JPH10158875A - Bipolar filter press type electrolytic cell - Google Patents

Bipolar filter press type electrolytic cell

Info

Publication number
JPH10158875A
JPH10158875A JP10004177A JP417798A JPH10158875A JP H10158875 A JPH10158875 A JP H10158875A JP 10004177 A JP10004177 A JP 10004177A JP 417798 A JP417798 A JP 417798A JP H10158875 A JPH10158875 A JP H10158875A
Authority
JP
Japan
Prior art keywords
electrolytic cell
gas
anode
chambers
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10004177A
Other languages
Japanese (ja)
Other versions
JP3229266B2 (en
Inventor
Yasuhide Noaki
康秀 野秋
Saburo Okamoto
三郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11577443&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10158875(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP00417798A priority Critical patent/JP3229266B2/en
Publication of JPH10158875A publication Critical patent/JPH10158875A/en
Application granted granted Critical
Publication of JP3229266B2 publication Critical patent/JP3229266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a filter press type electrolytic cell which is simple in fabrication, may be inexpensively manufactured and ensures the sufficient flow of an electrolyte without leakage by arraying many bipolar electrolytic cell units via cation exchange membranes and providing the upper sides of the anode chambers and cathode chambers of the respective units with steam separating chambers respectively having discharge nozzles. SOLUTION: The many bipolar electrolytic cell units constituted by combining the cathode chambers 22 and the anode chambers 23 back to back are arrayed via the cation exchange membranes 19 held by anode side and cathode side gaskets 20, 21 and are assembled by fastening bodies 26, by which the bipolar filter press type electrolytic cell is obtd. The non-energization sections in the upper parts of the cathode chambers 22 and the anode chambers 23 are respectively integrally provided with the steam separating chambers and are further provided with the common discharge nozzles 13 for the electrolyte and gases connected thereto. The steam separating chambers are formed >=15cm<2> in section area and the nozzles 13 are preferably formed face downward from horizontal and are formed to a diameter of >=15mm. Further, cylindrical ducts which are the internal circulating flow passages for the electrolytes are disposed between the anode electrode chamber side walls and the electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ金属塩化
物水溶液を電解し塩素とアルカリ金属水酸化物を生産す
るための、イオン交換膜法塩化アルカリ電解用複極式フ
ィルタープレス型電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar filter press type electrolytic cell for alkali chloride electrolysis by an ion-exchange membrane method for electrolyzing an aqueous alkali metal chloride solution to produce chlorine and an alkali metal hydroxide.

【0002】[0002]

【従来の技術】高電流効率で高純度のアルカリ金属水酸
化物を生産するためのイオン交換膜法複極式電解槽につ
いては、従来より多数提案されている。例えば隣接セル
の電気接続をチタン−鉄爆発圧着板によって行なってい
る特開昭51−43377号、隣接セルの電気接続をバ
ネ性を有するコネクターで行なっている特開昭53−1
49174号、電解槽材料にプラスチックを用いて隣接
セルの電気接続をボルトとナットで行なっている特開昭
51−72973号、隣接セルの接続をチタン−銅−ス
テンレスを超音波溶接等で接合して行なっている特開昭
54−90079号、ダクトを設けた特開昭59−91
85号、単極式及び複極式どちらでも用いることのでき
る特開昭61−44189号等がある。
2. Description of the Related Art A large number of ion-exchange membrane-type bipolar electrolytic cells for producing high-purity alkali metal hydroxides with high current efficiency have been proposed. For example, JP-A-51-43377 in which electric connection between adjacent cells is made by using a titanium-iron explosion pressure bonding plate, and JP-A-53-1 in which electric connection between adjacent cells is made by using a connector having a spring property.
Japanese Patent No. 49174, JP-A-51-72973, in which plastic is used as a material for an electrolytic cell to electrically connect adjacent cells with bolts and nuts, and connection of adjacent cells is performed by ultrasonic welding or the like of titanium-copper-stainless steel. JP-A-54-90079, and JP-A-59-91 with a duct.
No. 85, and JP-A-61-44189 which can be used in both a monopolar type and a bipolar type.

【0003】特開昭62−96688号では、陽極室用
鍋状体と陰極室用鍋状体を2つ背中あわせに配置し、そ
れぞれの鉤型フランジ部と周壁部とにより形成される空
間に棒状フレームを挿入した電解槽ユニットを提案して
いる。この電解槽は確かに熔接部が少なくセル内圧を高
くしても電解液のリークもなく、加工が簡単で安価であ
る。しかし、例えば加圧状態から減圧状態までの広い範
囲の運転条件で安定した電解をしようとする場合、ある
いは40A/dm2 以上の高電流密度で電解する場合に
は、セル内部の流動や振動の点で改良の余地が残されて
いる。
In Japanese Patent Application Laid-Open No. 62-96888, two pots for the anode chamber and one for the cathode chamber are arranged back to back, and the space defined by the hook-shaped flange and the peripheral wall is provided. An electrolytic cell unit with a rod-shaped frame inserted has been proposed. This electrolytic cell has a small number of welded portions, does not leak electrolyte even if the internal pressure of the cell is increased, and is simple and inexpensive to process. However, for example, when stable electrolysis is performed under a wide range of operating conditions from a pressurized state to a depressurized state, or when electrolysis is performed at a high current density of 40 A / dm 2 or more, the flow and vibration inside the cell are There is room for improvement in this respect.

【0004】また特開昭61−19789号には、電極
板と電極シートの間に導電性スペーサーを配置し電解液
の下降流路としたもの、特開昭63−11686号に
は、電解液の下降流路となる筒状の電流分配部材を取り
付けているものがある。これらの方法では、内部の液の
流動は改善されているが、高電流密度において液とガス
の抜き出し口付近での振動発生や、セル内圧を高くしよ
うとすると電解槽の強度が不足したり、電解液のリーク
がある等の不都合が生じる場合がある。
Japanese Patent Application Laid-Open No. 61-19789 discloses a method in which a conductive spacer is disposed between an electrode plate and an electrode sheet to provide a descending flow path for an electrolytic solution. Some have attached a tubular current distribution member that becomes a descending flow path. In these methods, the flow of the liquid inside is improved, but at high current density, vibration occurs near the liquid and gas outlets, and the strength of the electrolytic cell becomes insufficient when trying to increase the cell internal pressure, Inconveniences such as leakage of the electrolyte may occur.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来技
術は、イオン交換膜法塩化アルカリ電解用電解槽として
適するように各種の工夫がなされているが、組み立てが
複雑であったり、加工がしにくかったり、電解使用中に
おける振動や、電解液のリークが生じやすかったり、あ
るいは高価であったり、最近の省力化、高効率化の点か
らいまだ十分満足ゆくものではない。
As described above, in the prior art, various devices have been devised so as to be suitable as an electrolytic cell for an ion exchange membrane method of alkali chloride electrolysis. However, the assembly is complicated or the processing is difficult. However, it is still unsatisfactory from the viewpoint of difficulty, vibration during electrolytic use, leakage of electrolyte solution, or high cost, and recent labor saving and high efficiency.

【0006】かくして、本発明の目的は、加工が簡単で
安価に製作できる複極式フィルタープレス型電解槽を提
供することにある。また本発明の別の目的は、電解液の
リークがないだけでなく、電解時の電解槽内部圧力が加
圧状態でも減圧状態でも電解槽内部の電解液の流動が十
分確保できるとともに、高電流密度、高濃度アルカリに
おいても、振動がなく安定した電解ができる電解槽を提
供することにある。
Accordingly, an object of the present invention is to provide a bipolar filter press type electrolytic cell which is easy to process and can be manufactured at low cost. Another object of the present invention is to not only prevent the electrolyte from leaking, but also to ensure a sufficient flow of the electrolyte inside the electrolytic cell even when the internal pressure of the electrolytic cell during pressurization is in a pressurized state or a depressurized state. An object of the present invention is to provide an electrolytic cell capable of performing stable electrolysis without vibration even in a high density and high concentration alkali.

