JPH10163464A - Manufacture of solid state image pickup device - Google Patents

Manufacture of solid state image pickup device

Info

Publication number
JPH10163464A
JPH10163464A JP8323951A JP32395196A JPH10163464A JP H10163464 A JPH10163464 A JP H10163464A JP 8323951 A JP8323951 A JP 8323951A JP 32395196 A JP32395196 A JP 32395196A JP H10163464 A JPH10163464 A JP H10163464A
Authority
JP
Japan
Prior art keywords
microlens
layer
island
resist
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8323951A
Other languages
Japanese (ja)
Inventor
Masatoki Nakabayashi
正登喜 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8323951A priority Critical patent/JPH10163464A/en
Publication of JPH10163464A publication Critical patent/JPH10163464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform the formation of a microlens in proper form by heating molding, and improve the quantity of condensation to a photodetector with a short microlens. SOLUTION: Exposure processing, development processing, etc., are carried out so that the unclear image of a mask pattern may be made in such a way as to slide the focus faces, on the upper surface of the resist layer for a microlens constituted of a photoresist on a second transparent layer 15. Hereby, an island-shaped part 17 by resist for a microlens which has an inclined end 18 with a tilt angle α trapezoid in sectional form for forming a single lens is made in the position above the photodetector 12. Then, it is retained for a given time in such temperature that the resist fuses and is transformed by heat so as to fuse the island-shaped part 17 and transform it by surface tension, thus making a convex microlens with specified curvature corresponding to the tilt angle α in the position above the photodetector 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像装置の製
造方法に関し、特に受光素子の前方に配置されるマイク
ロレンズの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid-state imaging device, and more particularly, to a method for manufacturing a microlens disposed in front of a light receiving element.

【0002】[0002]

【従来の技術】従来、複数の受光素子が上部に形成され
た半導体基板の上面に透明層、カラーフィルタ層等で構
成される中間層を積層し、この中間層上に個々の受光素
子に対応させてマイクロレンズを形成する場合、次のよ
うにして行われていた。以下、図6乃至図9を参照して
説明する。図6乃至図9は工程順に示す各形成工程の断
面図である。
2. Description of the Related Art Conventionally, an intermediate layer composed of a transparent layer, a color filter layer and the like is laminated on the upper surface of a semiconductor substrate having a plurality of light receiving elements formed thereon. When a microlens is formed by this, it has been performed as follows. Hereinafter, description will be made with reference to FIGS. 6 to 9 are cross-sectional views of each forming step shown in the order of steps.

【0003】先ず、図6に示す第1の形成工程におい
て、1は複数の受光素子2が形成された半導体基板で、
この半導体基板1の上面に第1の透明層3を、受光素子
2の受光面前方側に開口する素子開口部2aを埋め込む
と共に全面にわたり表面が平坦面となるように成層す
る。続いて第1の透明層3の上面にカラーフィルタ層4
を成層する。カラーフィルタ層4は赤色フィルタ部4
r、緑色フィルタ部4g、青色フィルタ部4bによって
構成されると共に各色フィルタ部4r,4g,4bは対
応する受光素子2上に設けられる。なお、カラーフィル
タ層4を原色フィルタとしたが、補色フィルタの場合は
各フィルタ部はイエロー(Ye)、シアン(Cy)、マ
ゼンタ(Mg)の各色によって構成される。さらにカラ
ーフィルタ層4の上面に保護層として第2の透明層5を
同じく表面が平坦面となるように成層する。
First, in a first forming step shown in FIG. 6, reference numeral 1 denotes a semiconductor substrate on which a plurality of light receiving elements 2 are formed.
A first transparent layer 3 is formed on the upper surface of the semiconductor substrate 1 so as to fill an element opening 2a opening forward of the light-receiving surface of the light-receiving element 2 and to have a flat surface over the entire surface. Subsequently, a color filter layer 4 is formed on the upper surface of the first transparent layer 3.
Stratify. The color filter layer 4 is a red filter section 4
r, a green filter section 4g, and a blue filter section 4b, and each color filter section 4r, 4g, 4b is provided on the corresponding light receiving element 2. Although the color filter layer 4 is a primary color filter, in the case of a complementary color filter, each filter section is constituted by each color of yellow (Ye), cyan (Cy), and magenta (Mg). Further, a second transparent layer 5 is similarly formed as a protective layer on the upper surface of the color filter layer 4 so that the surface becomes a flat surface.

