JPH10158414A - Permeation-resistant molded resin item and its production - Google Patents

Permeation-resistant molded resin item and its production

Info

Publication number
JPH10158414A
JPH10158414A JP32197196A JP32197196A JPH10158414A JP H10158414 A JPH10158414 A JP H10158414A JP 32197196 A JP32197196 A JP 32197196A JP 32197196 A JP32197196 A JP 32197196A JP H10158414 A JPH10158414 A JP H10158414A
Authority
JP
Japan
Prior art keywords
base material
dispersoid
modified
polyamide
permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32197196A
Other languages
Japanese (ja)
Inventor
Yojiro Iriyama
要次郎 入山
Katsuyuki Miura
克幸 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32197196A priority Critical patent/JPH10158414A/en
Publication of JPH10158414A publication Critical patent/JPH10158414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molded resin item which surely exhibits high permeation resistance (gas barrier properties) and impact strength and a process for producing the same. SOLUTION: A fuel tank is formed from a material which comprises HDPE (high-density polyethylene) as the base material 1, a disperse phase 2 comprising PA(polyamide) flakes dispersed therein in layers, and an adhesive which bonds the base material 1 to the disperse phase 2 and comprises PE modified with an unsatd. carboxylic acid or its deriv. The disperse phase is a polyamide produced by copolymerszing a 6-nylon monomer and a 66-nylon monomer in a molar ratio of (100:0)-(40:60). The viscosity ratio of the base material 1 to the disperse phase 2 is (1:1)-(1:2), and that of the adhesive to the base material 1 is (1:0.01)-(1:0.1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料タンク等に採
用可能な耐透過性樹脂成形品と、その製造方法とに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permeation-resistant resin molded article applicable to a fuel tank and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、例えば車両用部品の分野では、軽
量化による燃費向上、形状の自由度、製造工程数の削減
等の利点から、樹脂製の燃料タンクが検討されつつあ
る。かかる燃料タンクでは、必然的にガソリンに対する
高い耐透過性(ガスバリア性)と高い衝撃強度(低温耐
衝撃性)とが要求される。
2. Description of the Related Art In recent years, for example, in the field of vehicle parts, resin fuel tanks are being studied from the viewpoints of improved fuel efficiency by weight reduction, flexibility in shape, and reduction in the number of manufacturing steps. Such a fuel tank necessarily requires high gasoline permeation resistance (gas barrier properties) and high impact strength (low temperature impact resistance).

【0003】かかる必要性の下、従来の耐透過性樹脂成
形品及びその製造方法としては、特公昭60−1469
5号公報、特開昭61−283523号公報又は特公平
3−44892号公報記載のものが知られている。この
うちの樹脂成形品では、母材中に薄片状の分散質が層状
に分散されており、母材と分散質とは接着剤により接着
されている。ここで、母材としてはポリエチレン等のポ
リオレフィンが開示され、分散質としてはポリアミド等
のポリオレフィンと相溶しない第2の重合体が開示さ
れ、接着剤としてはアルキルカルボキシル置換したポリ
オレフィンが開示されている。かかる樹脂成形品は、例
えば、溶融状態の高密度ポリエチレン中に、ポリアミド
と、不飽和カルボン酸又はその誘導体により変性された
変性ポリエチレンとを混合し、これら材料の粘度とせん
断力とを調整しつつ成形するいわゆるSELAR方式に
より製造され得る。
Under such a necessity, a conventional permeation-resistant resin molded article and a method for producing the same are disclosed in JP-B-60-1469.
No. 5, JP-A-61-283523 or JP-B-3-44892 is known. In the resin molded product, the flaky dispersoid is dispersed in the base material in the form of a layer, and the base material and the dispersoid are adhered by an adhesive. Here, a polyolefin such as polyethylene is disclosed as a base material, a second polymer that is incompatible with a polyolefin such as polyamide is disclosed as a dispersoid, and an alkylcarboxyl-substituted polyolefin is disclosed as an adhesive. . Such a resin molded product is, for example, a method in which a polyamide and a modified polyethylene modified with an unsaturated carboxylic acid or a derivative thereof are mixed in a high-density polyethylene in a molten state, and the viscosity and shear force of these materials are adjusted. It can be manufactured by the so-called SELAR method of molding.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記樹脂成形
品では、必ずしも高い耐透過性と衝撃強度とを発揮でき
ないことが明らかとなった。このため、この樹脂成形品
が燃料タンクであれば、その燃料タンクでは、近年の高
い耐透過性を求める炭化水素排出量規制に対応できない
こととなる。
However, it has been clarified that the above-mentioned resin molded articles cannot always exhibit high permeation resistance and impact strength. For this reason, if this resin molded product is a fuel tank, the fuel tank will not be able to cope with the recent regulations on hydrocarbon emissions requiring high permeation resistance.