【0007】[0007]

【課題を解決するための手段】本発明は、以下の通りで
ある。 1.陽極室と陰極室を背中合わせに配置して構成せしめ
た複極式電解槽ユニットを陽イオン交換膜を介して多数
配列せしめてなるフィルタープレス型電解槽において、
(a)陽極室上部の非通電部分および陰極室上部の非通
電部分の各に気液分離室を設け、(b)電解液及びガス
の排出ノズルが該気液分離室に接続されているフィルタ
ープレス型電解槽。 2.陽極室と陰極室を背中合わせに配置して構成せしめ
た複極式電解槽ユニットを陽イオン交換膜を介して多数
配列せしめてなるフィルタープレス型電解槽において、
(a)陽極室上部の非通電部分および陰極室上部の非通
電部分の各に、気液分離室を陽極室または陰極室と一体
化して設け、該気液分離室の断面積が15cm2 以上
で、(b)電解液及びガスの共同排出ノズルが該気液分
離室に接続されており、該ノズルの方向が水平より下向
きで、かつ該ノズルの径が15mm以上であるフィルタ
ープレス型電解槽。 3.(c)陽極室および/または陰極室の側壁部と電極
との間には、電解液の内部循環流路となる筒状のダクト
を少なくとも1個有する2.記載のフィルタープレス型
電解槽。
SUMMARY OF THE INVENTION The present invention is as follows. 1. In a filter press type electrolytic cell, a large number of bipolar electrolytic cell units configured by arranging the anode chamber and the cathode chamber back to back are arranged via a cation exchange membrane.
(A) A gas-liquid separation chamber is provided in each of a non-current-carrying portion above the anode chamber and a non-current-carrying portion above the cathode chamber, and (b) a filter in which a discharge nozzle for electrolyte and gas is connected to the gas-liquid separation chamber. Press type electrolytic cell. 2. In a filter press type electrolytic cell, a large number of bipolar electrolytic cell units configured by arranging the anode chamber and the cathode chamber back to back are arranged via a cation exchange membrane.
(A) A gas-liquid separation chamber is provided integrally with an anode chamber or a cathode chamber in each of a non-current-carrying portion above the anode chamber and a non-current-carrying portion above the cathode chamber, and the cross-sectional area of the gas-liquid separation chamber is 15 cm 2 or more. And (b) a filter press type electrolytic cell in which a joint discharge nozzle for the electrolyte and gas is connected to the gas-liquid separation chamber, the direction of the nozzle is downward from the horizontal, and the diameter of the nozzle is 15 mm or more. . 3. (C) Between the electrode and the side wall of the anode chamber and / or the cathode chamber, at least one cylindrical duct serving as an internal circulation channel for the electrolyte is provided. The filter press type electrolytic cell according to the above.

【0008】本発明の複極式フィルタープレス型電解槽
によって電解できるアルカリ金属塩化物としては、例え
ば食塩、塩化カリウム、塩化リチウム等があるが、工業
上最も重要なものは食塩である。以下、本発明を食塩を
例として、図面を参照にしつつ詳細に説明するが本発明
は、これらに限定されるものではない。図1及び図2は
本発明の電解槽のユニット(単位セル)の正面図とA−
A’線における断面図であり、図3は鍋状体の構成図、
図4は本発明の複極式電解槽の組み立て図である。図中
番号はそれぞれに対応しており、同一番号のものは同一
物を示す。
The alkali metal chloride which can be electrolyzed by the bipolar filter press type electrolytic cell of the present invention includes, for example, sodium chloride, potassium chloride, lithium chloride and the like, and the most industrially important one is sodium chloride. Hereinafter, the present invention will be described in detail with reference to the drawings using salt as an example, but the present invention is not limited to these. 1 and 2 are a front view of a unit (unit cell) of the electrolytic cell of the present invention and A-
FIG. 3 is a cross-sectional view taken along the line A ′, FIG.
FIG. 4 is an assembly view of the bipolar electrolytic cell of the present invention. The numbers in the figure correspond to each other, and the same numbers indicate the same things.

【0009】電解槽は、図1及び図2に示すように、外
縁部を構成している棒状フレーム1、陽極室および陰極
室を構成する鍋状体2、気液分離室を形成するL型の仕
切り板6、導電リブ3、電極4からなる。鍋状体2には
導電リブ3と仕切り板6が溶接されており、導電リブ3
には電極4が溶接されている。鍋状体2は図3に示すご
とく、鉤型フランジ部7、周壁部8、側壁部9、より構
成される。周壁部8及び側壁部9で構成される空間は、
陽極室または陰極室となる。背中合わせに組合せられた
鉤型フランジ部7と周壁部8で構成される空間に棒状フ
レーム1が挿入される。周壁部8の長さは陽極室、陰極
室の室厚みに相当する。側壁部9の高さは通電部分と陽
極側気液分離室の合計高さ、または通電部分と陰極側気
液分離室の合計高さとなる。側壁部横幅は、陽極室、陰
極室の横幅に相当する。
As shown in FIGS. 1 and 2, the electrolytic cell has a rod-shaped frame 1 constituting an outer edge portion, a pot-shaped body 2 constituting an anode chamber and a cathode chamber, and an L-shaped member forming a gas-liquid separation chamber. , A conductive rib 3 and an electrode 4. The conductive rib 3 and the partition plate 6 are welded to the pot 2, and the conductive rib 3
The electrode 4 is welded. As shown in FIG. 3, the pot-like body 2 includes a hook-shaped flange portion 7, a peripheral wall portion 8, and a side wall portion 9. The space formed by the peripheral wall portion 8 and the side wall portion 9 is:
It becomes an anode room or a cathode room. The bar-shaped frame 1 is inserted into a space formed by the hook-shaped flange portion 7 and the peripheral wall portion 8 which are combined back to back. The length of the peripheral wall portion 8 corresponds to the chamber thickness of the anode chamber and the cathode chamber. The height of the side wall 9 is the total height of the energized part and the anode-side gas-liquid separation chamber, or the total height of the energized part and the cathode-side gas-liquid separation chamber. The side wall width corresponds to the width of the anode chamber and the cathode chamber.

【0010】図2に示すように陽極室用鍋状体と陰極室
用鍋状体は、背中合わせに配置されている。これら2つ
の鍋状体は、例えば溶接により一体化されていてもよ
く、又一体化されていなくてもよいが、溶接により一体
化した方が電気抵抗が小さいので好ましい。一体化する
溶接方法は、直接超音波溶接法で溶接してもよいし、チ
タンと鉄の爆発圧着板16をはさんで、スポット溶接し
てもよい。
As shown in FIG. 2, the pot for the anode compartment and the pot for the cathode compartment are arranged back to back. These two pots may or may not be integrated by, for example, welding, but are preferably integrated by welding because the electrical resistance is small. As an integrated welding method, welding may be performed directly by ultrasonic welding, or spot welding may be performed with an explosive pressure bonding plate 16 of titanium and iron interposed therebetween.