【0004】次に、図7に示す第2の形成工程におい
て、第2の透明層5の上面にマイクロレンズ用レジスト
を所定の厚さとなるように塗布し、マイクロレンズ用レ
ジスト層6を成層する。
Next, in a second forming step shown in FIG. 7, a microlens resist is applied on the upper surface of the second transparent layer 5 so as to have a predetermined thickness, and a microlens resist layer 6 is formed. .

【0005】次に、図8に示す第3の形成工程におい
て、図示しないガラスマスクを用いた露光装置によって
マイクロレンズ用レジスト層6の上表面に焦点を結ば
せ、焦点面が一致した状態の上表面にガラスマスクのパ
ターンの鮮明な像を結像させるようにして露光処理し、
現像処理等を施して各受光素子2の上方位置にそれぞれ
対応させて単レンズを形成するためのマイクロレンズ用
レジストによる島状部7を形成する。
Next, in a third forming step shown in FIG. 8, an upper surface of the microlens resist layer 6 is focused by an exposing device using a glass mask (not shown), and Exposure processing to form a clear image of the pattern of the glass mask on the surface,
By performing a development process or the like, an island-shaped portion 7 made of a resist for microlenses for forming a single lens corresponding to a position above each light receiving element 2 is formed.

【0006】次に、図9に示す第4の形成工程におい
て、マイクロレンズ用レジストの島状部7が形成された
半導体基板1をマイクロレンズ用レジストが溶融し熱変
形する温度雰囲気中に所定時間保持して島状部7の加熱
成形を行い、マイクロレンズ用レジストの島状部7を表
面張力によって凸レンズ状に変形させ固化させることで
凸状のマイクロレンズ8を受光素子2の上方位置、すな
わち受光面前方位置に形成する。
Next, in a fourth forming step shown in FIG. 9, the semiconductor substrate 1 on which the microlens resist islands 7 are formed is placed in a temperature atmosphere in which the microlens resist is melted and thermally deformed for a predetermined time. The island-shaped portion 7 is heated and molded while being held, and the island-shaped portion 7 of the microlens resist is deformed into a convex lens shape by surface tension and solidified, so that the convex microlens 8 is positioned above the light receiving element 2, that is, It is formed at a position in front of the light receiving surface.

【0007】しかしながら上記の従来技術においては、
マイクロレンズ8の形状を所定形状とするために、受光
素子2前方の素子開口部2aの開口寸法やマイクロレン
ズ8から受光素子2の受光面までの距離に応じマイクロ
レンズ8の焦点位置が受光面となるようにする形状制御
が必要となる。そして、形状制御は主として加熱成形時
における加熱温度や加熱時間によって行われるため、半
導体装置の仕様が第1、第2の透明層3,5やカラーフ
ィルタ層4の中間層の構成等により層厚が多少違ってい
たり、素子開口部2aの開口寸法が若干違っていたりす
るだけでレンズ成形の際の加熱条件を変更しなければな
らず、加熱成形が非常に手間の掛かる効率の悪いものと
なっていた。
However, in the above prior art,
In order to make the shape of the micro lens 8 a predetermined shape, the focal position of the micro lens 8 is changed according to the opening size of the element opening 2a in front of the light receiving element 2 and the distance from the micro lens 8 to the light receiving surface of the light receiving element 2. It is necessary to control the shape so that Since the shape control is mainly performed by the heating temperature and the heating time during the heat molding, the specification of the semiconductor device is determined by the thickness of the first and second transparent layers 3 and 5 and the thickness of the intermediate layer of the color filter layer 4 and the like. Is slightly different or the opening size of the element opening 2a is slightly different, so that the heating conditions at the time of lens molding must be changed, and the heat molding is very troublesome and inefficient. I was