【0005】本発明は、上記従来の実状に鑑みてなされ
たものであって、高い耐透過性と衝撃強度とを確実に発
揮できる樹脂成形品及びその製造方法を提供することを
解決すべき課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional situation, and it is an object of the present invention to provide a resin molded product capable of reliably exhibiting high permeation resistance and impact strength, and a method for producing the same. And

【0006】[0006]

【課題を解決するための手段】請求項1の耐透過性樹脂
成形品は、高密度ポリエチレンからなる母材と、該母材
中に層状に分散され、薄片状のポリアミドからなる分散
質と、該母材と該分散質とを接着し、不飽和カルボン酸
又はその誘導体により変性された変性ポリエチレンから
なる接着剤と、からなる耐透過性樹脂成形品において、
前記分散質は6−ナイロンモノマーと6,6−ナイロン
モノマーとがモル比100:0〜40:60の範囲で共
重合されたものであり、前記母材と該分散質との粘度比
は1:1〜1:2の範囲であり、前記接着剤と該母材と
の粘度比は1:0.01〜1:0.1の範囲であること
を特徴とする。
According to a first aspect of the present invention, there is provided a molded article made of a high-density polyethylene, comprising a base material made of high-density polyethylene, and a dispersoid made of a flaky polyamide dispersed in the base material. The base material and the dispersoid are bonded together, and an adhesive made of a modified polyethylene modified with an unsaturated carboxylic acid or a derivative thereof,
The dispersoid is obtained by copolymerizing a 6-nylon monomer and a 6,6-nylon monomer in a molar ratio of 100: 0 to 40:60, and the viscosity ratio between the base material and the dispersoid is 1 : 1 to 1: 2, and the viscosity ratio between the adhesive and the base material is in the range of 1: 0.01 to 1: 0.1.

【0007】請求項2の耐透過性樹脂成形品の製造方法
は、溶融状態の高密度ポリエチレン中に、ポリアミド
と、不飽和カルボン酸又はその誘導体により変性された
変性ポリエチレンとを混合し、これら材料の粘度とせん
断力とを調整しつつ成形することにより、該高密度ポリ
エチレンからなる母材中に薄片状の該ポリアミドからな
る分散質が層状に分散され、該母材と該分散質とが該変
性ポリエチレンからなる接着剤により接着された耐透過
性樹脂成形品を得る耐透過性樹脂成形品の製造方法にお
いて、前記ポリアミドは6−ナイロンモノマーと6,6
−ナイロンモノマーとがモル比100:0〜40:60
の範囲で共重合されたものであり、前記高密度ポリエチ
レンと該ポリアミドとの粘度比は1:1〜1:2の範囲
であり、前記変性ポリエチレンと該高密度ポリエチレン
との粘度比は1:0.01〜1:0.1の範囲であるこ
とを特徴とする。
In a second aspect of the present invention, there is provided a method for producing a permeation-resistant resin molded article, comprising mixing a polyamide and a modified polyethylene modified with an unsaturated carboxylic acid or a derivative thereof in a high-density polyethylene in a molten state; By adjusting the viscosity and shear force of the polyamide while adjusting the viscosity, the flake-like dispersoid composed of the polyamide is dispersed in a layered form in the matrix composed of the high-density polyethylene. In the method for producing a permeation-resistant resin molded article obtained by adhering a permeation-resistant resin molded article bonded by an adhesive made of modified polyethylene, the polyamide comprises a 6-nylon monomer and 6,6
-Nylon monomer in molar ratio of 100: 0 to 40:60
And the viscosity ratio of the high-density polyethylene to the polyamide is in the range of 1: 1 to 1: 2, and the viscosity ratio of the modified polyethylene to the high-density polyethylene is 1: It is in the range of 0.01 to 1: 0.1.