【0011】鍋状体2および導電リブ3を製作するため
の材料は、電解条件下で耐蝕性があればよく、例えば陽
極用鍋状体にはチタン、およびチタン合金、また、陰極
室鍋状体には鉄、ニッケル、ステンレス等が使用でき
る。鍋状体2の厚みは、折り曲げ加工ができ、セル内圧
に耐え、かつ導電リブ3を溶接しうる厚みであればよく
1〜3mm程度が好ましい。導電リブ3は、鍋状体2に
溶接されており、電解液および電解生成物の通路となる
液ガス流通用孔5が設けられている。導電リブの厚み
は、鍋状体2の周壁部8の長さ、シール用ガスケット2
0、21の厚み、電極4の厚み等を考慮して膜−電極間
隔がゼロまたはゼロに近くになるように調整される。鍋
状体2および導電リブ3を製作するための材料は、電解
条件下で耐蝕性があればよく、例えば陽極室用鍋状体に
はチタンおよびチタン合金が使用できる。
The material for forming the pot 2 and the conductive ribs 3 only needs to have corrosion resistance under electrolytic conditions. For example, the anode pot has a titanium and titanium alloy, and a cathode chamber pot. Iron, nickel, stainless steel, etc. can be used for the body. The thickness of the pot 2 may be any thickness as long as it can be bent, can withstand the internal pressure of the cell, and can weld the conductive ribs 3 to about 1 to 3 mm. The conductive ribs 3 are welded to the pot-like body 2, and are provided with liquid gas flow holes 5 that serve as passages for the electrolytic solution and the electrolytic product. The thickness of the conductive rib is determined by the length of the peripheral wall portion 8 of the pot-like body 2, the sealing gasket 2
In consideration of the thicknesses of 0 and 21 and the thickness of the electrode 4, the distance between the membrane and the electrode is adjusted to be zero or close to zero. The material for manufacturing the pot 2 and the conductive ribs 3 only needs to have corrosion resistance under electrolytic conditions. For example, titanium and a titanium alloy can be used for the pot for the anode chamber.

【0012】棒状フレーム1の断面形状は鉤型フランジ
部7、周壁部8で構成される空間形状と同一である。ま
た、棒状フレーム1の周囲はゴムライニング、エポキシ
系樹脂等で保護されていることが電気絶縁上あるいは防
蝕上好ましい。棒状フレーム1の材料は、鉄、ステンレ
ス等の金属の他、ポリエチレン、ポリプロピレン、ポリ
塩化ビニール等のプラスチックも用いることができる
が、金属製であれば電解槽の強度向上の点から好まし
い。また、その断面は中実でも中空でも良いが、中実で
あれば棒状フレームの強度上好ましい。
The cross-sectional shape of the bar-shaped frame 1 is the same as that of the space formed by the hook-shaped flange 7 and the peripheral wall 8. The periphery of the rod-shaped frame 1 is preferably protected by rubber lining, epoxy resin or the like in terms of electrical insulation or corrosion protection. As the material of the rod-shaped frame 1, plastics such as polyethylene, polypropylene, and polyvinyl chloride can be used in addition to metals such as iron and stainless steel. Metals are preferable from the viewpoint of improving the strength of the electrolytic cell. The cross section may be solid or hollow, but a solid shape is preferable in terms of the strength of the rod-shaped frame.

【0013】かくして、本発明の電解槽は陽極室用鍋状
体および陰極室用鍋状体を2つ背中合わせに配置し、そ
れぞれの鉤型フランジ部と周壁部とにより形成される空
間に棒状フレームを挿入することによって本体を構成す
るので、組み立てがきわめて簡単である。また、それぞ
れの鍋状体の製作は1枚の板から製作できるために、溶
接部が少なく加工歪みおよび電解液のリークを防止で
き、電解槽内部の圧力が高くても十分耐えられる強度を
持ったきわめて安価に製作できる電解槽である。
Thus, in the electrolytic cell of the present invention, two pots for the anode chamber and two pots for the cathode chamber are arranged back to back, and a rod-shaped frame is formed in the space formed by the hook-shaped flange and the peripheral wall. Since the main body is formed by inserting the main body, the assembly is extremely simple. In addition, since each pot-like body can be manufactured from a single plate, the number of welds is small, processing distortion and electrolyte leakage can be prevented, and the pot has sufficient strength to withstand high pressure inside the electrolytic cell. It is an electrolytic cell that can be manufactured at very low cost.

【0014】本発明の陽極室上部及び陰極室上部の気液
分離室14は、通電部で発生した気泡と液をガスと液に
分離し、この両方をスムーズに抜き出す目的で通電部上
部の非通電部に設けたものである。気液分離室14はボ
ックス構造のものであれば何でも良いが最も作りやすく
安価な方法を選べば良い。気液分離室の断面積(周壁部
8、側壁部9、及び仕切り板6で囲まれる面)は5cm
2 以上で、L型に折り曲げた金属板の片側の面に気−液
を通電部分から気液分離室へ導くために多数の開口部を
設けた仕切り板によって通電部と仕切られていることが
好ましい。
The gas-liquid separation chamber 14 in the upper part of the anode chamber and the upper part of the cathode chamber of the present invention separates gas bubbles and liquid generated in the current-carrying part into gas and liquid, and removes both gas and liquid smoothly. It is provided in the current-carrying part. The gas-liquid separation chamber 14 may be of any structure as long as it has a box structure. The cross-sectional area of the gas-liquid separation chamber (the surface surrounded by the peripheral wall portion 8, the side wall portion 9, and the partition plate 6) is 5 cm.
2 or more, a metal plate bent into an L-shape may be separated from the current-carrying part by a partition plate provided with a large number of openings on one surface of the metal plate to guide gas-liquid from the current-carrying part to the gas-liquid separation chamber. preferable.

【0015】気液分離室内は発生ガス及び液が排出ノズ
ルに向かって流れており、気液分離室の両端ではその圧
力損失によって圧力差が生じ、液面の高さが変わってい
る。そのため気液分離室の断面積があまりにも小さい
と、両端の液面の高さに大きな違いが生じ、排出ノズル
13側の反対側の液面は通電部まで下がってしまい、通
電部にガスゾーンが形成されイオン交換膜に悪影響を与
える場合がある。
The generated gas and liquid flow toward the discharge nozzle in the gas-liquid separation chamber, and a pressure difference is generated at both ends of the gas-liquid separation chamber due to the pressure loss, so that the liquid level changes. Therefore, if the cross-sectional area of the gas-liquid separation chamber is too small, there will be a large difference in the height of the liquid surface at both ends, and the liquid surface on the side opposite to the discharge nozzle 13 will drop to the current-carrying part, and the gas zone will May be formed to adversely affect the ion exchange membrane.

【0016】本発明者は、気液分離室の断面積と気液分
離室両端の液面差について詳しく検討した結果、通常予
想される圧力損失以上に気液分離室両端での液面の高さ
に差があること、及びガスの流れのため気泡や液が波立
ちガス流路の閉塞、排出ノズルの閉塞が生じ、振動が発
生しやすくなることを見いだした。セル内の振動が激し
いと、イオン交換膜が電極との間でこすれ破損する場合
がある。またこれらの傾向は、電解電流が大きくなれば
なるほどガス発生量も多くなるため顕著になってくる。
したがって、気液分離室断面積は設計電流密度や通電面
積によっても違うが5cm2 以上とればよく、好ましく
は10cm2 、さらに高電流密度で大きな通電面積の電
解槽であれば15cm2 以上であることが好ましい。し
かし、断面積が大きすぎると電解槽が大きくなり製作コ
ストが高くなったり電解槽の重量が重くなる等の不都合
が生じる場合があるので、この点も勘案して決める必要
がある。
The inventor of the present invention has studied in detail the cross-sectional area of the gas-liquid separation chamber and the liquid level difference between both ends of the gas-liquid separation chamber. As a result, the height of the liquid surface at both ends of the gas-liquid separation chamber exceeds the pressure loss normally expected. It has been found that there is a difference between them, and that the flow of gas causes bubbles and liquids to undulate and block the gas flow path, block the discharge nozzle, and easily cause vibration. If the vibration inside the cell is severe, the ion exchange membrane may be rubbed and damaged between the electrodes. These tendencies become more remarkable because the larger the electrolysis current, the larger the amount of gas generated.
Therefore, the cross-sectional area of the gas-liquid separation chamber depends on the design current density and the energizing area, but may be 5 cm 2 or more, preferably 10 cm 2 , and more preferably 15 cm 2 or more for an electrolytic cell having a high current density and a large energizing area. Is preferred. However, if the cross-sectional area is too large, there may be inconveniences such as an increase in the production cost of the electrolytic cell and an increase in the weight of the electrolytic cell. Therefore, it is necessary to determine the electrolytic cell in consideration of this point.

