槽
内に縦方向に挿入配置された下方注入管に連結し、更に
多段オゾン接触槽内の越流部に過酸化水素注入管を導入
したことにより、溶存オゾンと過酸化水素からOHラジ
カルを生成するようにした加圧型下方注入式多段オゾン
接触槽の構成にしてある。
In order to achieve the above object, according to the present invention, a branch pipe is provided in the middle of an inflow pipe for feeding water to be treated into a multistage ozone contact tank of a vertically opposed flow type. A pressurized vortex pump for gas-liquid mixing of the water to be treated and the ozone gas in the branch pipe, and a rapid reduction valve for adjusting the pressure in the output pipe of the pressurized vortex pump. It is connected to the lower injection pipe vertically inserted and arranged in the first tank of the multistage ozone contact tank via the water supply pipe of the treated water, and the hydrogen peroxide injection pipe is further connected to the overflow section of the multistage ozone contact tank. By the introduction, a pressure-type downward injection type multistage ozone contact tank configured to generate OH radicals from dissolved ozone and hydrogen peroxide is provided.

【0019】請求項2により、上記オゾン接触槽に過酸
化水素/オゾン注入率コントローラ、過酸化水素注入率
コントローラ、オゾン注入率コントローラ、オゾン発生
量コントローラを配備して、上記過酸化水素/オゾン注
入率コントローラは入力された過酸化水素/オゾン注入
率比設定値に基づいてオゾン注入率目標値と過酸化水素
注入率目標値を求め、オゾン注入率コントローラは上記
オゾン注入率目標値と被処理水の流量信号からオゾン発
生量目標値を求めてオゾン発生量コントローラに出力
し、オゾン発生装置の駆動状態を制御する一方、過酸化
水素注入率コントローラは上記過酸化水素注入率目標値
と過酸化水素の流量信号及び被処理水の流量信号からバ
ルブ開度目標値を求めて過酸化水素流入バルブの開度を
制御するようにした加圧型下方注入式多段オゾン接触槽
の制御方法を提供する。
According to the second aspect, the ozone contact tank is provided with a hydrogen peroxide / ozone injection rate controller, a hydrogen peroxide injection rate controller, an ozone injection rate controller, and an ozone generation amount controller. The rate controller obtains an ozone injection rate target value and a hydrogen peroxide injection rate target value based on the input hydrogen peroxide / ozone injection rate ratio set value, and the ozone injection rate controller calculates the ozone injection rate target value and the water to be treated. The ozone generation target value is obtained from the flow rate signal of the above, and is output to the ozone generation amount controller to control the driving state of the ozone generator. On the other hand, the hydrogen peroxide injection rate controller The opening degree of the hydrogen peroxide inflow valve is controlled by obtaining the valve opening target value from the flow rate signal of the target water and the flow rate signal of the water to be treated. It provides a method of controlling a pressure-type lower injection multistage ozone contact tank.

【0020】又、前記多段オゾン接触槽の処理水流出口
に溶存オゾン濃度計を配備して、過酸化水素注入率コン
トローラに該溶存オゾン濃度計により測定された溶存オ
ゾン濃度信号と過酸化水素の流量信号を入力し、溶存オ
ゾン濃度目標値が規制値以下になるようにバルブ開度目
標値を求めて過酸化水素流入バルブの開度制御を行うよ
うにした制御方法と、多段オゾン接触槽の処理水流出口
に過酸化水素濃度計を配備して、過酸化水素注入率コン
トローラに該過酸化水素濃度計により測定された残留過
酸化水素濃度信号と過酸化水素の流量信号を入力し、過
酸化水素濃度目標値が規制値以下になるようにバルブ開
度目標値を求めて過酸化水素流入バルブの開度制御を行
うようにした制御方法を提供する。
In addition, a dissolved ozone concentration meter is provided at the treated water outlet of the multi-stage ozone contact tank, and a dissolved ozone concentration signal measured by the dissolved ozone concentration meter and a flow rate of hydrogen peroxide are supplied to a hydrogen peroxide injection rate controller. A control method in which a signal is input, the valve opening target value is determined so that the dissolved ozone concentration target value is equal to or less than the regulation value, and the opening control of the hydrogen peroxide inflow valve is performed. Provide a hydrogen peroxide concentration meter at the water outlet, and input the residual hydrogen peroxide concentration signal and the hydrogen peroxide flow rate signal measured by the hydrogen peroxide concentration meter to the hydrogen peroxide injection rate controller. A control method is provided in which a valve opening target value is determined so that a concentration target value is equal to or less than a regulation value, and opening control of the hydrogen peroxide inflow valve is performed.

【0021】かかる請求項1記載の加圧型下方注入式オ
ゾン接触槽と請求項2記載の制御方法によれば、オゾン
処理すべき被処理水は送水ポンプから分岐管を介してか
ら加圧渦流ポンプに送り込まれ、オゾン注入管を介して
注入されたオゾンガスと被処理水とが該加圧渦流ポンプ
によって混合・微細気泡化されて高濃度溶存オゾン水と
なり、急縮弁によって圧力が調整された出力管内を圧送
されながら出力管内を流れる被処理水と合流し、微細気
泡のオゾンガスと被処理水とが下方注入管内を気液が接
触しながら下降して乱流状態となり、オゾンガスと被処
理水との接触効率が高められる。
According to the pressure type downward injection type ozone contact tank according to the first aspect and the control method according to the second aspect, the water to be ozone-treated is supplied to the pressurized vortex pump from the water supply pump via the branch pipe. The ozone gas and the water to be treated, which have been injected through an ozone injection pipe, are mixed and finely bubbled by the pressurized vortex pump to become highly-concentrated dissolved ozone water, and the output whose pressure has been adjusted by a rapid reduction valve The water to be treated flowing in the output pipe is merged with the water to be treated while being pressure-fed in the pipe, and the ozone gas and the water to be treated fall into the turbulent state while the gas and liquid come into contact in the lower injection pipe and become turbulent. Contact efficiency is increased.

【0022】更に溶存オゾンと多段オゾン接触槽内の越
流部に導入された注入管から注入される過酸化水素とか
らOHラジカルが生成して、このOHラジカルの間接反
応によって酸化が促進され、被処理水の脱臭,脱色,脱
マンガン,多環状化合物とか有機物の酸化除去及び殺
菌,殺藻及び異臭味の除去が効率的に行われる。
Further, OH radicals are generated from dissolved ozone and hydrogen peroxide injected from an injection pipe introduced into an overflow section of the multistage ozone contact tank, and oxidation is promoted by an indirect reaction of the OH radicals. Efficient deodorization, decolorization, demanganese removal, oxidative removal of polycyclic compounds and organic matter, sterilization, algicidal removal and off-flavor of water to be treated are performed.

【0023】[0023]

【発明の実施の形態】以下図面に基づいて本発明にかか
る加圧型下方注入式多段オゾン接触槽とその制御方法の
基本的な実施例を説明する。図1は本発明で用いた実規
模対応の加圧型下方注入式多段オゾン接触槽の構成を示
す概略図であり、図中の11は多段オゾン接触槽であっ
て、この多段オゾン接触槽11は第1槽11a,第2槽
11b,滞留槽11cの複数段で構成されている。13
は排オゾンガスの排出管である。多段オゾン接触槽11
の内部には底面から立ち上がる隔壁2,2と、上面から
垂下された隔壁3,3が配設されていて、多段オゾン接
触槽11の基本構成は上下対向流式となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A basic embodiment of a pressurized downward injection type multistage ozone contact tank and a control method thereof according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing the configuration of a pressurized, downward-injection type multistage ozone contact tank for real scale used in the present invention. In the figure, reference numeral 11 denotes a multistage ozone contact tank. It is composed of a plurality of stages of a first tank 11a, a second tank 11b, and a residence tank 11c. 13
Is an exhaust pipe for exhausted ozone gas. Multi-stage ozone contact tank 11
Partitions 2 and 2 rising from the bottom surface and partitions 3 and 3 hanging down from the upper surface are provided inside the multi-stage ozone contact tank 11.