【0008】また、焦点距離の小さいマイクロレンズ8
を得ようとした場合にはマイクロレンズ用レジスト層6
の層厚を厚くしていくことになるが、層厚が厚くなると
曲率が大きくなりすぎて適正な形状に制御できない状況
にあった。さらに上記のようにして成形されたマイクロ
レンズ8では外周端部分での曲率が他の部分より大きく
なって、この外周端部分に入射した光は受光面に集光せ
ず集光量を高めることが困難であった。
Further, a micro lens 8 having a small focal length
In order to obtain the microlens resist layer 6
However, when the layer thickness is too large, the curvature becomes too large to control the shape to an appropriate shape. Further, in the microlens 8 formed as described above, the curvature at the outer peripheral end portion is larger than that at the other portions, so that the light incident on the outer peripheral end portion is not focused on the light receiving surface and the amount of light collection can be increased. It was difficult.

【0009】[0009]

【発明が解決しようとする課題】上記のような状況に鑑
みて本発明はなされたもので、その目的とするところは
マイクロレンズの形成が加熱成形によって手間が掛から
ず効率的に行うことができ、また短焦点のマイクロレン
ズでも加熱成形により適正形状に成形することができ、
さらに受光素子への集光量を向上させることができるよ
うにした固体撮像装置の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to form a microlens by heat molding without the need for time and labor. In addition, even a short-focus microlens can be molded into an appropriate shape by heat molding,
It is still another object of the present invention to provide a method of manufacturing a solid-state imaging device capable of improving the amount of light condensed on a light receiving element.

【0010】[0010]

【課題を解決するための手段】本発明の固体撮像装置の
製造方法は、受光素子の前面に中間層を介在させてマイ
クロレンズ用レジスト層を積層し、この積層されたマイ
クロレンズ用レジスト層をパターニングしてマイクロレ
ンズ形成用の島状部を形成した後、前記島状部を熱変形
させて前記受光素子の前方にマイクロレンズを形成する
ようにした固体撮像装置の製造方法において、前記島状
部を、断面形状が台形となるように形成した後に熱変形
させて前記マイクロレンズを形成することを特徴とする
方法であり、さらに、マイクロレンズ用レジスト層をフ
ォトレジストで形成すると共に、前記マイクロレンズ用
レジスト層をパターニングする際の露光処理時にマスク
パターンの焦点面を該マイクロレンズ用レジスト層の表
面からずれた位置に形成するようにしたことを特徴とす
る方法である。
According to a method of manufacturing a solid-state imaging device of the present invention, a microlens resist layer is laminated on a front surface of a light receiving element with an intermediate layer interposed therebetween, and the laminated microlens resist layer is laminated. The method for manufacturing a solid-state imaging device, wherein after patterning to form an island portion for forming a microlens, the island portion is thermally deformed to form a microlens in front of the light receiving element. Forming a microlens by thermally deforming the portion after forming the cross section into a trapezoidal shape, and further forming a microlens resist layer with a photoresist and forming the microlens. A position where the focal plane of the mask pattern is shifted from the surface of the microlens resist layer during the exposure processing when patterning the lens resist layer. A method which is characterized in that in order to form.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施形態を図1
乃至図5を参照して説明する。図1乃至図4は工程順に
示す各形成工程の断面図であり、図5はマイクロレンズ
用レジストの島状部の外周端部分における傾斜角とマイ
クロレンズの焦点位置の関係を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIGS. 1 to 4 are cross-sectional views of respective forming steps in the order of steps, and FIG. 5 is a view showing a relationship between a tilt angle and a focal position of a microlens at an outer peripheral end portion of an island portion of a microlens resist.