【0017】通電部と気液分離室との間の仕切り板6に
は液とガスが圧力損失なく通過できるような開口部15
を有する。開口部としては、例えば丸型、楕円型、角型
の穴やスリット状等いずれでも良い。開口部の開口率と
しては、電流密度や通電面積によっても異なるが、5%
以上が好ましい。この開口率が小さすぎると気液分離室
へ気液が抜ける際、圧力損失を生じてガスが通電部上部
に滞留し、ガスゾーンを形成してイオン交換膜へ悪影響
を与える場合がある。図3の場合はL型の仕切り板6と
鍋状体から形成され仕切り板6の非通電部との境界部分
にはガスと液の通路となる直径10mmの液ガス流出孔
15を横に一定間隔で開けたものを用いている。
An opening 15 through which liquid and gas can pass without pressure loss is provided in a partition plate 6 between the energizing section and the gas-liquid separation chamber.
Having. The opening may be, for example, any of a round hole, an elliptical hole, a square hole, and a slit. Although the opening ratio of the opening varies depending on the current density and the area of current flow, 5%
The above is preferred. If the opening ratio is too small, when gas and liquid escape to the gas-liquid separation chamber, a pressure loss occurs, and the gas stays in the upper part of the current-carrying part, forming a gas zone and adversely affecting the ion exchange membrane. In the case of FIG. 3, a liquid gas outlet hole 15 having a diameter of 10 mm, which is formed of an L-shaped partition plate 6 and a pot-like body and is a gas-liquid passage, is provided at a boundary portion between the non-energized portion of the partition plate 6. The ones opened at intervals are used.

【0018】ガスや液の排出は排出ノズル13を通して
行なうが、この際、気液が混じり合って振動が発生する
ことがよくあり、この防止を図ることが必要である。最
も良い方法は、排出ノズル内の壁面を液が流れ、ガスが
中央部分を流れるような環状流で、圧力損失なく排出さ
せ気液が混相で流れないようにすることである。このた
めには、気液分離室から液とガスを外部へ取り出すため
のノズルは、できるだけ圧力損失が少なく気液が分離し
た状態で抜き出せることが好ましい。即ち、ノズルの向
きが水平方向より下向きであると、気液が混相となるこ
となく振動を防止しうるので好ましい。又、ノズル径が
小さすぎると、ノズルの向きがたとえ水平方向より下向
きであっても気液が混相になりやすく脈流を生じてやは
り振動が発生する。この傾向も、電流が増せば増すほど
顕著になる。このようなことを防止し、高電流密度でも
安定した電解をするためには水平より下向きで、好まし
くは15mm以上で電解槽ユニットの厚みより小さい範
囲で十分に大きな径を有している排出ノズルが好まし
い。
The gas and liquid are discharged through the discharge nozzle 13. At this time, the gas and liquid are often mixed to generate vibration, and it is necessary to prevent this. The best method is to discharge the liquid without pressure loss in an annular flow in which the liquid flows on the wall surface inside the discharge nozzle and the gas flows in the central portion so that the gas-liquid does not flow in a mixed phase. For this purpose, it is preferable that the nozzle for taking out the liquid and the gas from the gas-liquid separation chamber to the outside can be drawn out with the pressure loss as small as possible and the gas-liquid separation. That is, it is preferable that the direction of the nozzle is lower than the horizontal direction because vibration can be prevented without causing gas-liquid mixture. On the other hand, if the nozzle diameter is too small, even if the direction of the nozzle is lower than the horizontal direction, gas-liquid is likely to be in a mixed phase, causing a pulsating flow, and vibration is also generated. This tendency becomes more remarkable as the current increases. In order to prevent such a phenomenon and perform stable electrolysis even at a high current density, the discharge nozzle has a sufficiently large diameter in a range below horizontal, preferably 15 mm or more and smaller than the thickness of the electrolytic cell unit. Is preferred.

【0019】電解液の内部の流動は、セル内部の電解液
の濃度分布に大きな影響を及ぼす。一般的に、電解槽に
は電解液が下から供給され上部の一方の端から抜き出さ
れるが、電解中に電解液の濃度は徐々に低下してゆくた
め、セル内部での電解液の水平方向及び垂直方向での流
動による攪拌が不十分であると、電解液の濃度差が生じ
やすい。イオン交換膜の性能は電解液の濃度によっても
大きな影響をうけるため、このような場合には、期待ど
おりの性能が発揮できなくなる場合がある。
The flow inside the electrolyte greatly affects the concentration distribution of the electrolyte inside the cell. In general, an electrolytic solution is supplied from below to an electrolytic cell and is extracted from one end of an upper portion. However, during the electrolysis, the concentration of the electrolytic solution gradually decreases, so that the electrolytic solution in the cell is horizontally discharged. If the stirring by the flow in the vertical direction and the vertical direction is insufficient, a difference in the concentration of the electrolyte is likely to occur. Since the performance of the ion exchange membrane is greatly affected by the concentration of the electrolytic solution, in such a case, the performance as expected may not be exhibited.

【0020】この点の改善を図るには、一つの方法とし
て、電解液の循環用タンクを外部に設け、強制的に大量
の電解液を電解槽との間で循環しつつ電解する方法も有
効である。しかし、この方法では大量の電解液を循環す
るためのポンプ、タンク等の付帯設備が必要となり、設
備面で不利である。また塩化アルカリの電解を行なう際
に発生した塩素中の酸素の増加防止、あるいはクロレー
トの生成防止を図るため、塩酸を供給塩水中に添加して
電解槽にフィードする場合がある。この場合電解槽への
供給塩水流入口付近の塩水pHが低くなりすぎるとイオ
ン交換膜の電圧が高くなる等の不都合を生ずることがあ
る。
In order to improve this point, as one method, it is effective to provide an electrolytic solution circulation tank outside and forcibly circulate a large amount of the electrolytic solution with the electrolytic cell to perform electrolysis. It is. However, this method requires additional equipment such as a pump and a tank for circulating a large amount of electrolyte, which is disadvantageous in terms of equipment. Further, in order to prevent an increase in oxygen in chlorine generated during the electrolysis of alkali chloride or to prevent generation of chlorate, hydrochloric acid may be added to the supplied brine and fed to the electrolytic cell. In this case, if the pH of the salt water near the inlet of the salt water supplied to the electrolytic cell is too low, there may be inconveniences such as an increase in the voltage of the ion exchange membrane.