【0024】15は多段オゾン接触槽11に送り込まれ
る被処理水20の流入管であり、この流入管15は送水
ポンプ16に接続されている一方、該流入管15の中途
部に連結された分岐管15aが加圧渦流ポンプ17に接
続されている。この加圧渦流ポンプ17の前段には、被
処理水20中に図外のオゾン発生装置からオゾンガスを
送り込むためのオゾン注入管18が連結されている。加
圧渦流ポンプ17は、オゾンガスと被処理水20とを
「混合・微細気泡化・圧送」するという三つの機能を有
している。
Reference numeral 15 denotes an inflow pipe for the water to be treated 20 fed into the multi-stage ozone contact tank 11. The inflow pipe 15 is connected to a water supply pump 16, and is connected to a branch connected to a middle portion of the inflow pipe 15. The pipe 15 a is connected to the pressurized vortex pump 17. An ozone injection pipe 18 for feeding ozone gas from an ozone generator (not shown) into the water 20 to be treated is connected to a stage preceding the pressurized vortex pump 17. The pressurized vortex pump 17 has three functions of “mixing / fine-bubbling / pressurizing” the ozone gas and the water 20 to be treated.

【0025】上記加圧渦流ポンプ17の出力管17aの
中途部には、該出力管17a内の管内圧力を調整するた
めの急縮弁19が配備されている。該急縮弁19は出力
管17aの管径を部分的に小径に絞った形状のオリフィ
スにより構成されている。
In the middle of the output pipe 17a of the pressurized vortex pump 17, a rapid reduction valve 19 for adjusting the pressure in the output pipe 17a is provided. The rapid reduction valve 19 is formed by an orifice having a shape in which the diameter of the output pipe 17a is partially reduced to a small diameter.

【0026】この出力管17aの他端部は送水ポンプ1
6の出力管16aに接続されており、該出力管16aは
多段オゾン接触槽11の第1槽11a内に縦方向に挿入
配置された下方注入管21に連結されている。この下方
注入管21の先端開口部は第1槽11aの底壁に対向す
る近傍位置にまで導入されている。
The other end of the output pipe 17a is connected to the water pump 1
6 is connected to an output pipe 16a, which is connected to a lower injection pipe 21 inserted vertically in the first tank 11a of the multi-stage ozone contact tank 11. The opening at the distal end of the lower injection pipe 21 is introduced to a position near the bottom wall of the first tank 11a.

【0027】一方、22は多段オゾン接触槽11の上壁
部を貫通して導入された過酸化水素注入管であり、図示
したように該過酸化水素注入管22の先端部分は、被処
理水20が第1槽11aから第2槽11bに流入する際
に通過する越流部11dに導入されている。この越流部
11dは被処理水20が乱流作用で撹拌されやすい部位
である。
On the other hand, reference numeral 22 denotes a hydrogen peroxide injection pipe introduced through the upper wall of the multi-stage ozone contact tank 11, and as shown in FIG. 20 is introduced into the overflow section 11d, which passes when flowing into the second tank 11b from the first tank 11a. The overflow portion 11d is a portion where the water 20 to be treated is easily stirred by the turbulent flow action.

【0028】上記多段オゾン接触槽11の縦方向の長さ
は約5〜6メートルであり、従来のUチューブ型オゾン
接触槽の同部分の20〜30メートルという長さが大幅
に短縮されていて、謂わば通常の散気管型オゾン接触の
水深レベルと略同等であり、且つ生成した高溶存オゾン
水に過酸化水素を注入することによってOHラジカルを
生成して間接反応を促進することが本実施例の構造上の
特徴ともなっている。
The length of the multi-stage ozone contact tank 11 in the vertical direction is about 5 to 6 meters, and the length of the same part of the conventional U-tube type ozone contact tank is reduced to 20 to 30 meters. In other words, it is substantially equivalent to the water depth level of the so-called normal diffuser type ozone contact, and the indirect reaction is promoted by generating OH radicals by injecting hydrogen peroxide into the generated highly dissolved ozone water. It is also a structural feature of the example.

【0029】かかる本実施例にかかる実規模対応の加圧
型下方注入式多段オゾン接触槽11の運転時の操作と動
作原理を以下に説明する。先ず基本的な操作として、オ
ゾン処理すべき被処理水20は送水ポンプ16に送り込
まれるのと同時に、一部が分岐管15aから加圧渦流ポ
ンプ17に送り込まれ、オゾン注入管18を介して注入
されたオゾンガスと被処理水20とが該加圧渦流ポンプ
17のインペラー部によって混合・微細気泡化されて高
濃度溶存オゾン水となり、急縮弁19によって圧力が調
整された出力管17a内を圧送されながら送水ポンプ1
6の出力管16a内を流れる被処理水20と合流し、微
細気泡のオゾンガスと被処理水20とが下方注入管21
内を気液が接触しながら下降して第1槽11aの底壁に
当たって乱流状態となる。これによってオゾンガスと被
処理水20との接触効率が高められる。
The operation and principle of operation of the pressure-type, downward-injection, multistage ozone contact tank 11 according to this embodiment, which is compatible with a real scale, will be described below. First, as a basic operation, at the same time as the water 20 to be ozone-treated is fed into the water supply pump 16, a part of the water 20 is sent from the branch pipe 15 a to the pressurized vortex pump 17 and injected through the ozone injection pipe 18. The ozone gas thus treated and the water to be treated 20 are mixed and finely bubbled by the impeller of the pressurized vortex pump 17 to become high-concentration dissolved ozone water, and are pumped through the output pipe 17 a whose pressure is adjusted by the rapid reduction valve 19. Water pump 1
6 and the to-be-processed water 20 flowing in the output pipe 16a, and the ozone gas of fine bubbles and the to-be-processed water 20 are mixed into the lower injection pipe 21.
The gas flows down while contacting the inside, and hits the bottom wall of the first tank 11a to be in a turbulent state. Thereby, the contact efficiency between the ozone gas and the water to be treated 20 is increased.

【0030】次に被処理水が第1槽11aから第2槽1
1bに流入する際に、注入管22からの過酸化水素の注
入に伴って高溶存オゾン水と過酸化水素とが混合撹拌さ
れて間接反応が促進され、OHラジカルが多量に生成す
る。OHラジカルは非常に反応性に富んでいるので、水
中に存在する炭酸イオンとか重炭酸イオン、フミン酸等
のラジカル消費物質と10-4秒以内に反応し、ごく少量
のOHラジカルは特別な溶質Mを酸化する性質がある。
過酸化水素の添加量は、過酸化水素・オゾンモル比で
0.3〜2が適当である。
Next, the water to be treated is transferred from the first tank 11a to the second tank 1
When flowing into 1b, highly dissolved ozone water and hydrogen peroxide are mixed and stirred with the injection of hydrogen peroxide from the injection pipe 22, and the indirect reaction is promoted, so that a large amount of OH radicals is generated. Since OH radicals are very reactive, they react within 10 -4 seconds with radical ions such as carbonate ions, bicarbonate ions, and humic acids present in water. It has the property of oxidizing M.
The amount of hydrogen peroxide to be added is suitably from 0.3 to 2 in terms of molar ratio of hydrogen peroxide to ozone.