【0012】先ず、図1に示す第1の形成工程におい
て、11はフォトダイオードによりなる受光素子12が
2次元的に複数形成された半導体基板であり、受光素子
12は半導体基板11の上面に開口する素子開口部12
aの底面に受光面を上方に向けるようにして設けられて
いる。そして、このように構成されている半導体基板1
1に対し、その上面に第1の透明層13を受光素子2の
受光面前方の素子開口部12aを埋め込むと共に全面に
わたり表面が平坦面となるように所定の厚さを有するよ
うに成層する。続いて第1の透明層13の上面にカラー
フィルタ層14を所定の層厚に成層する。カラーフィル
タ層14は赤色フィルタ部14r、緑色フィルタ部14
g、青色フィルタ部14bによって構成されており、各
色フィルタ部14r,14g,14bは対応する受光素
子12上にそれぞれ第1の透明層13を介して覆うよう
に設ける。なお、カラーフィルタ層14を原色フィルタ
としたが、各色フィルタ部をイエロー(Ye)、シアン
(Cy)、マゼンタ(Mg)とした補色フィルタで構成
してももよい。さらにカラーフィルタ層14の上面に保
護層として第2の透明層15を表面が同じく平坦面で所
定の厚さを有するように成層する。
First, in a first forming step shown in FIG. 1, reference numeral 11 denotes a semiconductor substrate on which a plurality of light receiving elements 12 each composed of a photodiode are formed two-dimensionally. Element opening 12
The light-receiving surface is provided on the bottom surface of a so as to face upward. Then, the semiconductor substrate 1 thus configured
On the other hand, a first transparent layer 13 is formed on an upper surface of the first transparent layer 13 so as to bury the element opening 12a in front of the light receiving surface of the light receiving element 2 and to have a predetermined thickness so that the entire surface becomes a flat surface. Subsequently, a color filter layer 14 is formed on the upper surface of the first transparent layer 13 to a predetermined thickness. The color filter layer 14 includes a red filter portion 14r and a green filter portion 14.
g, a blue filter section 14b, and each color filter section 14r, 14g, 14b is provided on the corresponding light receiving element 12 so as to cover the first transparent layer 13 respectively. Although the color filter layer 14 is a primary color filter, each color filter section may be composed of a complementary color filter of yellow (Ye), cyan (Cy), and magenta (Mg). Further, a second transparent layer 15 is formed as a protective layer on the upper surface of the color filter layer 14 so that the surface is also a flat surface and has a predetermined thickness.

【0013】次に、図2に示す第2の形成工程におい
て、第2の透明層15の上面にマイクロレンズ用レジス
トを、受光素子12の上面上の第1、第2の透明層1
3,15やカラーフィルタ層14で構成される中間層の
厚さに基づき所定の厚さとなるように塗布し、マイクロ
レンズ用レジスト層16を成層する。
Next, in a second forming step shown in FIG. 2, a microlens resist is formed on the upper surface of the second transparent layer 15 and the first and second transparent layers 1 on the upper surface of the light receiving element 12 are formed.
The resist is applied to a predetermined thickness based on the thickness of the intermediate layer composed of the color filters 3 and 15 and the color filter layer 14 to form the microlens resist layer 16.

【0014】次に、図3に示す第3の形成工程におい
て、図示しないガラスマスクを用いた露光装置によって
マイクロレンズ用レジン層16の上表面から上下方向に
所定距離だけ離れた位置に焦点面が来るようにし、上表
面に不鮮明な像が形成されるようにする。そして、上表
面にガラスマスクのパターンの焦点のずれた像を形成
し、この状態で紫外光を投射しマイクロレンズ用レジス
トの感度に応じ所定時間の露光処理及び現像処理等を施
す。これにより各受光素子12の上方位置にそれぞれに
対応させて単レンズを形成するための断面形状が台形の
マイクロレンズ用レジストによる島状部17を形成す
る。
Next, in a third forming step shown in FIG. 3, a focal plane is located at a position vertically separated from the upper surface of the resin layer 16 for microlenses by an exposure apparatus using a glass mask (not shown). So that a blurred image is formed on the upper surface. Then, an out-of-focus image of the pattern of the glass mask is formed on the upper surface, and in this state, ultraviolet light is projected and exposure processing and development processing are performed for a predetermined time according to the sensitivity of the microlens resist. As a result, an island-like portion 17 is formed by a microlens resist having a trapezoidal cross section for forming a single lens corresponding to a position above each light receiving element 12.