【0021】本発明では、電解槽に電解電流に応じた必
要最低限の電解液を供給しつつ、セル内部に設置した電
解液の循環流路となる筒状内部循環ダクト17により、
電解で発生するガスの上昇によって生ずる流動を上下左
右方向の循環に利用し、セル内部の攪拌に利用する方法
を用いている。具体的には液の流入口としての筒状内部
循環ダクトの上端開口部27を通電部上端より下方に設
け、セル下部に設けた液の流出口としての下端開口部2
8からセル上部の液を流出させることにより循環する方
法である。本発明者は、この循環をより効率的に行なう
ために種々検討した結果、上端開口部がセル通電部の高
さの95%〜40%、好ましくは80%〜50%の位置
にあると十分な循環が得られることを見いだした。この
理由は、セル内のガスと液の比が通電部上部程大きくな
るため、上端開口部が高すぎると気泡により筒状内部循
環ダクト上端からの液の吸い込みが不十分となること、
また低すぎると気泡の上昇による内部流動の推進力が不
足し、十分な循環が得られないためと考えられる。
In the present invention, while supplying the minimum required amount of electrolyte corresponding to the electrolysis current to the electrolytic cell, the cylindrical internal circulation duct 17 serving as a circulation flow path for the electrolyte provided inside the cell is used.
A method is used in which the flow generated by the rise of gas generated in the electrolysis is used for circulation in up, down, left and right directions, and used for stirring inside the cell. Specifically, an upper end opening 27 of the cylindrical internal circulation duct as a liquid inlet is provided below the upper end of the current-carrying part, and a lower end opening 2 as a liquid outlet provided at the lower part of the cell.
This is a method of circulating by flowing out the liquid in the upper part of the cell from 8. The present inventor has conducted various investigations for more efficiently performing this circulation. As a result, it is sufficient that the upper end opening is located at 95% to 40%, preferably 80% to 50% of the height of the cell energized portion. That a good circulation can be obtained. The reason for this is that the ratio of gas to liquid in the cell increases toward the upper part of the current-carrying part, so that if the upper end opening is too high, suction of liquid from the upper end of the cylindrical internal circulation duct becomes insufficient due to bubbles,
On the other hand, if it is too low, it is considered that the driving force of the internal flow is insufficient due to the rise of bubbles, and sufficient circulation cannot be obtained.

【0022】塩化アルカリの電解を行なう際に、発生し
た塩素中の酸素の増加防止あるいはクロレートの生成防
止を図るため、塩酸を供給塩水中に添加してセルにフィ
ードする場合、セルの供給塩水流入口付近の塩水pHが
低くなりすぎて、イオン交換膜の電圧が高くなる等の不
都合を防止するためには、セル内部の供給電解液流入口
に供給電解液とセル内部循環液を混合するためのボック
スを設け、筒状内部循環ダクトの下端開口部を接続する
ことにより内部循環している電解液と混合し、塩酸の濃
度を薄める方法が好ましい。流入電解液と内部循環液と
の混合を行なうことは、濃度分布を均一にするためにも
有効な手段である。
When hydrochloric acid is added to the feed brine and fed to the cell in order to prevent the increase of oxygen in the generated chlorine or to prevent the formation of chlorate during the electrolysis of the alkali chloride, the flow of the feed brine of the cell is reduced. In order to prevent inconveniences such as an increase in the voltage of the ion exchange membrane due to the pH of the salt water near the inlet being too low, the supply electrolyte and the circulating liquid inside the cell are mixed at the supply electrolyte inlet in the cell. A method is preferred in which the box is provided and the lower end opening of the cylindrical internal circulation duct is connected to mix the electrolyte with the electrolyte circulating therein to reduce the concentration of hydrochloric acid. Mixing the flowing electrolyte and the internal circulating liquid is an effective means for making the concentration distribution uniform.

【0023】電解液の内部循環流路となる筒状内部循環
ダクト17は、種々の形式が考えられるが、例えば図1
の如く排出ノズル13に近い所に電解液の流入する開口
部を持ち、液の流出口が、混合ボックス18につなぎ込
まれて供給電解液と混合しセル内へ流れ出る形式のもの
が好ましい。筒状内部循環ダクトの材質は陽極室であれ
ば、樹脂、チタン等の中から選択できるが加工性や耐久
性の点からチタンが好ましい。又、陰極室にも取り付け
る場合であれば、樹脂、ステンレススチール、ニッケル
等耐蝕性のあるものの中から選択できる。
The cylindrical internal circulation duct 17 serving as the internal circulation flow path for the electrolyte can be of various types.
It is preferable that an opening for inflow of the electrolytic solution is provided near the discharge nozzle 13 as described above, and an outlet for the liquid is connected to the mixing box 18 to mix with the supplied electrolytic solution and flow out into the cell. As long as the material of the cylindrical internal circulation duct is an anode chamber, it can be selected from resins, titanium and the like, but titanium is preferable from the viewpoint of workability and durability. In addition, if it is to be installed in the cathode chamber, it can be selected from those having corrosion resistance such as resin, stainless steel, and nickel.

【0024】筒状内部循環ダクト17の形状は丸型、角
型等いずれでも液の流動のしやすいものであれば良い。
又、筒状内部循環ダクトの断面積は大きいもの程内部循
環量が多くなるため有利であるが、セルの厚みや構造に
よって制限を受け、筒状内部循環ダクト1本当たり10
cm2 〜50cm2 あれば十分である。筒状内部循環ダ
クトの本数も多ければ多い程内部循環量も多くなるが、
多すぎれば製作コストの点で不利となるので、セル内の
電解液の濃度バラツキが目標とする範囲以内の最小本数
を選択すれば良い。
The shape of the cylindrical internal circulation duct 17 may be any shape such as a round shape or a square shape as long as the liquid can easily flow.
Also, the larger the cross-sectional area of the cylindrical internal circulation duct is, the larger the internal circulation amount is. This is advantageous, but it is limited by the thickness and structure of the cell.
If cm 2 ~50cm 2 is sufficient. The greater the number of cylindrical internal circulation ducts, the greater the amount of internal circulation,
If it is too large, it is disadvantageous in terms of manufacturing cost. Therefore, it is sufficient to select the minimum number of cells within a target range in which the concentration variation of the electrolyte in the cell is within a target range.

【0025】筒状内部循環ダクト17は陽極室、陰極室
いずれに用いても良いが、陽極側が陰極側に較べガスと
液との比が大きく気泡により液の内部流動が阻害されや
すいので陽極側に取り付けると効果的である。電極4に
は、エキスパンデッドメタル、有孔平板、棒状、網状等
の多孔性電極が使用できる。電極材料としては、陽極で
あれば通常の塩化アルカリ金属水溶液の電解に使用され
るものでよい。すなわち、チタン、ジルコニウム、タン
タル、ニオブおよびそれらの合金を基材とし、その表面
に酸化ルテニウム等の白金族酸化物を主体とした陽極活
性物質を被覆した電極が使用される。陰極であれば、
鉄、ニッケル、およびそれらの合金をそのまま、また
は、その表面にラネーニッケル、ロダンニッケル、酸化
ニッケル等の陰極活物質被覆して用いられる。
The cylindrical internal circulation duct 17 may be used in either the anode chamber or the cathode chamber. However, the ratio of gas to liquid on the anode side is larger than that on the cathode side, and the internal flow of the liquid is easily inhibited by bubbles. It is effective to attach it to As the electrode 4, a porous electrode such as an expanded metal, a perforated flat plate, a bar, a mesh, or the like can be used. As the electrode material, an anode may be used for usual electrolysis of an aqueous alkali metal chloride solution. That is, an electrode is used which has a base material of titanium, zirconium, tantalum, niobium, or an alloy thereof and whose surface is coated with an anode active material mainly composed of a platinum group oxide such as ruthenium oxide. If it is a cathode,
Iron, nickel, and alloys thereof are used as they are, or the surfaces thereof are coated with a cathode active material such as Raney nickel, rhodan nickel, nickel oxide or the like.