【0031】第2槽11b内に流入した被処理水20は
上向流となって滞留槽11cに越流し、所定の滞留時間
を経てからオゾン・過酸化水素処理水10として流出し
て図外の処理水槽に一時的に貯留されて次段の工程に備
える。未反応のオゾンガスは排出管13から図外の排オ
ゾン処理装置に送り込まれ、熱分解,触媒を用いた分
解,土壌分解,薬液洗浄処理又は活性炭処理等によって
無害なガスに分解されて大気中に放出される。即ち、オ
ゾンガスはフッ素につぐ強力な酸化力を有していて人体
にも有害な物質であるため、排オゾン処理装置での分解
処理が不可欠である。
The water 20 to be treated, which has flowed into the second tank 11b, flows upward and flows into the retaining tank 11c, and after a predetermined residence time, flows out as the ozone / hydrogen peroxide treated water 10 and then flows out of the drawing. Is temporarily stored in the treated water tank and is ready for the next step. The unreacted ozone gas is sent from the discharge pipe 13 to an exhaust ozone treatment apparatus (not shown), and is decomposed into harmless gas by thermal decomposition, decomposition using a catalyst, soil decomposition, chemical cleaning treatment or activated carbon treatment, and is released into the atmosphere. Released. That is, since ozone gas has a strong oxidizing power next to fluorine and is a harmful substance to the human body, it is indispensable to decompose the ozone gas with an exhaust ozone treatment device.

【0032】このようなオゾンガスと被処理水20との
接触と、過酸化水素の注入により生成したOHラジカル
により、脱臭,脱色,鉄マンガン,多環状化合物とか有
機物の酸化除去及び殺菌,殺藻及び異臭味の除去が行わ
れる。
By the contact between the ozone gas and the water to be treated 20 and the OH radical generated by the injection of hydrogen peroxide, deodorization, decolorization, oxidative removal and sterilization of iron manganese, polycyclic compounds and organic substances, algicidal treatment and Removal of off-flavor is performed.

【0033】上記のオゾン・過酸化水素併用処理は、オ
ゾンからヒドロキシラジカル(OHラジカルと略称)を
生成することで酸化を促進することが動作原理となって
いる。しかしながら有機物質群の中ではOHラジカルよ
りもオゾンとの境膜反応(直接反応)の方が反応性に富
む有機物質群,たとえばフルボ酸があると言われてい
る。従ってオゾン併用処理を適用する場合には、直接反
応を利用するのか間接反応を利用するのかを意識して処
理過程を明確に設定する必要があり、又、オゾンと過酸
化水素等が過剰注入にならないように留意して水質基準
に適合した処理水を得ることが要求される。
The principle of the above-described ozone / hydrogen peroxide combined treatment is to promote oxidation by generating hydroxyl radicals (abbreviated as OH radicals) from ozone. However, among the organic substance groups, it is said that there is an organic substance group, for example, fulvic acid, which is more reactive in the film reaction with ozone than in the OH radical (direct reaction). Therefore, when applying the combined treatment of ozone, it is necessary to clearly set the treatment process by considering whether to use the direct reaction or the indirect reaction, and ozone and hydrogen peroxide etc. It is necessary to pay attention to the water quality and to obtain treated water that meets the water quality standards.

【0034】具体的に説明すると、水中におけるオゾン
反応は、オゾン直接反応とOHラジカルによる反応とが
あるが、OHラジカル反応の酸化力はオゾン直接反応の
酸化力よりも強く、オゾン直接反応では困難な有機物を
水と炭酸ガスに完全分解することが可能である。オゾン
は水中で分解して約半分はOHラジカルに転化する。こ
のOHラジカルは反応性に富む酸化剤であり、水素引抜
反応、二重結合への付加反応、あるいは電子移動反応に
よって有機物と反応する。生じたアルキルラジカルは酸
素分子と反応して過酸化ラジカルを生成する。これは不
均化を起こしたりお互いに結び付き、さらに反応して過
酸化物、アルデヒド、酸や過酸化水素等の多種類の中間
体を生成する。
More specifically, the ozone reaction in water includes an ozone direct reaction and a reaction by OH radicals. The oxidizing power of the OH radical reaction is stronger than the oxidizing power of the ozone direct reaction, and is difficult in the ozone direct reaction. Organic compounds can be completely decomposed into water and carbon dioxide. Ozone is decomposed in water and about half is converted to OH radicals. The OH radical is a highly reactive oxidizing agent, and reacts with an organic substance by a hydrogen abstraction reaction, an addition reaction to a double bond, or an electron transfer reaction. The generated alkyl radicals react with oxygen molecules to generate peroxide radicals. This can lead to disproportionation and association with each other, and further react to form various intermediates such as peroxides, aldehydes, acids and hydrogen peroxide.

【0035】この際の促進酸化反応として、過酸化水素
は水中で水素イオンとHO2 -(ヒドロペルオキシイオ
ン)に解離する。HO2 -はオゾンと反応してOHラジカ
ルとO3 -(オゾニドイオン)を生成する。これらHO2 -
及びO3 -から特定の経路に基づいてOHラジカルが生成
する。
[0035] As accelerate the oxidation reaction in this, the hydrogen peroxide hydrogen ions in water and HO 2 - dissociates into (hydroperoxy ions). HO 2 - OH radicals and O 3 react with ozone - generating a (Ozonidoion). These HO 2 -
And O 3 - OH radicals are generated based on the particular path from.

【0036】前記送水ポンプ16による被処理水20の
送水量と、加圧渦流ポンプ17による被処理水20の流
量の比(以下Lm/Lkと略称)は接触槽内の最大溶存オ
ゾン目標値に依存するが、最大溶存オゾン濃度を0.5
(mg/l)とすると、Lm/Lkは15〜30の範囲に
設定するのが適当である。この時に加圧渦流ポンプ17
による被処理水20の注入率は、オゾン吸収効率を95
(%)とすると8〜16(mg/l)程度になる。
The ratio of the flow rate of the water 20 to be treated by the water pump 16 to the flow rate of the water 20 to be treated by the pressurized vortex pump 17 (hereinafter abbreviated as L m / L k ) is determined by the maximum dissolved ozone target in the contact tank. Depending on the value, the maximum dissolved ozone concentration is 0.5
(Mg / l), it is appropriate to set L m / L k in the range of 15 to 30. At this time, the pressurized vortex pump 17
The injection rate of the water to be treated 20 is 95% ozone absorption efficiency.
(%), It is about 8 to 16 (mg / l).

【0037】上記のLm/Lkは可変であるため、流入変
動に対してもオゾン溶解反応に影響を及ぼすポンプ部の
流動特性を変えずに処理することが可能である。従って
被処理水の流量変動にも適宜に対応することができる。
Since the above-mentioned L m / L k is variable, it is possible to carry out the treatment without changing the flow characteristics of the pump section which affect the ozone dissolution reaction even when the inflow varies. Therefore, it is possible to appropriately cope with fluctuations in the flow rate of the water to be treated.

【0038】図2は加圧渦流ポンプ17を用いたことに
よる被処理水20の滞留時間(分)と溶存オゾン濃度
(mg/l)の関係を各接触方式別に示すグラフであ
り、図3は同じく滞留時間(分)とE260残存率(C
o/Ci)の関係を各接触方式別に示すグラフである。
尚、図中に記したηはオゾン吸収効率(%)である。何
れのグラフも管内の加圧なしの場合と、加圧が3.9
(kgf/cm2)の場合を図示してある。
FIG. 2 is a graph showing the relationship between the residence time (minutes) of the water to be treated 20 and the dissolved ozone concentration (mg / l) for each contact method by using the pressurized vortex pump 17, and FIG. Similarly, the residence time (min) and the E260 residual ratio (C
6 is a graph showing the relationship of o / Ci) for each contact method.
Note that η shown in the figure is the ozone absorption efficiency (%). Both graphs show the case without pressurization in the tube and the case with pressurization of 3.9.
(Kgf / cm 2 ).