【0015】この形成された台形断面形状のマイクロレ
ンズ用レジストの島状部17は、その外周端部が外方に
向けての下り傾斜側面を有する傾斜端部18となってお
り、島状部17が密着する第2の透明層15表面に対す
る傾斜端部18の傾斜側面の傾斜角αは、形成するマイ
クロレンズ19の焦点距離に応じ成層されたマイクロレ
ンズ用レジスト層16の厚さ等に対応して、露光処理時
に焦点面のマイクロレンズ用レジスト層16の上表面か
らのずれ量を調節することにより行う。マイクロレンズ
用レジスト層16の上表面からの焦点面のずれ量を示す
焦点位置と傾斜角との関係は、例えば図5に示すような
ものとなっている。図5で焦点位置が“0”の場合はマ
イクロレンズ用レジスト層16の上表面と焦点面が一致
した状態、すなわち、上表面にガラスマスクのパターン
の鮮明な像を結像させた状態であり、焦点位置が“0”
から離れるにしたがってマイクロレンズ用レジスト層1
6の上表面にはより不鮮明となった像が形成される。
The island-shaped portion 17 of the formed microlens resist having a trapezoidal cross-sectional shape has an outer peripheral end formed as an inclined end 18 having a downwardly inclined side surface facing outward. The inclination angle α of the inclined side surface of the inclined end portion 18 with respect to the surface of the second transparent layer 15 to which the substrate 17 adheres corresponds to the thickness of the microlens resist layer 16 formed according to the focal length of the microlens 19 to be formed. Then, the exposure is performed by adjusting the amount of shift of the focal plane from the upper surface of the microlens resist layer 16. The relationship between the focal position indicating the amount of displacement of the focal plane from the upper surface of the microlens resist layer 16 and the tilt angle is as shown in FIG. 5, for example. In FIG. 5, when the focal position is “0”, the upper surface of the microlens resist layer 16 and the focal plane coincide, that is, a clear image of the pattern of the glass mask is formed on the upper surface. , The focal position is “0”
Resist layer for microlens 1
A more blurred image is formed on the upper surface of 6.

【0016】次に、図4に示す第4の形成工程におい
て、マイクロレンズ用レジストの島状部17が形成され
た半導体基板11をマイクロレンズ用レジストが溶融し
熱変形する温度雰囲気中に所定時間保持して島状部17
の加熱成形を行い、マイクロレンズ用レジストの島状部
17を溶融時の表面張力によって凸レンズ状に変形さ
せ、変形したまま固化させることで、傾斜角αに対応す
る所定曲率を備えた凸状のマイクロレンズ19を受光素
子12の上方位置、すなわち受光面前方位置に形成す
る。この加熱成形の際、島状部17の外周端部が傾斜角
αの傾斜端部18となっていてマイクロレンズ用レジス
トの絶対量が少ないために、溶融し凸レンズ状に変形し
ても外周端部の曲率は大きなものとならない。
Next, in a fourth forming step shown in FIG. 4, the semiconductor substrate 11 on which the microlens resist islands 17 are formed is placed in a temperature atmosphere in which the microlens resist is melted and thermally deformed for a predetermined time. Holding and island 17
Is heated, and the island portion 17 of the microlens resist is deformed into a convex lens shape by the surface tension at the time of melting, and solidified while deforming, thereby forming a convex shape having a predetermined curvature corresponding to the inclination angle α. The micro lens 19 is formed at a position above the light receiving element 12, that is, at a position in front of the light receiving surface. At the time of this heat molding, the outer peripheral end of the island-shaped portion 17 is the inclined end 18 with the inclination angle α, and the absolute amount of the microlens resist is small. The curvature of the part does not become large.

【0017】このように構成されているので、形成され
たマイクロレンズ19は、加熱成形前に島状部17が第
2の透明層15表面に対し傾斜角αの傾斜側面を有する
傾斜端部18となっており、マイクロレンズ用レジスト
層16の層厚に応じ焦点面のずれ量を変えて傾斜角αの
大きさを適宜設定することで、容易に適正な曲率とする
ことができる。その結果、仕様の異なる半導体装置での
マイクロレンズ19の加熱成形においても、仕様に対応
した成形条件の変更が手間が掛からずに簡単に行え、効
率的な成形を行うことができる。また、マイクロレンズ
19が短焦点のものであっても、外周端部分での曲率が
他の部分と同様に適正なものとすることができ、ここで
の入射光をより効率的に集光できて受光素子12への光
量を増加させることができる。
With this configuration, the formed microlens 19 has an inclined end portion 18 having an inclined side surface having an inclined angle α with respect to the surface of the second transparent layer 15 before heat molding. An appropriate curvature can be easily obtained by appropriately setting the magnitude of the inclination angle α by changing the shift amount of the focal plane according to the thickness of the microlens resist layer 16. As a result, even when the microlenses 19 are formed by heating the semiconductor device having different specifications, the molding conditions corresponding to the specifications can be easily changed without any trouble, and efficient molding can be performed. Even if the micro lens 19 has a short focus, the curvature at the outer peripheral end portion can be made appropriate as in the other portions, and the incident light can be more efficiently condensed here. Thus, the amount of light to the light receiving element 12 can be increased.