【0026】本発明に用いる陽イオン交換膜としては、
当業者にはことさら説明を要しない通常公知のものが用
いられる。電解条件の中で重要なものの一つに電解中の
セル内の圧力がある。本発明の電解槽は、鉤型フランジ
部と周壁部とにより形成される空間に棒状フレームを挿
入することによって構成されているので十分な強度を有
しており、大気圧以下から2kg/cm2 Gまでの広い
範囲での電解が可能である。加圧下で電解すると電解電
圧を低くできるので有利なことは良く知られているが、
本発明においてはこの他に電流密度を高くできる利点も
得られる。
The cation exchange membrane used in the present invention includes:
Normally known ones that do not require any explanation to those skilled in the art are used. One of the important electrolysis conditions is the pressure in the cell during electrolysis. The electrolytic cell of the present invention has sufficient strength because it is configured by inserting the rod-shaped frame into the space formed by the hook-shaped flange portion and the peripheral wall portion, and has a sufficient strength from atmospheric pressure to 2 kg / cm 2. Electrolysis in a wide range up to G is possible. It is well known that electrolysis under pressure is advantageous because electrolysis voltage can be reduced,
The present invention also has an advantage that the current density can be increased.

【0027】一般に加圧下では発生ガス体積が減少しセ
ル内上部のガス液比が小さくなるため、大気圧以下での
電解より電解液の流動が起こりやすい。さらに本発明の
如く内部循環を行なうための筒状ダクトを設置している
電解槽では、電流密度を上げてもセル内部の電解液の濃
度分布が悪化することがない。又、本発明では十分な大
きさの断面積の気液分離室を有しており、発生ガス体積
が減少することは気液分離室の両端での圧力損失も少な
くなり、同時に液とガスを抜き出すノズル部分での振動
も減少する。従って、40A/dm2 以上の高電流密度
でも安定した電ができることになる。
In general, under pressure, the volume of generated gas is reduced and the gas-liquid ratio in the upper part of the cell is reduced, so that the flow of the electrolyte is more likely to occur than the electrolysis under the atmospheric pressure. Furthermore, in the electrolytic cell provided with a cylindrical duct for performing internal circulation as in the present invention, even if the current density is increased, the concentration distribution of the electrolytic solution inside the cell does not deteriorate. Further, in the present invention, the gas-liquid separation chamber having a sufficiently large cross-sectional area is provided, and the reduction in the volume of generated gas reduces the pressure loss at both ends of the gas-liquid separation chamber. Vibration at the extraction nozzle portion is also reduced. Therefore, stable electricity can be generated even at a high current density of 40 A / dm 2 or more.

【0028】近年、イオン交換膜の性能向上が著しくN
aOH濃度の高濃度化が進んでいるが、本発明の陰極室
用鍋状体の材質は、ステンレス、高ニッケル鋼、ニッケ
ルなどいずれでもよく、電解するNaOH濃度に応じた
材質を選定できるだけでなく、KOH、LiOHなど電
解液にも対応した材質が選定できる。従って本発明の電
解槽は、50%程度の高濃度NaOHのようなきびしい
電解条件でも高電流密度で安定した電解ができる。
In recent years, the performance of ion exchange membranes has been significantly improved.
Although the concentration of aOH has been increasing, the material of the pot for the cathode chamber of the present invention may be any of stainless steel, high nickel steel, nickel, etc., and it is not only possible to select a material according to the concentration of NaOH to be electrolyzed. , KOH, LiOH, etc., can be selected for the material corresponding to the electrolyte. Therefore, the electrolytic cell of the present invention can perform stable electrolysis at a high current density even under severe electrolysis conditions such as high concentration NaOH of about 50%.

【0029】本発明の電解槽は以上の通り、1枚の板で
製作された陽極室鍋状体及び陰極室鍋状体と棒状フレー
ムとで構成されているため、セル内圧が加圧状態でも十
分耐えられる強度を有しており、加圧状態から減圧状態
迄の広い範囲で電解でき、安価で製作しやすい利点を有
するばかりでなく、通電部上部の非通電部に十分な大き
さの断面積の気液分離室を有しているので、40A/d
2 以上の高電流密度でも通電部にガスゾーンを形成す
ることもなく気液分離室での気泡や液の波立ちによる振
動も発生しない。さらに、水平より下向きに大きな断面
積を有する排出ノズルを有しているので排出の際に気液
混相流による圧力損失の変化による振動を発生すること
もない。又、セル内の濃度分布についても筒状内部循環
ダクトを設けているので均一で、供給塩水に塩酸も添加
できると言った多くの効果を持つ優れた電解槽である。
As described above, the electrolytic cell of the present invention is composed of the anode chamber pot-like body, the cathode chamber pot-like body, and the rod-shaped frame made of one plate, so that the cell internal pressure is increased. It has sufficient strength to be able to electrolyze in a wide range from pressurized to depressurized, has the advantage of being inexpensive and easy to manufacture, and has a sufficient size for the non-conductive part above the conductive part. 40 A / d
Even at a high current density of at least m 2 , no gas zone is formed in the current-carrying part, and no vibrations due to bubbles or waving of liquid in the gas-liquid separation chamber occur. Further, since the discharge nozzle has a larger cross-sectional area in a downward direction than horizontal, vibration due to a change in pressure loss due to a gas-liquid multiphase flow does not occur at the time of discharge. In addition, the concentration distribution in the cell is uniform because the cylindrical internal circulation duct is provided, and it is an excellent electrolytic cell having many effects such that hydrochloric acid can be added to the supplied salt water.

【0030】次に本発明の実施例を示すが、本発明はこ
の実施例のみに限定されるものではない。
Next, examples of the present invention will be described, but the present invention is not limited to only these examples.

【0031】[0031]

【発明の実施の形態】5ケの単位セルおよび2ケの電流
リード板24を付けたセルを用いて、図4に示した複極
式電解槽を組み立てた。電解セル25は、鉤型フランジ
と気液分離室を有しており横幅が2400mm、高さが
1280mmのサイズで、図1、図2と同一構造に製作
されている。鍋状体の中央部には、電解液および電解生
成物の通路用として丸型の孔を設けた補強用リブ11を
有しており、陽極鍋状体、陽極側気液分離室、丸型の孔
5を設けた導電用リブ等の材料はチタンで製作され、陰
極室鍋状体、陰極側気液分離室、丸型の孔5を設けた導
電用リブ等はニッケルで製作した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The bipolar electrolytic cell shown in FIG. 4 was assembled using five unit cells and a cell provided with two current lead plates 24. The electrolytic cell 25 has a hook-shaped flange and a gas-liquid separation chamber, has a width of 2400 mm, and a height of 1280 mm, and is manufactured to have the same structure as FIGS. The central portion of the pot has a reinforcing rib 11 provided with a round hole for passage of an electrolyte and an electrolytic product. The anode pot, an anode-side gas-liquid separation chamber, The material such as the conductive rib provided with the hole 5 was made of titanium, and the cathode chamber pot, the cathode-side gas-liquid separation chamber, and the conductive rib provided with the round hole 5 were made of nickel.

【0032】気液分離室断面積は、陽極側、陰極側どち
らも15cm2 で、陽極側気液分離室はチタン板をL型
に折り曲げて仕切り板とし、陰極側気液分離室はニッケ
ル板をL型に折り曲げて仕切り板とし、それぞれの仕切
り板の通電部と非通電部の境に当たる部分には直径10
mmの液ガス流出孔15を多数設けている。また、それ
ぞれの気液分離室の一方の端には、25mmの内径を有
する排出ノズルを取り付けた。
The cross-sectional area of the gas-liquid separation chamber is 15 cm 2 on both the anode side and the cathode side. The anode-side gas-liquid separation chamber is formed by bending a titanium plate into an L shape to form a partition plate, and the cathode-side gas-liquid separation chamber is formed of a nickel plate. Are bent into L-shapes to form partition plates, and a portion of each partition plate at a boundary between an energized portion and a non-energized portion has a diameter of 10%.
A number of liquid gas outlet holes 15 of mm are provided. Further, a discharge nozzle having an inner diameter of 25 mm was attached to one end of each gas-liquid separation chamber.

【0033】電解液の内部循環流路となる筒状内部循環
ダクト17は、20cm2 の断面積を有しており、陽極
室のみに設置している。筒状内部循環ダクト17はチタ
ンで製作され、図1に示すように、その上端開口部はセ
ル通電部高さの約70%の位置に設け、下端開口部は電
解液流入口に設けたチタン製混合ボックス18につなぎ
込まれている。
The cylindrical internal circulation duct 17 serving as an internal circulation flow path for the electrolyte has a cross-sectional area of 20 cm 2 and is provided only in the anode chamber. The cylindrical internal circulation duct 17 is made of titanium, and as shown in FIG. 1, the upper end opening is provided at a position of about 70% of the height of the cell energizing part, and the lower end opening is provided at the electrolyte inlet. It is connected to the mixing box 18.

【0034】陽極室鍋状体と陰極室鍋状体との間はチタ
ン−鉄の爆発圧着板16をそれぞれの鍋状体とスポット
溶接にて接合している。また棒状フレーム1が鉤型フラ
ンジ部7と周壁部8の間に差し込まれている。陽極は、
エクスパンデッドメッシュ状に加工したチタン板の表面
に、ルテニウム、イリジウム、チタンを成分とする酸化
を物被覆することにより作成した。
Between the anode chamber pot and the cathode chamber pot, a titanium-iron explosion pressure bonding plate 16 is joined to each pot by spot welding. The bar-shaped frame 1 is inserted between the hook-shaped flange 7 and the peripheral wall 8. The anode is
It was prepared by coating the surface of a titanium plate processed into an expanded mesh shape with an oxide containing ruthenium, iridium, and titanium as components.

【0035】陰極は、エクスパンデッドメッシュ状に加
工したニッケル板の表面に、ニッケル酸化物を被覆する
ことにより作成した。この電解セルに、陽イオン交換膜
ACIPLEX(登録商標)F−4100を、陽極室ガ
スケット20、陰極室ガスケット21を用いてはさみ、
図4に示した電解槽を組み立てた。 この電解槽に、出
口濃度が200g/lとなるように300g/lの食塩
水を供給し、陰極室には、出口にカセイソーダ濃度が3
3重量%になるように希薄カセイソーダ水溶液を供給
し、電解温度90℃、電流密度40A/dm2 、セル内
圧 0.02kg/cm2 Gで約1ケ月電解した。電流
効率は96.5%、槽電圧19.5V、出口ノズル付近
での振動は5cm水柱以下、セル内の食塩水の濃度差は
40g/l以下であった。また電解後イオン交換膜を取
り出して観察したが全く異常はみられなかった。
The cathode was prepared by coating the surface of a nickel plate processed into an expanded mesh shape with nickel oxide. A cation exchange membrane ACIPLEX (registered trademark) F-4100 is sandwiched between the electrolytic cell and the anode chamber gasket 20 and the cathode chamber gasket 21,
The electrolytic cell shown in FIG. 4 was assembled. A 300 g / l saline solution was supplied to the electrolytic cell so that the outlet concentration became 200 g / l, and the cathode chamber had a sodium hydroxide concentration of 3 at the outlet.
A diluted aqueous solution of sodium hydroxide was supplied so as to have a concentration of 3% by weight, and electrolysis was performed at an electrolysis temperature of 90 ° C., a current density of 40 A / dm 2 , and a cell internal pressure of 0.02 kg / cm 2 G for about one month. The current efficiency was 96.5%, the cell voltage was 19.5 V, the vibration near the outlet nozzle was 5 cm water column or less, and the concentration difference of the saline solution in the cell was 40 g / l or less. After the electrolysis, the ion exchange membrane was taken out and observed, but no abnormality was found.

【0036】[0036]

【発明の効果】本発明の複極式フィルタープレス型電解
槽は、組み立て解体が簡単で、溶接部が少なく液リーク
がない、加工が簡単で安価である、といった従来からの
特徴をに加え、以下の効果があるので、塩化アルカリの
電解槽として好適である。 a セル内の振動がなく、イオン交換膜が破損すること
がない。
The bipolar filter press type electrolytic cell according to the present invention has the conventional features that it is easy to disassemble, has few welds, no liquid leakage, and is simple and inexpensive to process. Since it has the following effects, it is suitable as an alkali chloride electrolytic cell. a There is no vibration in the cell and the ion exchange membrane is not damaged.

【0037】b セル内の電解液濃度分布が均一であ
る。 c 高電流密度でも安定した電解ができる。 d 減圧状態から加圧状態まで広い範囲での電解ができ
る。
B The electrolyte concentration distribution in the cell is uniform. c Stable electrolysis can be performed even at high current density. d Electrolysis can be performed in a wide range from a reduced pressure state to a pressurized state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解槽を構成するユニットの、陽極室
側正面図。
FIG. 1 is an anode chamber side front view of a unit constituting an electrolytic cell of the present invention.

【図2】図1のA−A’線における断面図。FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG.

【図3】本発明の気液分離室と鉤型フランジ部の詳細
図。
FIG. 3 is a detailed view of a gas-liquid separation chamber and a hook-shaped flange according to the present invention.

【図4】本発明のセルを用いた複極式電解槽の組み立て
図である。
FIG. 4 is an assembly view of a bipolar electrolytic cell using the cell of the present invention.

【符号の説明】[Explanation of symbols]