【0039】図2,図3によれば、加圧渦流ポンプ17
を用いたことによって短時間でオゾン吸収反応が進行す
ることが分かる。この加圧渦流ポンプ17での処理条件
は、被処理水流量/オゾンガス流量の比(L/G比と略
称)を5以上とし、管内圧力は1.5〜4.0(kgf/
cm2)にすることが適当である。
According to FIGS. 2 and 3, the pressurized vortex pump 17
It can be seen that the ozone absorption reaction proceeds in a short time by using. The processing conditions of the pressurized vortex pump 17 are as follows: the ratio of the flow rate of the water to be treated / the flow rate of the ozone gas (abbreviated as L / G ratio) is 5 or more, and the pressure in the pipe is 1.5 to 4.0 (kgf / kg).
cm 2 ) is appropriate.

【0040】図4は過酸化水素の注入率を変えた場合の
オゾン注入後の滞留時間(分)と溶存オゾン濃度(mg
/l)の関係を示すグラフであり、過酸化水素の注入率
に応じて水中の溶存オゾンを分解し、OHラジカルが生
成する。OHラジカルが生成すると間接反応が進行して
オゾン処理特性が向上する。
FIG. 4 shows the residence time (min) after ozone injection and the dissolved ozone concentration (mg) when the hydrogen peroxide injection rate was changed.
3 is a graph showing the relationship of / l), wherein dissolved ozone in water is decomposed according to the injection rate of hydrogen peroxide, and OH radicals are generated. When OH radicals are generated, an indirect reaction proceeds to improve ozone treatment characteristics.

【0041】図5は過酸化水素の添加前と添加後のオゾ
ン吸収効率(%)の経時変化を示すグラフであり、同じ
オゾン注入率でも過酸化水素を注入するとオゾン吸収効
率が向上するので、オゾン吸収特性を更に高めることが
できる。
FIG. 5 is a graph showing changes over time in ozone absorption efficiency (%) before and after the addition of hydrogen peroxide. When hydrogen peroxide is injected at the same ozone injection rate, the ozone absorption efficiency is improved. Ozone absorption characteristics can be further enhanced.

【0042】このようなオゾン・過酸化水素併用処理で
は、溶存オゾンに対する過酸化水素の添加量が重要な要
素となる。図6は水中での溶存オゾンと過酸化水素それ
ぞれの濃度(mg/l)と、過酸化水素/オゾン注入率
比D(H22)/D(O3)との関係を示すグラフであ
り、このグラフから過酸化水素を添加すると溶存オゾン
は減少すること、及び過酸化水素を過剰に添加すると水
中に残留することが分かる。
In such combined use of ozone and hydrogen peroxide, the amount of hydrogen peroxide added to dissolved ozone is an important factor. FIG. 6 is a graph showing the relationship between the concentration of dissolved ozone and hydrogen peroxide in water (mg / l) and the ratio of hydrogen peroxide / ozone injection rate D (H 2 O 2 ) / D (O 3 ). From this graph, it can be seen that dissolved ozone is reduced when hydrogen peroxide is added, and remains in water when hydrogen peroxide is added in excess.

【0043】本実施例にかかる実規模対応の加圧型下方
注入式多段オゾン接触槽の第1の特徴は、瞬時にオゾン
を高濃度溶解させるために加圧渦流ポンプ17を用いた
ことにあり、短時間でのオゾン吸収反応が達成される。
第2の特徴は大規模プラントに対応させるために被処理
水20の注入経路を送水ポンプ16と加圧渦流ポンプ1
7とに区分したことである。加圧渦流ポンプ17はその
特性上から大量の水量を流すことができないため、大規
模のプラントに対応させるためには加圧渦流ポンプ17
以外に上記送水ポンプ16を設ける必要があり、一定の
オゾン注入率を得るためには加圧渦流ポンプ17で高濃
度のオゾンを溶解させる必要がある。
The first feature of the pressurized down-injection type multi-stage ozone contact tank according to the present embodiment is that a pressurized vortex pump 17 is used to dissolve ozone at a high concentration instantaneously. A short time ozone absorption reaction is achieved.
The second feature is that, in order to cope with a large-scale plant, the injection path of the water to be treated 20 is changed by a water feed pump 16 and a pressurized vortex pump
7 Since the pressurized vortex pump 17 cannot flow a large amount of water due to its characteristics, the pressurized vortex pump 17 is required to cope with a large-scale plant.
In addition to the above, it is necessary to provide the water supply pump 16, and it is necessary to dissolve high-concentration ozone by the pressurized vortex pump 17 in order to obtain a constant ozone injection rate.

【0044】第3の特徴は反応性の向上を目指して促進
酸化処理法として過酸化水素が添加できるように構成し
た点にある。前記したように過酸化水素の注入率に応じ
て水中の溶存オゾンが分解され、OHラジカルが生成す
る。このOHラジカルによって間接反応が進行してオゾ
ン処理特性が向上する。又、第4の特徴は本実施例を既
存の上下対向流式又は迂流式のオゾン接触槽にも容易に
適用できる点にある。特に散気管方式による上下対向流
式のオゾン接触槽では、加圧型下方注入管21、加圧渦
流ポンプ17及び過酸化水素添加装置を設置するだけで
容易にオゾン吸収効率を高め、オゾン処理特性を高める
ことができる。
The third feature is that hydrogen peroxide can be added as an accelerated oxidation treatment method in order to improve the reactivity. As described above, dissolved ozone in water is decomposed according to the injection rate of hydrogen peroxide, and OH radicals are generated. The OH radicals cause an indirect reaction to improve ozone treatment characteristics. A fourth feature is that the present embodiment can be easily applied to an existing ozone contact tank of up-down counterflow type or detour type. In particular, in an up-down counter-flow type ozone contact tank using an air diffusion tube method, the ozone absorption efficiency can be easily increased by simply installing the pressurized lower injection pipe 21, the pressurized vortex pump 17 and the hydrogen peroxide addition device, and the ozone treatment characteristics can be improved. Can be enhanced.

【0045】そこで最終的な溶存オゾン濃度を一定に保
ち、しかも過酸化水素を過剰に注入しないようにする制
御が要求される。
Therefore, control is required to keep the final dissolved ozone concentration constant and to prevent excessive injection of hydrogen peroxide.

【0046】図7に基づいて本実施例における制御例1
を説明する。多段接触槽11自体の基本的構成は図1に
示した実施例と同一であるため、図中に同一の符号を付
して表示してある。
FIG. 7 shows a control example 1 in this embodiment.
Will be described. Since the basic configuration of the multi-stage contact tank 11 itself is the same as that of the embodiment shown in FIG. 1, the same reference numerals are given in the drawing.

【0047】この制御例1では、図5に示したように水
中での溶存オゾン濃度と過酸化水素濃度が交わっている
点を目標値として、オゾン注入率と過酸化水素注入率と
を決定することが特徴となっている。
In this control example 1, as shown in FIG. 5, the point at which the dissolved ozone concentration in water and the hydrogen peroxide concentration intersect is set as the target value, and the ozone injection rate and the hydrogen peroxide injection rate are determined. It is characteristic.