【0008】母材を構成する高密度ポリエチレン(HD
PE)としては、密度が0.935g/cm3以上のも
のが好ましい。また、HDPEのメルトインデックス
(MI;190°C、2.16kg荷重)は、耐ドロー
ダウン性、成形性、耐衝撃性等を考慮すると、下限がH
LMI(High Load MI;190°C、2
1.6kg荷重(高粘度樹脂の場合に通常の10倍の荷
重でテストする方法。))で1g/10分、上限がMI
で2g/10分であることが好ましい。
[0008] The high-density polyethylene (HD
PE) preferably has a density of 0.935 g / cm 3 or more. The lower limit of the melt index (MI; 190 ° C., 2.16 kg load) of HDPE is H in consideration of drawdown resistance, moldability, impact resistance, and the like.
LMI (High Load MI; 190 ° C, 2
1.6 g load (in the case of a high viscosity resin, a method of testing with a load 10 times the normal load)) is 1 g / 10 min, and the upper limit is MI.
Is preferably 2 g / 10 minutes.

【0009】層状に分散された薄片状のポリアミド(P
A)からなる分散質は樹脂成形品のバリア層として機能
する。分散質としては、一片の平均厚みが0.05〜5
0μmであることが好ましい。分散質の厚みが0.05
μm未満であれば、層状に分散されにくく、耐透過性が
不十分となる。他方、分散質の厚みが50μmを超えれ
ば、PAが大きく固まっていることとなるため、例えば
燃料であるガソリンの抜け道が多くなり、耐透過性が劣
る。一片の平均厚みが0.1〜10μmであることがさ
らに好ましい。
A flaky polyamide (P) dispersed in layers
The dispersoid composed of A) functions as a barrier layer of a resin molded product. As the dispersoid, the average thickness of one piece is 0.05 to 5
It is preferably 0 μm. Dispersoid thickness is 0.05
If it is less than μm, it is difficult to be dispersed in a layer form, and the permeation resistance becomes insufficient. On the other hand, if the thickness of the dispersoid exceeds 50 μm, the PA is largely solidified, so that, for example, gasoline, which is a fuel, has many passages, and the permeation resistance is poor. More preferably, the average thickness of one piece is 0.1 to 10 μm.

【0010】一般的なPAは、ε−カプロラクタムから
重合される酸アミド結合(−CONH−)を有する重合
体([−NH(CH25CO−]n)、ヘキサメチレン
ジアミン等のジアミンとアジピン酸等のジカルボン酸と
から重合される酸アミド結合(−CONH−)を有する
重合体([NH(CH26NHCO(CH24CO−]
n)である。しかし、本発明に係るPAは、低い融点の
ものの方が母材中で層状化しやすいことが明らかになっ
たことから、6−ナイロンモノマーと6,6−ナイロン
モノマーとが共重合されたPA共重合体である。発明者
の試験結果によれば、樹脂成形品が高い耐透過性と衝撃
強度とを確実に発揮するためには、このPA共重合体の
モル比は6−ナイロンモノマーと6,6−ナイロンモノ
マーとが100:0〜40:60の範囲である。6,6
−ナイロンモノマーのモル比が6−ナイロンモノマー4
0に対して60を超えれば、耐透過性が十分でなくな
る。PA共重合体のモル比がナイロンモノマーと6,6
−ナイロンモノマーとで85:15〜50:50の範囲
であることがより好ましい。
A general PA is a polymer ([—NH (CH 2 ) 5 CO—] n ) having an acid amide bond (—CONH—) polymerized from ε-caprolactam, and a diamine such as hexamethylene diamine. Polymer having an acid amide bond (—CONH—) polymerized from a dicarboxylic acid such as adipic acid ([NH (CH 2 ) 6 NHCO (CH 2 ) 4 CO—]
n ). However, the PA according to the present invention was found to have a lower melting point than the PA, in which 6-nylon monomer and 6,6-nylon monomer were copolymerized, since it was found that the PA having a lower melting point was more likely to be layered in the base material. It is a polymer. According to the test results of the inventor, in order to ensure that the resin molded product exhibits high permeation resistance and impact strength, the molar ratio of this PA copolymer is 6-nylon monomer and 6,6-nylon monomer. Is in the range of 100: 0 to 40:60. 6,6
The molar ratio of the nylon monomer is 6-nylon monomer 4
If it exceeds 60 with respect to 0, the permeation resistance will be insufficient. The molar ratio of the PA copolymer is 6 to 6
More preferably in the range of 85:15 to 50:50 with the nylon monomer.