【0018】[0018]

【発明の効果】以上の説明から明らかなように本発明に
よれば、加熱成形による適正形状のマイクロレンズの形
成が手間が掛からず効率的に行うことができ、短焦点の
マイクロレンズでの受光素子への集光量を向上させるこ
とができる等の効果を奏する。
As is apparent from the above description, according to the present invention, it is possible to efficiently form a microlens having a proper shape by heat molding without any trouble, and to receive light with a short focus microlens. There are effects such as an improvement in the amount of light condensed on the element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における第1の形成工程を
示す断面図である。
FIG. 1 is a cross-sectional view showing a first forming step in one embodiment of the present invention.

【図2】本発明の一実施形態における第2の形成工程を
示す断面図である。
FIG. 2 is a cross-sectional view showing a second forming step in one embodiment of the present invention.

【図3】本発明の一実施形態における第3の形成工程を
示す断面図である。
FIG. 3 is a cross-sectional view showing a third forming step in one embodiment of the present invention.

【図4】本発明の一実施形態における第4の形成工程を
示す断面図である。
FIG. 4 is a cross-sectional view showing a fourth forming step in one embodiment of the present invention.

【図5】本発明の一実施形態に係るマイクロレンズ用レ
ジストの島状部の外周端部分における傾斜角とマイクロ
レンズの焦点位置の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a tilt angle and a focal position of a microlens at an outer peripheral end portion of an island portion of a microlens resist according to an embodiment of the present invention.

【図6】従来技術における第1の形成工程を示す断面図
である。
FIG. 6 is a cross-sectional view showing a first forming step in the prior art.

【図7】従来技術における第2の形成工程を示す断面図
である。
FIG. 7 is a cross-sectional view showing a second forming step in the conventional technique.

【図8】従来技術における第3の形成工程を示す断面図
である。
FIG. 8 is a sectional view showing a third forming step in the conventional technique.

【図9】従来技術における第4の形成工程を示す断面図
である。
FIG. 9 is a sectional view showing a fourth forming step in the conventional technique.

【符号の説明】[Explanation of symbols]

12…受光素子 13…第1の透明層 14…カラーフィルタ層 15…第2の透明層 16…マイクロレンズ用レジスト層 17…島状部 18…傾斜端部 19…マイクロレンズ α…傾斜角 DESCRIPTION OF SYMBOLS 12 ... Light receiving element 13 ... 1st transparent layer 14 ... Color filter layer 15 ... 2nd transparent layer 16 ... Micro lens resist layer 17 ... Island-shaped part 18 ... Inclined end 19 ... Micro lens α ... Incline angle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 受光素子の前面に中間層を介在させてマ
イクロレンズ用レジスト層を積層し、この積層されたマ
イクロレンズ用レジスト層をパターニングしてマイクロ
レンズ形成用の島状部を形成した後、前記島状部を熱変
形させて前記受光素子の前方にマイクロレンズを形成す
るようにした固体撮像装置の製造方法において、前記島
状部を、断面形状が台形となるように形成した後に熱変
形させて前記マイクロレンズを形成することを特徴とす
る固体撮像装置の製造方法。
1. A microlens resist layer is laminated on a front surface of a light receiving element with an intermediate layer interposed therebetween, and the laminated microlens resist layer is patterned to form an island portion for forming a microlens. In the method for manufacturing a solid-state imaging device in which a microlens is formed in front of the light receiving element by thermally deforming the island, the island may be formed such that its cross-sectional shape becomes trapezoidal. A method for manufacturing a solid-state imaging device, wherein the microlens is formed by deforming.
【請求項2】 マイクロレンズ用レジスト層をフォトレ
ジストで形成すると共に、前記マイクロレンズ用レジス
ト層をパターニングする際の露光処理時にマスクパター
ンの焦点面を該マイクロレンズ用レジスト層の表面から
ずれた位置に形成するようにしたことを特徴とする請求
項1記載の固体撮像装置の製造方法。
2. A microlens resist layer is formed of a photoresist, and a focal plane of a mask pattern is shifted from a surface of the microlens resist layer during an exposure process when patterning the microlens resist layer. 2. The method for manufacturing a solid-state imaging device according to claim 1, wherein said method is formed.
JP8323951A 1996-12-04 1996-12-04 Manufacture of solid state image pickup device Pending JPH10163464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323951A JPH10163464A (en) 1996-12-04 1996-12-04 Manufacture of solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323951A JPH10163464A (en) 1996-12-04 1996-12-04 Manufacture of solid state image pickup device