【0048】図中の25は過酸化水素/オゾン注入率コ
ントローラ、26は過酸化水素注入率コントローラ、2
7はオゾン注入率コントローラ、28はオゾン発生量コ
ントローラ、7はオゾン発生装置である。又、30は被
処理水の流量計、31は注入オゾン濃度計、32は過酸
化水素流量計、33は過酸化水素流入バルブである。
In the figure, 25 is a hydrogen peroxide / ozone injection rate controller, 26 is a hydrogen peroxide injection rate controller, 2
7 is an ozone injection rate controller, 28 is an ozone generation amount controller, and 7 is an ozone generator. Reference numeral 30 denotes a flowmeter of the water to be treated, 31 denotes an ozone concentration meter to be injected, 32 denotes a flowmeter of hydrogen peroxide, and 33 denotes a hydrogen peroxide inflow valve.

【0049】かかる制御例1によれば、過酸化水素/オ
ゾン注入率コントローラ25に対して過酸化水素/オゾ
ン注入率比設定値36が入力され、この過酸化水素/オ
ゾン注入率コントローラ25からそれぞれオゾン注入率
目標値37と過酸化水素注入率目標値38とが出力され
る。オゾン注入率に関しては、オゾン注入率コントロー
ラ27には上記オゾン注入率目標値37と流量計30で
測定された被処理水20の流量信号35が入力され、こ
のオゾン注入率コントローラ27はオゾン発生量目標値
39を求めてオゾン発生量コントローラ28に出力す
る。
According to the control example 1, the hydrogen peroxide / ozone injection rate ratio set value 36 is inputted to the hydrogen peroxide / ozone injection rate controller 25, and the hydrogen peroxide / ozone injection rate controller 25 receives the set value. An ozone injection rate target value 37 and a hydrogen peroxide injection rate target value 38 are output. As for the ozone injection rate, the ozone injection rate controller 27 receives the ozone injection rate target value 37 and the flow rate signal 35 of the water 20 to be treated measured by the flow meter 30. The target value 39 is obtained and output to the ozone generation amount controller 28.

【0050】オゾン発生量コントローラ28は、オゾン
発生量目標値39と注入オゾン濃度計31で測定された
注入オゾン濃度に基づいてオゾン発生装置7に対する制
御信号40を発して該オゾン発生装置7の駆動状態が制
御される。通常制御信号40は電力値としてオゾン発生
装置7に入力され、このオゾン発生装置7から発生する
オゾンガスがオゾン注入管18,加圧渦流ポンプ17の
出力管17aを経由して多段オゾン接触槽11の第1槽
11aに送り込まれる。
The ozone generation amount controller 28 issues a control signal 40 to the ozone generation device 7 based on the ozone generation amount target value 39 and the injected ozone concentration measured by the injection ozone concentration meter 31 to drive the ozone generation device 7. The state is controlled. The normal control signal 40 is input to the ozone generator 7 as a power value, and the ozone gas generated from the ozone generator 7 is supplied to the multistage ozone contact tank 11 via the ozone injection pipe 18 and the output pipe 17a of the pressurized vortex pump 17. It is sent to the first tank 11a.

【0051】過酸化水素に関しては、過酸化水素注入率
コントローラ26には前記過酸化水素注入率目標値38
と過酸化水素流量計32で測定された過酸化水素の流量
信号41及び流量計30で測定された被処理水20の流
量信号35が入力され、この過酸化水素注入率コントロ
ーラ26でバルブ開度目標値42を求めて過酸化水素流
入バルブ33の開度制御が行われる。
With respect to hydrogen peroxide, the hydrogen peroxide injection rate controller 26 stores the hydrogen peroxide injection rate target value 38.
And a flow rate signal 41 of the hydrogen peroxide measured by the hydrogen peroxide flow meter 32 and a flow rate signal 35 of the water 20 to be treated measured by the flow meter 30 are inputted. The opening degree control of the hydrogen peroxide inflow valve 33 is performed by obtaining the target value 42.

【0052】上記の制御例1によれば、オゾン注入率・
過酸化水素注入率一定制御が基本となっており、最終的
な溶存オゾン濃度が一定に保たれ、しかも過酸化水素の
過剰な注入がない制御手段が実現される。
According to the above control example 1, the ozone injection rate
The control is based on the constant control of the hydrogen peroxide injection rate, and a control means is realized in which the final dissolved ozone concentration is kept constant and there is no excessive injection of hydrogen peroxide.

【0053】次に図8に基づいて本実施例における制御
例2を説明する。オゾン・過酸化水素併用処理でも通常
のオゾン処理と同様に最終的な処理水の溶存オゾン濃度
が大きくならないことが重要な要素である。そこで図4
に示したように溶存オゾン濃度が過酸化水素注入率に依
存することを利用して、制御例2では溶存オゾン濃度一
定制御を行う。
Next, a control example 2 in this embodiment will be described with reference to FIG. It is an important factor in the combined treatment of ozone and hydrogen peroxide that the dissolved ozone concentration in the final treated water does not increase as in ordinary ozone treatment. So Figure 4
In the control example 2, the constant control of the dissolved ozone concentration is performed by utilizing the fact that the dissolved ozone concentration depends on the hydrogen peroxide injection rate as shown in FIG.

【0054】この例では多段オゾン接触槽11の処理水
流出口に溶存オゾン濃度計45を配備してあり、過酸化
水素注入率コントローラ26に該溶存オゾン濃度計45
により測定された溶存オゾン濃度信号46と過酸化水素
流量計32で測定された過酸化水素の流量信号41とが
入力され、溶存オゾン濃度目標値,例えば0.3(mg
/l)以下になるようにバルブ開度目標値42を求めて
過酸化水素流入バルブ33の開度制御が行われる。
In this example, a dissolved ozone concentration meter 45 is provided at the treated water outlet of the multi-stage ozone contact tank 11, and the dissolved ozone concentration meter 45 is provided to the hydrogen peroxide injection rate controller 26.
And the flow rate signal 41 of hydrogen peroxide measured by the hydrogen peroxide flow meter 32 are input, and the dissolved ozone concentration target value, for example, 0.3 (mg)
The opening degree control of the hydrogen peroxide inflow valve 33 is performed by obtaining the valve opening target value 42 so as to be equal to or less than / l).

【0055】この制御例2によれば、多段オゾン接触槽
11の処理水流出口での溶存オゾン濃度を一定に保つこ
とができて、例えば溶存オゾンが後工程での生物活性炭
処理における活性炭に付着した微生物を殺してしまうよ
うな事態は防止される。
According to this control example 2, the dissolved ozone concentration at the treated water outlet of the multi-stage ozone contact tank 11 can be kept constant, for example, the dissolved ozone adheres to the activated carbon in the biological activated carbon treatment in the subsequent step. The situation that kills microorganisms is prevented.

【0056】次に図9に基づいて本実施例における制御
例3を説明する。オゾン・過酸化水素併用処理では最終
的な処理水の過酸化水素濃度を極力抑えることが重要な
要素である。何故なら過酸化水素は濃度が大きくなると
人体に悪影響を及ぼす惧れがあり、例えばフランスの水
道水質基準では過酸化水素濃度が0.5(mg/l)以
下になるように規制している。
Next, a control example 3 in this embodiment will be described with reference to FIG. An important factor in the combined treatment of ozone and hydrogen peroxide is to minimize the concentration of hydrogen peroxide in the final treated water. If the concentration of hydrogen peroxide increases, there is a concern that the concentration of hydrogen peroxide may adversely affect the human body. For example, the tap water quality standard in France regulates the concentration of hydrogen peroxide to 0.5 (mg / l) or less.