【0011】接着剤として機能する変性ポリエチレン
(変性PE)としては、変性による接着性の付与と相溶
化剤としての機能とを考慮し、0.1〜3.0重量%の
変性率のものが好ましい。変性率が0.1重量%未満の
変性PEでは、接着性が不十分となり、樹脂成形品の耐
衝撃性が低下する。また、変性率が3.0重量%を超え
た変性PEでは、変性PE自身の強度が低下するため、
同様に樹脂成形品の耐衝撃性が低下する。0.3〜2.
0重量%の変性率の変性PEであることがさらに好まし
い。
The modified polyethylene (modified PE) which functions as an adhesive has a modification ratio of 0.1 to 3.0% by weight in consideration of imparting adhesiveness by modification and a function as a compatibilizer. preferable. In the case of a modified PE having a modification ratio of less than 0.1% by weight, the adhesion becomes insufficient, and the impact resistance of the resin molded product is reduced. In the case of a modified PE having a modification ratio of more than 3.0% by weight, the strength of the modified PE itself is reduced.
Similarly, the impact resistance of the resin molded product decreases. 0.3-2.
More preferably, it is a modified PE having a modification ratio of 0% by weight.

【0012】変性PEに用いる不飽和カルボン酸又はそ
の誘導体としては、(1)アクリル酸、メタクリル酸等
のモノカルボン酸、(2)マレイン酸、フマル酸、イタ
コン酸等のジカルボン酸、(3)無水マレイン酸、無水
イタコン酸、エンディック酸(無水ハイミック酸)等の
ジカルボン酸無水物等が挙げられる。不飽和カルボン酸
又はその誘導体として特にジカルボン酸又はその無水物
が好ましい。
The unsaturated carboxylic acids or derivatives thereof used in the modified PE include (1) monocarboxylic acids such as acrylic acid and methacrylic acid, (2) dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, and (3) Examples include dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, and endic acid (hymic anhydride). As the unsaturated carboxylic acid or its derivative, dicarboxylic acid or its anhydride is particularly preferred.

【0013】粘度をコントロールする方法としては、燐
系加工安定剤を増粘剤として添加することが挙げられ
る。例えば、トリスフォスファイト(チバガイギー社
製、商品名「Irgafos168」)、トリフェニル
フォスファイト(住友化学社製、商品名「スミライザー
TPP」)等をこの増粘剤として採用することができ
る。この増粘剤を0.02〜3.00重量%の範囲で添
加することが好ましい。
As a method of controlling the viscosity, it is possible to add a phosphorus-based processing stabilizer as a thickener. For example, trisphosphite (trade name “Irgafos 168”, manufactured by Ciba Geigy), triphenylphosphite (trade name “Sumilyzer TPP”, manufactured by Sumitomo Chemical Co., Ltd.) and the like can be used as the thickener. It is preferable to add this thickener in the range of 0.02 to 3.00% by weight.

【0014】樹脂成形品の機械的強度及び耐熱性を向上
させるため、均一に分散したモンモリロナイト等の珪酸
塩を添加することができる(特開昭62−74957号
公報参照)。この珪酸塩を0.2〜3.0重量%の範囲
で添加することが好ましい。本発明に係る樹脂成形品が
優れた耐透過性を示す理由は必ずしも明確ではないが、
本発明では、特定のモル比のPA共重合体を採用し、H
DPEの母材中でそのPA共重合体及び変性PEに適当
な粘度をもたせたことにより、PA共重合体の薄層化を
促進しながら、HDPEとPA共重合体との接着力を確
保したことが考えられる。このため、母材であるHDP
Eと分散質であるPA共重合体との粘度比は1:1〜
1:2の範囲であり、接着剤である変性PEと分散質で
あるPA共重合体との粘度比は1:0.01〜1:0.
1の範囲である。相対的にPA共重合体の粘度が低すぎ
れば、HDPEとの相溶過剰になり、PA共重合体が層
を構成できない。他方、PA共重合体の粘度が高すぎた
場合、成形時のせん断力では薄層化が十分に進まず、バ
リア性が低下する。変性PEも同様に粘度が低すぎれ
ば、HDPE中で過剰に分散してしまい、充分な接着性
が得られない。他方、変性PEの粘度が高すぎれば、十
分に分散しなくなる。そのため、これらの場合には、変
性PEがPA共重合体と接触反応する確率が低下し、充
分な接着性が得られないため、樹脂成形品の衝撃強度が
低下する。
In order to improve the mechanical strength and heat resistance of the resin molded product, a silicate such as montmorillonite which is uniformly dispersed can be added (see JP-A-62-74957). It is preferable to add this silicate in the range of 0.2 to 3.0% by weight. The reason why the resin molded product according to the present invention exhibits excellent permeation resistance is not necessarily clear,
In the present invention, a PA copolymer having a specific molar ratio is employed,
By providing the PA copolymer and the modified PE with an appropriate viscosity in the DPE matrix, the adhesion between HDPE and the PA copolymer was secured while promoting the thinning of the PA copolymer. It is possible. For this reason, the HDP
The viscosity ratio of E to the dispersoid PA copolymer is 1: 1 to 1
The viscosity ratio between the modified PE as an adhesive and the PA copolymer as a dispersoid is 1: 0.01 to 1: 0.
1 range. If the viscosity of the PA copolymer is relatively low, the PA copolymer becomes excessively compatible with HDPE, and the PA copolymer cannot form a layer. On the other hand, when the viscosity of the PA copolymer is too high, the thinning does not sufficiently proceed due to the shearing force during molding, and the barrier property decreases. Similarly, if the viscosity of the modified PE is too low, it will be excessively dispersed in HDPE, and sufficient adhesiveness cannot be obtained. On the other hand, if the viscosity of the modified PE is too high, it will not be sufficiently dispersed. Therefore, in these cases, the probability of the modified PE contacting with the PA copolymer decreases, and sufficient adhesiveness cannot be obtained, so that the impact strength of the resin molded product decreases.