Publications (1)

Publication Number Publication Date
JPH10163464A true JPH10163464A (en) 1998-06-19

Family

ID=18160458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323951A Pending JPH10163464A (en) 1996-12-04 1996-12-04 Manufacture of solid state image pickup device

Country Status (1)

Country Link
JP (1) JPH10163464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685872B1 (en) 2004-12-14 2007-02-23 동부일렉트로닉스 주식회사 Method for fabricating of CMOS Image sensor
JP2009147173A (en) * 2007-12-14 2009-07-02 Sharp Corp Method of manufacturing solid-state imaging device, and electronic information equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685872B1 (en) 2004-12-14 2007-02-23 동부일렉트로닉스 주식회사 Method for fabricating of CMOS Image sensor
US7388270B2 (en) 2004-12-14 2008-06-17 Dongbu Electronics Co., Ltd. Method of fabricating CMOS image sensor
US7646076B2 (en) 2004-12-14 2010-01-12 Dongbu Electronics Co., Ltd. Method of fabricating CMOS image sensor
JP2009147173A (en) * 2007-12-14 2009-07-02 Sharp Corp Method of manufacturing solid-state imaging device, and electronic information equipment

Similar Documents

Publication Publication Date Title
US7427799B2 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
US7736939B2 (en) Method for forming microlenses of different curvatures and fabricating process of solid-state image sensor
EP0124025B1 (en) Solid-state color imaging device and process for fabricating the same
EP1414072B1 (en) Image sensor having enlarged micro-lenses at the peripheral regions
JP3674209B2 (en) Solid-state imaging device and manufacturing method thereof
US7629662B2 (en) Image sensor and fabricating method thereof
CN100474603C (en) CMOS image sensor and method for manufacturing the same
US6582988B1 (en) Method for forming micro lens structures
US20030044729A1 (en) Method of manufacturing phase grating image sensor
KR100835439B1 (en) Image sensor and method of manufacturing the same
US6251700B1 (en) Method of manufacturing complementary metal-oxide-semiconductor photosensitive device
JP2012256782A (en) Color solid-state imaging element, and method for manufacturing color micro lens used for the same
JPH06163866A (en) Solid-state image pickup device and its manufacture
CN102290423B (en) Method for fabricating an image sensor device
JPH04229802A (en) Solid image pick-up device and manufacture thereof
US7456044B2 (en) Method for manufacturing image sensor
JPH11307748A (en) Solid state image sensor and fabrication thereof
JPH10163464A (en) Manufacture of solid state image pickup device
JPH11289073A (en) Solid image pickup device and manufacture thereof
JP4595405B2 (en) Solid-state imaging device and manufacturing method thereof
JP2000260969A (en) Manufacture of solid-state image pickup element
US20070026564A1 (en) Method for forming microlenses of different curvatures and fabricating process of solid-state image sensor
JP2000269474A (en) Solid-state image pickup device and manufacture thereof
KR20010061586A (en) Method for fabricating microlens in image sensor
JP2000260970A (en) Solid-state image pickup element and its manufacture