【0057】そこで図9に示したように多段オゾン接触
槽11の処理水流出口に過酸化水素濃度計47を配備し
てあり、過酸化水素注入率コントローラ26に該過酸化
水素濃度計47により測定された残留過酸化水素濃度信
号48と過酸化水素流量計32で測定された過酸化水素
の流量信号41とが入力され、過酸化水素濃度目標値,
例えば0.5(mg/l)以下になるようにバルブ開度
目標値42を求めて過酸化水素流入バルブ33の開度制
御が行われる。
Therefore, as shown in FIG. 9, a hydrogen peroxide concentration meter 47 is provided at the treated water outlet of the multi-stage ozone contact tank 11, and the hydrogen peroxide concentration controller 47 measures the hydrogen peroxide concentration meter 47. The obtained residual hydrogen peroxide concentration signal 48 and the hydrogen peroxide flow rate signal 41 measured by the hydrogen peroxide flow meter 32 are inputted, and the hydrogen peroxide concentration target value,
For example, the opening degree control of the hydrogen peroxide inflow valve 33 is performed by obtaining the valve opening target value 42 so as to be not more than 0.5 (mg / l).

【0058】この制御例3によれば、多段オゾン接触槽
11の処理水流出口での過酸化水素濃度を一定に保つこ
とができて、所望の水質基準をクリヤすることができ
る。
According to the control example 3, the concentration of hydrogen peroxide at the treated water outlet of the multi-stage ozone contact tank 11 can be kept constant, and a desired water quality standard can be cleared.

【0059】[0059]

【発明の効果】以上詳細に説明したように、本発明にか
かる加圧型下方注入式多段オゾン接触槽とその制御方法
によれば、オゾン処理すべき被処理水が分岐管を介して
から加圧渦流ポンプに送り込まれ、注入されたオゾンガ
スと混合・微細気泡化されて高濃度溶存オゾン水とな
り、急縮弁によって圧力が調整された出力管内を圧送さ
れて被処理水と合流し、微細気泡のオゾンガスと被処理
水とが下方注入管内を気液が接触しながら下降すること
によって接触効率を高められ、更に溶存オゾンと多段オ
ゾン接触槽内の越流部に注入される過酸化水素とからO
Hラジカルが生成して、間接反応によって酸化が促進さ
れるので、従来の散気管方式のオゾン接触槽とか加圧型
下方注入式のオゾン接触槽の滞留時間よりも短い滞留時
間で同等以上のオゾン処理特性を得ることができる。
As described above in detail, according to the pressurized downward injection type multistage ozone contact tank and the control method thereof according to the present invention, the water to be ozone treated is pressurized after passing through the branch pipe. It is fed into the vortex pump, mixed with the injected ozone gas and made into fine bubbles to become highly-concentrated dissolved ozone water.Then, it is pumped through the output pipe whose pressure has been adjusted by the rapid reduction valve and merges with the water to be treated. Ozone gas and the water to be treated descend while the gas-liquid is in contact with the lower injection pipe, so that the contact efficiency is improved. Further, the dissolved ozone and the hydrogen peroxide injected into the overflow section of the multistage ozone contact tank reduce the O2 gas.
Since H radicals are generated and oxidation is promoted by an indirect reaction, the ozone treatment is equal to or more than that of conventional ozone contact tanks of the diffuser tube type or ozone contact tank of the pressurized downward injection type. Properties can be obtained.

【0060】特にオゾン反応の初期時には下方注入方式
に基づいて拡散効率を充分に高めて反応性の高い物質の
除去が行われ、これによりオゾンガスの拡散が律速する
初期段階の反応過程が促進されるとともにオゾン反応の
後期時には短い滞留時間でも反応性の低い物質の除去が
行われて、オゾン反応が律速する後期段階の反応が促進
されるという効果が得られる。
In particular, at the beginning of the ozone reaction, the diffusion efficiency is sufficiently increased based on the downward injection method to remove highly reactive substances, thereby promoting the initial reaction process in which the diffusion of ozone gas is rate-determined. In addition, at the latter stage of the ozone reaction, a substance having low reactivity is removed even with a short residence time, so that the effect of promoting the reaction in the latter stage in which the ozone reaction is controlled is obtained.

【0061】更に上記装置の制御方法としてオゾン注入
率・過酸化水素注入率一定制御を行うことにより、最終
的な溶存オゾン濃度が一定に保たれ、しかも過酸化水素
の過剰な注入がなく、被処理水の流量変動に対しても加
圧渦流ポンプの流動特性を変えずに処理する制御が実現
可能となる。
Further, by performing constant control of the ozone injection rate and the hydrogen peroxide injection rate as a control method of the above-mentioned apparatus, the final dissolved ozone concentration is kept constant, and there is no excessive injection of hydrogen peroxide. It becomes feasible to control the processing without changing the flow characteristics of the pressurized vortex pump even with respect to fluctuations in the flow rate of the treated water.

【0062】又、溶存オゾン濃度一定制御を行うために
溶存オゾン濃度が目標値以下になるようにバルブ開度目
標値を求めて過酸化水素流入バルブの開度制御を行うこ
とにより、多段オゾン接触槽の処理水流出口での溶存オ
ゾン濃度が一定に保たれて生物活性炭処理における微生
物の保護効果が発揮され、過酸化水素濃度一定制御を行
うために過酸化水素濃度が目標値以下になるようにバル
ブ開度目標値を求めて過酸化水素流入バルブの開度制御
を行うことにより、処理水流出口での過酸化水素濃度が
一定に保持されて所望の水質基準を確保することができ
る。
Further, in order to perform the constant control of the dissolved ozone concentration, the target opening of the valve is determined so that the dissolved ozone concentration becomes equal to or less than the target value, and the opening of the hydrogen peroxide inflow valve is controlled, whereby the multi-stage ozone contact is achieved. The dissolved ozone concentration at the treatment water outlet of the tank is kept constant, the effect of protecting microorganisms in biological activated carbon treatment is exerted, and the hydrogen peroxide concentration is reduced to a target value or less to perform the hydrogen peroxide concentration constant control. By controlling the opening degree of the hydrogen peroxide inflow valve by obtaining the valve opening target value, the hydrogen peroxide concentration at the treated water outlet can be kept constant, and a desired water quality standard can be secured.

【0063】又、従来の深層Uチューブ型オゾン接触槽
の場合には、通水量が変動すると処理特性がばらついて
しまうのに対し、本実施例の制御例では安定した処理特
性が得られ、目標とする水質への到達時間は短縮される
という効果が得られる。
In the case of the conventional deep U-tube type ozone contact tank, the processing characteristics vary when the flow rate varies, whereas the control example of this embodiment provides stable processing characteristics. The effect of shortening the time required to reach the water quality is obtained.

【0064】本実施例にかかる多段オゾン接触槽は通常
の散気管方式のオゾン接触槽にも容易に適用可能であ
り、従来のUチューブ反応槽のように20〜30メート
ルの長さに形成しなくてもよいので、装置の大型化を伴
わずに被処理水に対するオゾンガスの吸収効率を高める
ことができる。更にオゾンガスによって酸化された鉄と
かマンガンの付着による目詰まり等に伴う経時的な吸収
効率低下現象を防止することができる。
The multistage ozone contact tank according to the present embodiment can be easily applied to an ordinary diffuser type ozone contact tank, and is formed to have a length of 20 to 30 meters like a conventional U tube reaction tank. Since it is not necessary, the efficiency of absorbing ozone gas into the water to be treated can be increased without increasing the size of the apparatus. Further, it is possible to prevent a phenomenon of a decrease in absorption efficiency over time due to clogging or the like due to adhesion of iron or manganese oxidized by ozone gas.