1 棒状フレーム 2 鍋状体 3 導電リブ 4 電極 5 液ガス流通用孔 6 気液分離室仕切り板 7 鉤型フランジ部 8 周壁部 9 側壁部 11補強用リブ 12電解液供給ノズル 13排出ノズル 14気液分離室 15液ガス流出孔 16爆発圧着板 17筒状内部循環ダクト 18混合ボックス 19陽イオン交換膜 20陽極側ガスケット 21陰極側ガスケット 22陰極室 23陽極室 24リード板 25複極式電解セル 26締結体 27ダクト上端開口部 28ダクト下端開口部 DESCRIPTION OF SYMBOLS 1 Rod-shaped frame 2 Pot-shaped body 3 Conductive rib 4 Electrode 5 Liquid gas circulation hole 6 Gas-liquid separation chamber partition plate 7 Hook-shaped flange part 8 Peripheral wall part 9 Side wall part 11 Reinforcement rib 12 Electrolyte supply nozzle 13 Discharge nozzle 14 Gas Liquid separation chamber 15 Liquid gas outflow hole 16 Explosion pressure bonding plate 17 Cylindrical internal circulation duct 18 Mixing box 19 Cation exchange membrane 20 Anode gasket 21 Cathode gasket 22 Cathode chamber 23 Anode chamber 24 Lead plate 25 Bipolar electrolytic cell 26 Fastening body 27 Duct upper end opening 28 Duct lower end opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極室と陰極室を背中合わせに配置して
構成せしめた複極式電解槽ユニットを陽イオン交換膜を
介して多数配列せしめてなるフィルタープレス型電解槽
において、(a)陽極室上部の非通電部分および陰極室
上部の非通電部分の各に気液分離室を設け、(b)電解
液及びガスの排出ノズルが該気液分離室に接続されてい
るフィルタープレス型電解槽。
1. A filter press type electrolytic cell comprising a multiplicity of bipolar electrolytic cell units each having an anode chamber and a cathode chamber arranged back to back via a cation exchange membrane. (B) A filter press type electrolytic cell in which a gas-liquid separation chamber is provided in each of a non-current-carrying part in the upper part and a non-current-carrying part in the upper part of the cathode chamber;
【請求項2】 陽極室と陰極室を背中合わせに配置して
構成せしめた複極式電解槽ユニットを陽イオン交換膜を
介して多数配列せしめてなるフィルタープレス型電解槽
において、(a)陽極室上部の非通電部分および陰極室
上部の非通電部分の各に、気液分離室を陽極室または陰
極室と一体化して設け、該気液分離室の断面積が15c
2 以上で、(b)電解液及びガスの共同排出ノズルが
該気液分離室に接続されており、該ノズルの方向が水平
より下向きで、かつ該ノズルの径が15mm以上である
フィルタープレス型電解槽。
2. A filter press type electrolytic cell comprising a large number of bipolar electrolytic cell units having an anode chamber and a cathode chamber arranged back to back and arranged via a cation exchange membrane. A gas-liquid separation chamber is provided integrally with the anode chamber or the cathode chamber in each of the upper non-conductive portion and the upper non-conductive portion, and the cross-sectional area of the gas-liquid separation chamber is 15 c
In m 2 or more, (b) Co-discharge nozzle of the electrolyte and gas is connected to gas-liquid separation chamber, a filter press direction of the nozzle is downward from horizontal, and the diameter of the nozzle is 15mm or more Type electrolytic cell.
【請求項3】 (c)陽極室および/または陰極室の側
壁部と電極との間には、電解液の内部循環流路となる筒
状のダクトを少なくとも1個有する請求項2記載のフィ
ルタープレス型電解槽。
3. The filter according to claim 2, wherein (c) at least one cylindrical duct serving as an internal circulation channel for the electrolyte is provided between the electrode and the side wall of the anode chamber and / or the cathode chamber. Press type electrolytic cell.
JP00417798A 1998-01-12 1998-01-12 Bipolar filter press type electrolytic cell Expired - Lifetime JP3229266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00417798A JP3229266B2 (en) 1998-01-12 1998-01-12 Bipolar filter press type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00417798A JP3229266B2 (en) 1998-01-12 1998-01-12 Bipolar filter press type electrolytic cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3052560A Division JP2816029B2 (en) 1991-03-18 1991-03-18 Bipolar filter press type electrolytic cell

Publications (2)

Publication Number Publication Date
JPH10158875A true JPH10158875A (en) 1998-06-16
JP3229266B2 JP3229266B2 (en) 2001-11-19

Family

ID=11577443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00417798A Expired - Lifetime JP3229266B2 (en) 1998-01-12 1998-01-12 Bipolar filter press type electrolytic cell

Country Status (1)

Country Link
JP (1) JP3229266B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175745B2 (en) 2000-09-08 2007-02-13 Asahi Kasei Chemicals Corporation Method of manufacturing electrolyzer unit, and method and system for welding electrolyzer unit and electrolyzer unit rib
JP2013525246A (en) * 2010-04-23 2013-06-20 シンボル マイニング コーポレイション Method for producing lithium carbonate from lithium chloride
JP6294991B1 (en) * 2017-04-14 2018-03-14 株式会社イープラン Bipolar electrolytic cell
CN109267087A (en) * 2018-09-30 2019-01-25 福建浩达智能科技股份有限公司 A kind of a bipolar type ion-exchange membrane electrolyzer
CN111279017A (en) * 2017-09-29 2020-06-12 蒂森克虏伯伍德氯工程有限公司 Electrolysis device
KR20220023250A (en) 2020-08-20 2022-03-02 주식회사 엘지화학 Electrolytic cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175745B2 (en) 2000-09-08 2007-02-13 Asahi Kasei Chemicals Corporation Method of manufacturing electrolyzer unit, and method and system for welding electrolyzer unit and electrolyzer unit rib
JP2013525246A (en) * 2010-04-23 2013-06-20 シンボル マイニング コーポレイション Method for producing lithium carbonate from lithium chloride
JP6294991B1 (en) * 2017-04-14 2018-03-14 株式会社イープラン Bipolar electrolytic cell
JP2018178202A (en) * 2017-04-14 2018-11-15 株式会社イープラン Bipolar electrolytic cell
CN111279017A (en) * 2017-09-29 2020-06-12 蒂森克虏伯伍德氯工程有限公司 Electrolysis device
KR20200080230A (en) * 2017-09-29 2020-07-06 티센크루프 우데 크로린 엔지니어스 게엠베하 Electrolysis device
JP2020535314A (en) * 2017-09-29 2020-12-03 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー Electrolyzer
CN111279017B (en) * 2017-09-29 2022-04-15 蒂森克虏伯伍德氯工程有限公司 Electrolysis device
US11608561B2 (en) 2017-09-29 2023-03-21 Thyssenkrupp Uhde Chlorine Engineers Gmbh Electrolysis device
CN109267087A (en) * 2018-09-30 2019-01-25 福建浩达智能科技股份有限公司 A kind of a bipolar type ion-exchange membrane electrolyzer
CN109267087B (en) * 2018-09-30 2024-01-09 福建浩达智能科技股份有限公司 Multipole type ionic membrane electrolytic tank
KR20220023250A (en) 2020-08-20 2022-03-02 주식회사 엘지화학 Electrolytic cell

Also Published As

Publication number Publication date
JP3229266B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
US6773561B1 (en) Unit cell for alkali chloride metal aqueous solution electrolytic tank
JPS6315354B2 (en)
CN107750284B (en) Electrode assembly, electrode structure and electrolyzer
JP2002502463A (en) Ion exchange membrane two-electrode cell
US4557816A (en) Electrolytic cell with ion exchange membrane
JP3555197B2 (en) Bipolar ion exchange membrane electrolytic cell
US4784735A (en) Concentric tube membrane electrolytic cell with an internal recycle device
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
US5225060A (en) Bipolar, filter press type electrolytic cell
JP2014009385A (en) Electrolysis cell and electrolysis tank
KR100645463B1 (en) Electrode structure
JP3229266B2 (en) Bipolar filter press type electrolytic cell
KR20230039712A (en) Combined current carrier circulation chamber and frame for use in unipolar electrochemical devices
US4790914A (en) Electrolysis process using concentric tube membrane electrolytic cell
JPH06316783A (en) Electrolyzer
JP2816029B2 (en) Bipolar filter press type electrolytic cell
US6200435B1 (en) Ion exchange membrane electrolyzer
JPH11106977A (en) Bipolar type ion exchange membrane electrolytic cell
JP3110720B2 (en) Gas-liquid separation method in an ion exchange membrane electrolytic cell
JPH04350190A (en) Method for electrolyzing alkali chloride using bipolar electrolytic cell
JP6499151B2 (en) Electrolytic cell
US4329218A (en) Vertical cathode pocket assembly for membrane-type electrolytic cell
JPH04289185A (en) Multi-electrode electrolytic cell
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
JPH05320970A (en) Ion exchange membrane electrolyzer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10