【0015】本発明の樹脂成形品の具体的な製造方法は
特に限定されないが、例えば燃料タンクを製造するので
あれば、押し出し機から押し出された溶融樹脂を中空成
形用ダイに導入し、通常の中空成形と同様の手法で製造
する方法を採用することができる。
The specific method for producing the resin molded article of the present invention is not particularly limited. For example, in the case of producing a fuel tank, a molten resin extruded from an extruder is introduced into a die for hollow molding, and a conventional method is used. A method of manufacturing by the same method as in the hollow molding can be adopted.

【0016】[0016]

【発明の実施の形態】以下、請求項1、2を燃料タンク
及びその製造方法に適用した実施例1〜14と比較例1
〜11とについて、図面を参照しつつ説明する。なお、
本発明はこれらの実施例に限定されないことはいうまで
もない。まず、密度が0.943g/cm3であり、H
LMIが2g/10分のHDPEのペレットを用意す
る。これらの粘度(せん断速度10/秒の時の溶融粘度
の値をいう。以下、同様。)は7000Pa.s又は9
000Pa.sである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 14 and Comparative Example 1 in which claims 1 and 2 are applied to a fuel tank and a method for manufacturing the same are described below.
11 will be described with reference to the drawings. In addition,
It goes without saying that the present invention is not limited to these examples. First, the density is 0.943 g / cm 3 and H
An HDPE pellet with an LMI of 2 g / 10 min is prepared. These viscosities (meaning the value of the melt viscosity at a shear rate of 10 / sec., Hereinafter the same) are 7000 Pa.s. s or 9
000 Pa. s.

【0017】また、無水マレイン酸で変性した変性率
0.06重量%、0.3重量%又は1.5重量%の変性
PEのペレットを用意する。これらの粘度は80〜10
00Pa.sである。さらに、6−ナイロンモノマーと
6,6−ナイロンモノマーとのモル比が100:0、8
0:20、60:40、50:50、40/60、2
3:78のPA共重合体のペレットを用意する。これら
の融点は183〜224°Cである。そして、これらの
PA共重合体に場合により珪酸塩(モンモリロナイト)
や増粘剤(トリスフォスファイト)を添加する。添加後
のPA共重合体の粘度は8700〜18000Pa.s
である。
Further, pellets of modified PE modified with maleic anhydride and having a modification ratio of 0.06% by weight, 0.3% by weight or 1.5% by weight are prepared. These viscosities are 80 to 10
00Pa. s. Further, the molar ratio of 6-nylon monomer to 6,6-nylon monomer is 100: 0,8
0:20, 60:40, 50:50, 40/60, 2
Prepare 3:78 PA copolymer pellets. Their melting points are 183-224 ° C. These PA copolymers may optionally contain silicates (montmorillonite).
And a thickener (trisphosphite). The viscosity of the PA copolymer after the addition is from 8700 to 18000 Pa.s. s
It is.

【0018】そして、HDPEのペレット93重量部を
溶融させ、この中にPA共重合体のペレット3重量部
と、変性PEのペレット4重量部とを混合し、単層ブロ
ー成形機によってせん断力を調整しつつ、SELAR方
式により燃料タンクを製造した。ここで、実施例1〜1
4におけるPA共重合体のモル比等を表1に示し、比較
例1〜11におけるPA共重合体のモル比等を表2に示
す。また、表1、2に成形樹脂温度も示す。
Then, 93 parts by weight of the HDPE pellets are melted, and 3 parts by weight of the PA copolymer pellets and 4 parts by weight of the modified PE pellets are mixed therein, and the shear force is reduced by a single-layer blow molding machine. The fuel tank was manufactured by the SELAR method while adjusting. Here, Examples 1 to 1
Table 1 shows the molar ratio of the PA copolymer and the like in Table 4, and Table 2 shows the molar ratio and the like of the PA copolymer in Comparative Examples 1 to 11. Tables 1 and 2 also show the molding resin temperature.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】各燃料タンクについて、以下の性能評価を
行った。 (低温耐衝撃性)各燃料タンクにガソリン満タン相当重
量のエチレングリコール50重量%の水溶液を注入し、
密閉して−40°Cの雰囲気下に12時間以上放置す
る。この後、取り出した各燃料タンクを鉛直方向に自然
落下させ、割れや変形が発生するか否かを評価した。表
3、4において、6m以上で割れや変形が発生しなかっ
たものを○、6m未満で割れや変形が発生したものを×
とした。 (ガスバリア性)各燃料タンクに容量の40%のガソリ
ンを注入し、密閉して40°Cの雰囲気中で30日間放
置する。この後、初期値として、SHED法により燃料
透過量を測定した。ここで、SHED法とは、密閉した
部屋の中に燃料の入った容器を放置し、所定の温度変化
をさせ、一定時間後の部屋中のHC濃度の増加により、
燃料透過量を測定する方法である。この結果も表3、4
に示す。
The following performance evaluation was performed for each fuel tank. (Low-temperature impact resistance) A 50% by weight aqueous solution of ethylene glycol equivalent to a full gasoline tank is injected into each fuel tank.
Close and leave in an atmosphere of -40 ° C for 12 hours or more. Thereafter, each of the removed fuel tanks was allowed to fall naturally in the vertical direction, and it was evaluated whether cracks or deformation occurred. In Tables 3 and 4, ○ indicates that no cracking or deformation occurred at 6 m or more, and X indicates cracking or deformation occurred at less than 6 m.
And (Gas barrier property) Gasoline of 40% of the volume is injected into each fuel tank, and the tank is closed and left in an atmosphere of 40 ° C for 30 days. Thereafter, as an initial value, the fuel permeation amount was measured by the SHED method. Here, the SHED method means that a container containing fuel is left in a closed room, a predetermined temperature is changed, and an increase in the concentration of HC in the room after a certain period of time causes
This is a method for measuring the amount of fuel permeation. The results are also shown in Tables 3 and 4.
Shown in

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】表3、4に示されるように、比較例1〜1
1の燃料タンクでは、必ずしも高いガスバリア性と低温
耐衝撃性とを発揮できないのに対し、実施例1〜14の
燃料タンクでは、これらを両者ともに高い状態で発揮で
きることがわかる。このため、実施例1〜14の燃料タ
ンクは炭化水素排出量規制にも十分に対応できることが
わかる。
As shown in Tables 3 and 4, Comparative Examples 1 to 1
It can be seen that the fuel tank of No. 1 cannot necessarily exhibit high gas barrier properties and low-temperature impact resistance, whereas the fuel tanks of Examples 1 to 14 can exhibit both of them in a high state. For this reason, it turns out that the fuel tanks of Examples 1 to 14 can sufficiently cope with the regulation of hydrocarbon emissions.

【0025】また、図1に示すように、実施例の燃料タ
ンクを切断し、その断面においてHDPEからなる母材
1中のポリアミドからなる分散質2を染色し、薄層化し
た状態を観測した。図1に示されるように、実施例の燃
料タンクでは、分散質2が非常に細かく、かつ積層数の
多い状態で薄層化されており、燃料の流路を妨げる効果
が増大しているため、ガスバリア性が大幅に向上したも
のと推測できた。
Further, as shown in FIG. 1, the fuel tank of the example was cut, and a dispersoid 2 made of polyamide in a base material 1 made of HDPE was dyed on a cross section thereof, and a thinned state was observed. . As shown in FIG. 1, in the fuel tank of the embodiment, the dispersoid 2 is very thin and thinned with a large number of stacked layers, and the effect of obstructing the fuel flow path is increased. It was speculated that the gas barrier properties were significantly improved.

【0026】その他、実施例の製造方法では、成形樹脂
温度が低いため、冷却時間を短くでき、サイクルタイム
を短縮できた。また、大型ブロー成形の場合、大量のバ
リをリサイクルする必要があるが、実施例の製造方法で
は、可能な限り熱履歴を減らし、材料の物性を保ち得る
点でリサイクルに有利であった。さらに、実施例の燃料
タンクでは、ポリアミドからなる分散質の薄層化が均一
なため、内面に凹凸のない滑らかな製品が得られた。こ
れによって、これらの燃料タンクでは、衝撃を受けた時
の応力集中を防止することができたため、衝撃強度を向
上させることができた。
In addition, in the manufacturing method of the embodiment, since the molding resin temperature is low, the cooling time can be shortened, and the cycle time can be shortened. In the case of large blow molding, it is necessary to recycle a large amount of burrs. However, the manufacturing method of the embodiment is advantageous in recycling since the heat history can be reduced as much as possible and the physical properties of the material can be maintained. Furthermore, in the fuel tank of the example, since the dispersoid composed of polyamide was uniformly thinned, a smooth product having no unevenness on the inner surface was obtained. As a result, in these fuel tanks, stress concentration when receiving an impact could be prevented, and the impact strength could be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の燃料タンクの模式断面図である。FIG. 1 is a schematic sectional view of a fuel tank according to an embodiment.

【符号の説明】[Explanation of symbols]

1…母材 2…分散質 1: Base material 2: Dispersoid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高密度ポリエチレンからなる母材と、該母
材中に層状に分散され、薄片状のポリアミドからなる分
散質と、該母材と該分散質とを接着し、不飽和カルボン
酸又はその誘導体により変性された変性ポリエチレンか
らなる接着剤と、からなる耐透過性樹脂成形品におい
て、 前記分散質は6−ナイロンモノマーと6,6−ナイロン
モノマーとがモル比100:0〜40:60の範囲で共
重合されたものであり、前記母材と該分散質との粘度比
は1:1〜1:2の範囲であり、前記接着剤と該母材と
の粘度比は1:0.01〜1:0.1の範囲であること
を特徴とする耐透過性樹脂成形品。
An unsaturated carboxylic acid comprising: a base material made of high-density polyethylene; a dispersoid composed of flake polyamide dispersed in a layer form in the base material; and adhering the base material and the dispersoid. Or an adhesive made of a modified polyethylene modified with a derivative thereof, and a permeation-resistant resin molded product comprising: a dispersoid, wherein the 6-nylon monomer and the 6,6-nylon monomer are in a molar ratio of 100: 0 to 40: 60, the viscosity ratio between the base material and the dispersoid ranges from 1: 1 to 1: 2, and the viscosity ratio between the adhesive and the base material is 1: A permeation-resistant resin molded product having a range of 0.01 to 1: 0.1.
【請求項2】溶融状態の高密度ポリエチレン中に、ポリ
アミドと、不飽和カルボン酸又はその誘導体により変性
された変性ポリエチレンとを混合し、これら材料の粘度
とせん断力とを調整しつつ成形することにより、該高密
度ポリエチレンからなる母材中に薄片状の該ポリアミド
からなる分散質が層状に分散され、該母材と該分散質と
が該変性ポリエチレンからなる接着剤により接着された
耐透過性樹脂成形品を得る耐透過性樹脂成形品の製造方
法において、 前記ポリアミドは6−ナイロンモノマーと6,6−ナイ
ロンモノマーとがモル比100:0〜40:60の範囲
で共重合されたものであり、前記高密度ポリエチレンと
該ポリアミドとの粘度比は1:1〜1:2の範囲であ
り、前記変性ポリエチレンと該高密度ポリエチレンとの
粘度比は1:0.01〜1:0.1の範囲であることを
特徴とする耐透過性樹脂成形品の製造方法。
2. A method in which a polyamide and a modified polyethylene modified with an unsaturated carboxylic acid or a derivative thereof are mixed in a high-density polyethylene in a molten state, and molded while adjusting the viscosity and shear force of these materials. Thus, a flake-like dispersoid composed of the polyamide is dispersed in a layered form in a matrix composed of the high-density polyethylene, and the base material and the dispersoid are adhered to each other with an adhesive composed of the modified polyethylene. In the method for producing a permeation-resistant resin molded product for obtaining a resin molded product, the polyamide is obtained by copolymerizing a 6-nylon monomer and a 6,6-nylon monomer in a molar ratio of 100: 0 to 40:60. The viscosity ratio between the high-density polyethylene and the polyamide is in the range of 1: 1 to 1: 2, and the viscosity ratio between the modified polyethylene and the high-density polyethylene. Is in the range of 1: 0.01 to 1: 0.1.
JP32197196A 1996-12-02 1996-12-02 Permeation-resistant molded resin item and its production Pending JPH10158414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32197196A JPH10158414A (en) 1996-12-02 1996-12-02 Permeation-resistant molded resin item and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32197196A JPH10158414A (en) 1996-12-02 1996-12-02 Permeation-resistant molded resin item and its production

Publications (1)

Publication Number Publication Date
JPH10158414A true JPH10158414A (en) 1998-06-16

Family

ID=18138482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32197196A Pending JPH10158414A (en) 1996-12-02 1996-12-02 Permeation-resistant molded resin item and its production

Country Status (1)

Country Link
JP (1) JPH10158414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246673A (en) * 2004-03-02 2005-09-15 Sakamoto Industry Co Ltd Multilayer resin structure and housing
WO2006101256A1 (en) * 2005-03-24 2006-09-28 Ube Industries, Ltd. Material for fuel system components
US7138452B2 (en) 2001-12-27 2006-11-21 Lg Chem, Ltd. Nanocomposite blend composition having super barrier property
FR2919534A1 (en) * 2007-08-03 2009-02-06 Inergy Automotive Systems Res FUEL TANK OF PLASTIC MATERIAL
JP2010235659A (en) * 2009-03-30 2010-10-21 Tokai Rubber Ind Ltd Resin fuel-supply component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138452B2 (en) 2001-12-27 2006-11-21 Lg Chem, Ltd. Nanocomposite blend composition having super barrier property
JP2006328426A (en) * 2001-12-27 2006-12-07 Lg Chem Ltd Nanocomposite blend composition having excellent barrier property
JP2005246673A (en) * 2004-03-02 2005-09-15 Sakamoto Industry Co Ltd Multilayer resin structure and housing
WO2006101256A1 (en) * 2005-03-24 2006-09-28 Ube Industries, Ltd. Material for fuel system components
FR2919534A1 (en) * 2007-08-03 2009-02-06 Inergy Automotive Systems Res FUEL TANK OF PLASTIC MATERIAL
WO2009019263A1 (en) * 2007-08-03 2009-02-12 Inergy Automotive Systems Research (Société Anonyme) Plastic fuel tank
JP2010235659A (en) * 2009-03-30 2010-10-21 Tokai Rubber Ind Ltd Resin fuel-supply component

Similar Documents

Publication Publication Date Title
US11181233B2 (en) Plastic liner for a composite pressure vessel
US4528219A (en) Multi-layer plastic laminate structure
US5330696A (en) Process of making laminar articles of a polyolefin and a nylon/polyvinyl alcohol blend
JP2741650B2 (en) Multi-layer plastic fuel tank
TWI620648B (en) Direct blow molding container manufacturing method and package body
EP2483350B1 (en) Multi-layered article
KR20140027061A (en) Molded article having excellent fuel barrier properties
JP2000509076A (en) Polyolefin / polyamide alloy mixture and method for producing the same
CN109804014B (en) Polyolefin structure
JPH0366735A (en) Thermoplastic resin composition for laminated formed products
US5443867A (en) Articles incorporating barrier resins
EP1609595B1 (en) Multilayer container
JPH10158414A (en) Permeation-resistant molded resin item and its production
EP1068266B1 (en) Improved laminar articles of polyolefin and nylon/polyvinyl alcohol blend
US5700412A (en) Process for making laminar articles
JPH0370745A (en) Thermoplastic barrier product containing at least two barrier resins
EP0834415A2 (en) Multilayer plastic container
JP2004352985A (en) Polyamide resin for fuel barrier, and multi-layer molded product prepared of polyamide resin
JP3843687B2 (en) Lightweight squeeze bottle
JP2003001770A (en) Laminate for automotive parts
WO1995012631A1 (en) Multicomponent pellets of barrier resin and compatibilizer for making laminar articles
JPH10156978A (en) Multi-layer plastic container
JP4003432B2 (en) Barrier multilayer hollow container and method for producing the same
JP2898359B2 (en) Multi-layer plastic fuel tank
JPH10339230A (en) Resin pipe