【0065】更にUチューブ型オゾン反応槽のように施
設の建設工事が複雑になるという問題もなく、建設コス
トの低廉化がはかれるとともに、反応槽内に貯留される
堆積物の除去とか槽内の清掃を簡便に行うことが可能と
なり、しかも反応槽の底部近傍で障害が発生しても直ち
に処置することができるという効果がある。
Further, there is no problem that the construction work of the facility becomes complicated as in the case of the U tube type ozone reaction tank, the construction cost can be reduced, and the sediment stored in the reaction tank can be removed or the inside of the tank can be removed. Cleaning can be easily performed, and even if a failure occurs near the bottom of the reaction tank, it is possible to immediately take measures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる加圧型下方注入式多段オゾン接
触槽の基本的実施例を示す概要図。
FIG. 1 is a schematic diagram showing a basic embodiment of a pressurized downward injection type multistage ozone contact tank according to the present invention.

【図2】被処理水の滞留時間と溶存オゾン濃度の関係を
示すグラフ。
FIG. 2 is a graph showing the relationship between the residence time of water to be treated and the concentration of dissolved ozone.

【図3】被処理水の滞留時間とE260残存率の関係を
示すグラフ。
FIG. 3 is a graph showing the relationship between the residence time of water to be treated and the residual ratio of E260.

【図4】オゾン注入後の滞留時間と溶存オゾン濃度の関
係を示すグラフ。
FIG. 4 is a graph showing the relationship between residence time after ozone injection and dissolved ozone concentration.

【図5】過酸化水素の添加前と添加後のオゾン吸収効率
の経時変化を示すグラフ。
FIG. 5 is a graph showing changes over time in ozone absorption efficiency before and after the addition of hydrogen peroxide.

【図6】溶存オゾンと過酸化水素の濃度と、過酸化水素
/オゾン注入率比との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the concentration of dissolved ozone and hydrogen peroxide and the ratio of hydrogen peroxide / ozone injection rate.

【図7】本実施例における制御例1を説明するための概
要図。
FIG. 7 is a schematic diagram for explaining a control example 1 in the embodiment.

【図8】本実施例における制御例2を説明するための概
要図。
FIG. 8 is a schematic diagram for explaining a control example 2 in the present embodiment.

【図9】本実施例における制御例3を説明するための概
要図。
FIG. 9 is a schematic diagram for explaining a control example 3 in the present embodiment.

【図10】通常の散気管型オゾン反応槽の一例を示す要
部断面図。
FIG. 10 is a sectional view of an essential part showing an example of a normal diffuser ozone reaction tank.

【図11】通常のUチューブ型オゾン接触槽の構造を示
す概略図。
FIG. 11 is a schematic view showing the structure of a normal U-tube type ozone contact tank.

【符号の説明】[Explanation of symbols]

7…オゾン発生装置 11…多段オゾン接触槽 11a…第1槽 11b…第2槽 11c…滞留槽 13…(排オゾンガスの)排出管 15…(被処理水の)流入管 16…送水ポンプ 17…加圧渦流ポンプ 18…オゾン注入管 19…急縮弁 20…被処理水 21…下方注入管 22…過酸化水素注入管 25…過酸化水素/オゾン注入率コントローラ 26…過酸化水素注入率コントローラ 27…オゾン注入率コントローラ 28…オゾン発生量コントローラ 30…(被処理水の)流量計 31…注入オゾン濃度計 32…過酸化水素流量計 33…過酸化水素流入バルブ 45…溶存オゾン濃度計 47…過酸化水素濃度計 7 Ozone generator 11 Multi-stage ozone contact tank 11a First tank 11b Second tank 11c Staying tank 13 Discharge pipe (for ozone gas discharged) 15 Inflow pipe for water to be treated 16 Water pump 17 Pressurized vortex pump 18 Ozone injection pipe 19 Rapid reduction valve 20 Water to be treated 21 Lower injection pipe 22 Hydrogen peroxide injection pipe 25 Hydrogen peroxide / ozone injection rate controller 26 Hydrogen peroxide injection rate controller 27 ... ozone injection rate controller 28 ... ozone generation amount controller 30 ... flow meter (water to be treated) 31 ... injection ozone concentration meter 32 ... hydrogen peroxide flow meter 33 ... hydrogen peroxide inflow valve 45 ... dissolved ozone concentration meter 47 ... excess Hydrogen oxide concentration meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津倉 洋 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroshi Tsukura 2-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 上下対向流式の多段オゾン接触槽に被処
理水を送り込む流入管の中途部に分岐管を設けて、該分
岐管に被処理水とオゾンガスとを気液混合する加圧渦流
ポンプ及び該加圧渦流ポンプの出力管内の圧力を調整す
るための急縮弁を配備して、該出力管を被処理水の送水
管を介して多段オゾン接触槽の第1槽内に縦方向に挿入
配置された下方注入管に連結し、更に多段オゾン接触槽
内の越流部に過酸化水素注入管を導入したことにより、
溶存オゾンと過酸化水素からOHラジカルを生成するこ
とを特徴とする加圧型下方注入式多段オゾン接触槽。
1. A pressurized vortex flow in which a branch pipe is provided in the middle of an inflow pipe for feeding water to be treated into a vertically opposed multi-stage ozone contact tank, and the water to be treated and ozone gas are gas-liquid mixed in the branch pipe. A pump and a rapid-reducing valve for adjusting the pressure in the output pipe of the pressurized vortex pump are provided, and the output pipe is vertically inserted into the first tank of the multi-stage ozone contact tank via a water supply pipe for the water to be treated. By connecting to the lower injection pipe inserted and arranged, and further introducing the hydrogen peroxide injection pipe to the overflow section in the multi-stage ozone contact tank,
A pressurized downward injection type multistage ozone contact tank characterized by generating OH radicals from dissolved ozone and hydrogen peroxide.
【請求項2】 上下対向流式の多段オゾン接触槽に被処
理水を送り込む流入管の中途部に分岐管を設けて、該分
岐管に被処理水とオゾンガスとを気液混合する加圧渦流
ポンプ及び該加圧渦流ポンプの出力管内の圧力を調整す
るための急縮弁を配備して、該出力管を被処理水の送水
管を介して多段オゾン接触槽の第1槽内に縦方向に挿入
配置された下方注入管に連結し、更に多段オゾン接触槽
内の越流部に過酸化水素注入管を導入したことにより、
溶存オゾンと過酸化水素からOHラジカルを生成するよ
うにした加圧型下方注入式多段オゾン接触槽において、 上記オゾン接触槽に過酸化水素/オゾン注入率コントロ
ーラ、過酸化水素注入率コントローラ、オゾン注入率コ
ントローラ、オゾン発生量コントローラを配備して、上
記過酸化水素/オゾン注入率コントローラは入力された
過酸化水素/オゾン注入率比設定値に基づいてオゾン注
入率目標値と過酸化水素注入率目標値を求め、オゾン注
入率コントローラは上記オゾン注入率目標値と被処理水
の流量信号からオゾン発生量目標値を求めてオゾン発生
量コントローラに出力し、オゾン発生装置の駆動状態を
制御する一方、過酸化水素注入率コントローラは上記過
酸化水素注入率目標値と過酸化水素の流量信号及び被処
理水の流量信号からバルブ開度目標値を求めて過酸化水
素流入バルブの開度を制御することを特徴とする加圧型
下方注入式多段オゾン接触槽の制御方法。
2. A pressurized vortex flow in which a branch pipe is provided in the middle of an inlet pipe for feeding water to be treated into a vertically opposed multistage ozone contact tank, and the water to be treated and ozone gas are gas-liquid mixed in the branch pipe. A pump and a rapid-reducing valve for adjusting the pressure in the output pipe of the pressurized vortex pump are provided, and the output pipe is vertically inserted into the first tank of the multi-stage ozone contact tank via a water supply pipe for the water to be treated. By connecting to the lower injection pipe inserted and arranged, and further introducing the hydrogen peroxide injection pipe to the overflow section in the multi-stage ozone contact tank,
In a pressurized downward injection multi-stage ozone contact tank configured to generate OH radicals from dissolved ozone and hydrogen peroxide, a hydrogen peroxide / ozone injection rate controller, a hydrogen peroxide injection rate controller, an ozone injection rate A controller and an ozone generation amount controller are provided, and the hydrogen peroxide / ozone injection rate controller sets the ozone injection rate target value and the hydrogen peroxide injection rate target value based on the input hydrogen peroxide / ozone injection rate ratio set value. The ozone injection rate controller obtains an ozone generation target value from the ozone injection rate target value and the flow rate signal of the water to be treated, outputs the target value to the ozone generation controller, and controls the driving state of the ozone generator. The hydrogen oxide injection rate controller determines whether the hydrogen peroxide injection rate target value, the flow rate signal of hydrogen peroxide and the flow rate signal of the water to be treated are present. A method for controlling a pressurized downward injection type multi-stage ozone contact tank, wherein a valve opening target value is determined from the above to control the opening degree of a hydrogen peroxide inflow valve.
【請求項3】 前記多段オゾン接触槽の処理水流出口に
溶存オゾン濃度計を配備して、過酸化水素注入率コント
ローラに該溶存オゾン濃度計により測定された溶存オゾ
ン濃度信号と過酸化水素の流量信号を入力し、溶存オゾ
ン濃度目標値が規制値以下になるようにバルブ開度目標
値を求めて過酸化水素流入バルブの開度制御を行うよう
にした請求項2記載の加圧型下方注入式多段オゾン接触
槽の制御方法。
3. A dissolved ozone concentration meter is provided at a treatment water outlet of the multistage ozone contact tank, and a dissolved ozone concentration signal measured by the dissolved ozone concentration meter and a flow rate of hydrogen peroxide are supplied to a hydrogen peroxide injection rate controller. 3. The pressurized downward injection method according to claim 2, wherein a signal is input to control the opening degree of the hydrogen peroxide inflow valve by obtaining a valve opening target value so that the dissolved ozone concentration target value becomes equal to or less than the regulation value. Control method of multi-stage ozone contact tank.
【請求項4】 多段オゾン接触槽の処理水流出口に過酸
化水素濃度計を配備して、過酸化水素注入率コントロー
ラに該過酸化水素濃度計により測定された残留過酸化水
素濃度信号と過酸化水素の流量信号を入力し、過酸化水
素濃度目標値が規制値以下になるようにバルブ開度目標
値を求めて過酸化水素流入バルブの開度制御を行うよう
にした請求項2記載の加圧型下方注入式多段オゾン接触
槽の制御方法。
4. A hydrogen peroxide concentration meter is provided at a treated water outlet of a multi-stage ozone contact tank, and a residual hydrogen peroxide concentration signal measured by the hydrogen peroxide concentration meter and a hydrogen peroxide concentration signal are supplied to a hydrogen peroxide injection rate controller. 3. A hydrogen peroxide inflow valve according to claim 2, wherein a hydrogen flow rate signal is input, and a valve opening target value is determined so that the hydrogen peroxide concentration target value is equal to or less than a regulation value, and the opening control of the hydrogen peroxide inflow valve is performed. Control method of pressure type downward injection type multistage ozone contact tank.
JP32807996A 1996-12-09 1996-12-09 Control method of pressurized bottom injection type multi-stage ozone contact tank Expired - Fee Related JP3977885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32807996A JP3977885B2 (en) 1996-12-09 1996-12-09 Control method of pressurized bottom injection type multi-stage ozone contact tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32807996A JP3977885B2 (en) 1996-12-09 1996-12-09 Control method of pressurized bottom injection type multi-stage ozone contact tank

Publications (2)

Publication Number Publication Date
JPH10165971A true JPH10165971A (en) 1998-06-23
JP3977885B2 JP3977885B2 (en) 2007-09-19

Family

ID=18206285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32807996A Expired - Fee Related JP3977885B2 (en) 1996-12-09 1996-12-09 Control method of pressurized bottom injection type multi-stage ozone contact tank

Country Status (1)

Country Link
JP (1) JP3977885B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272081A (en) * 2005-03-28 2006-10-12 Takuma Co Ltd Ultrahigh-level method for treating water and water treatment system to be used therein
CN103539293A (en) * 2013-09-25 2014-01-29 安徽省绿巨人环境技术有限公司 High-efficiency iron carbon-Fenton combined reactor for high-concentration organic wastewater pretreatment
WO2015064382A1 (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method
JP2021074662A (en) * 2019-11-07 2021-05-20 三菱パワー環境ソリューション株式会社 Wastewater treatment method and wastewater treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272081A (en) * 2005-03-28 2006-10-12 Takuma Co Ltd Ultrahigh-level method for treating water and water treatment system to be used therein
CN103539293A (en) * 2013-09-25 2014-01-29 安徽省绿巨人环境技术有限公司 High-efficiency iron carbon-Fenton combined reactor for high-concentration organic wastewater pretreatment
WO2015064382A1 (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method
JP2021074662A (en) * 2019-11-07 2021-05-20 三菱パワー環境ソリューション株式会社 Wastewater treatment method and wastewater treatment system

Also Published As

Publication number Publication date
JP3977885B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US10858271B2 (en) Methods for producing high-concentration of dissolved ozone in liquid media
CN207451708U (en) A kind of micro-nano oxidation sewage-treatment plant of ultraviolet catalytic oxidation-ozone
JP2009056364A (en) Piping type water treatment apparatus
CN104876375A (en) Deep oxidization water treatment method and deep oxidization water treatment device
US20070034565A1 (en) Method for treating a contaminated fluid
JP3977885B2 (en) Control method of pressurized bottom injection type multi-stage ozone contact tank
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
JP3523751B2 (en) Pressurized downward injection type ozone contact tank and its control method
JPH09290280A (en) Ozone contact tank and control method therefor
RU2770582C1 (en) Separation of ozone oxidation in a liquid medium into three separate operations for the process of optimisation
JP5061320B2 (en) Water treatment reactor, water treatment system, and water treatment method
JP3523743B2 (en) Pressurized downward injection type ozone contact tank and its control method
JP3522020B2 (en) Pressurized downward injection type ozone contact tank and its control method
JP3944268B2 (en) Pressurized downward injection type multi-stage ozone contact tank and its control method
JPH08243571A (en) Bottom-injection type multistage ozone contact tank and control method thereof
JPH08108195A (en) Method and apparatus for removing nitrogen in water
JPH07275873A (en) U-tube type ozone reaction tank
JP3491371B2 (en) Downward injection type multi-stage ozone contact tank and its control method
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment
JPH1110175A (en) Method for controlling pressurizing and downward injection type ozone contact tank
US11084744B2 (en) Method for mixing gas-free liquid oxidant with process liquid
RU2214370C1 (en) Plant to saturate water with ozone
JPH08192176A (en) Separate injection type ozone contact method
JPH09267096A (en) Water treating device using ozone
JP2514601Y2 (en) Ozone reaction contact tower

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040526

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees