JPH10158057A - Production of low-expansion and heat-resistant porcelain - Google Patents

Production of low-expansion and heat-resistant porcelain

Info

Publication number
JPH10158057A
JPH10158057A JP8319246A JP31924696A JPH10158057A JP H10158057 A JPH10158057 A JP H10158057A JP 8319246 A JP8319246 A JP 8319246A JP 31924696 A JP31924696 A JP 31924696A JP H10158057 A JPH10158057 A JP H10158057A
Authority
JP
Japan
Prior art keywords
slurry
porcelain
petalite
binder
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8319246A
Other languages
Japanese (ja)
Inventor
Kazuyuki Watanabe
一行 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTU KK
Original Assignee
TOTU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOTU KK filed Critical TOTU KK
Priority to JP8319246A priority Critical patent/JPH10158057A/en
Publication of JPH10158057A publication Critical patent/JPH10158057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve low thermal expansion property, heat resistance and mechanical strength by compounding a deflocculant, binder and solidifying agent to a porcelain source material comprising only petalite having a controlled grain size to obtain a slurry, casting the obtd. slurry and calcining. SOLUTION: A slurry is prepared by adding and mixing <1wt.% dispersant such as bentonite, gairome clay and kaoline, 0.2 to 0.5wt.% deflocculant, 1 to 3wt.% binder, 0.01 to 0.2wt.% solidifying agent such as ammonium chloride and magnesium chloride, and 32 to 38wt.% water to <=100wt.% porcelain source material comprising only petalite having a controlled grain size of <3.2μm average grain size. The obtd. slurry is formed by casting, hardened and released from the die to obtain a formed body. The formed body is dried and calcined under normal conditions for the production of a petalite porcelain (such as 1,250 deg.C calcining temp. and one hour calcining time).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はペタライトを原料と
する低膨張・耐熱性磁器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low expansion and heat resistant porcelain using petalite as a raw material.

【0002】[0002]

【従来の技術】従来、低膨張・耐熱性のセラミックとし
て結晶化ガラスが知られている。結晶化ガラスは熱膨張
係数が極めて小さく、機械的強度や耐熱性において通常
のガラスにはない優れた特性を有するセラミックであ
る。ところが、結晶化ガラスの製品を得るには、ガラス
組成物を1600℃の高温で溶融して、一旦ガラスにし、次
に予め用意した金型で成型加工後更に数百℃に再加熱し
て結晶化しなければならない。そのため、製造が面倒で
金型等高価な設備を必要とする。
2. Description of the Related Art Conventionally, crystallized glass has been known as a ceramic having low expansion and heat resistance. Crystallized glass is a ceramic having an extremely small coefficient of thermal expansion and excellent mechanical strength and heat resistance that are not found in ordinary glass. However, in order to obtain a crystallized glass product, the glass composition is melted at a high temperature of 1600 ° C, turned into glass, then molded in a mold prepared in advance, and then reheated to several hundred degrees Celsius again. Must be transformed. Therefore, production is troublesome and expensive equipment such as a mold is required.

【0003】一方、安価な石膏型で成形することがで
き、高価な金型などを必要としない磁器で低膨張・耐熱
性に優れるものとして、ペタライト系磁器がある。とこ
ろで、従来の伝統的な方法による陶磁器の製造には、陶
磁器原料として粘土等の粘性原料を所定の割合で混合す
ることが必須であり、ペタライト系磁器の場合も例外で
はなく、従来のペタライト系低膨張耐熱性磁器では少な
くとも30%程度の天然粘性原料を使用している。
On the other hand, there is a petalite-based porcelain that can be molded with an inexpensive gypsum mold and does not require an expensive mold or the like and has excellent low expansion and heat resistance. By the way, in the production of ceramics by the conventional traditional method, it is essential to mix a viscous raw material such as clay at a predetermined ratio as a ceramic raw material, the case of petalite-based porcelain is no exception, the conventional petalite-based porcelain Low expansion heat resistant porcelain uses at least about 30% of natural viscous raw materials.

【0004】ところが、天然の粘性原料を用いた伝統的
な成形方法では、成形に必要な性状、即ち適当な粘性、
乾燥収縮並びに強度と焼成に必要な性状、即ち耐熱性、
高温における粘性、白色度、焼成収縮などを兼ね備えた
原料を選定しなければならない。従って、選択の範囲が
非常に制約される。しかも、粘性原料として、例えば陶
石、蛙目粘土、カオリン、セリサイトなどが使用されて
いるが、これら原料は国内では質の低下と共に底をつ
き、今や海外に資源を求めなければならないのが現状で
ある。また、上記天然の粘性原料には固有の性質があ
り、それぞれ使用方法が異なり、それなりの対応が必要
となる。また、粘性原料の混合料が多くなれば、それだ
けペタライトの純度が低下するため、膨脹係数は高くな
り、耐熱性も低下する。
However, in a conventional molding method using a natural viscous raw material, properties required for molding, that is, appropriate viscosity,
Properties required for drying shrinkage and strength and baking, namely heat resistance,
It is necessary to select a raw material having high viscosity at high temperature, whiteness, shrinkage during firing, and the like. Therefore, the range of selection is very limited. Moreover, as viscous raw materials, for example, pottery stone, frog-eye clay, kaolin, and sericite are used, but these raw materials have bottomed out in Japan as their quality has declined, and now it is necessary to seek resources overseas. It is the current situation. In addition, the above-mentioned natural viscous raw materials have unique properties, and their use methods are different from each other. In addition, as the amount of the mixture of the viscous raw materials increases, the purity of petalite decreases accordingly, so that the expansion coefficient increases and the heat resistance decreases.

【0005】[0005]

【発明が解決しようとする課題】本発明は従来技術が有
する上記問題点に鑑みてなされたもので、その目的とす
るところは、結晶化ガラスに匹敵する低膨張・耐熱性磁
器を、しかも天然の粘性原料を使用することなく製造す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a low-expansion and heat-resistant porcelain comparable to crystallized glass and a natural porcelain. To produce without using a viscous raw material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の低膨張・耐熱性磁器の製造方法では、実質的
にペタライトのみからなる磁器素地原料を粒度調整し
て、解膠剤、バインダー、凝固剤の配合された泥漿と
し、この泥漿を鋳込み成形により成形して、焼成するこ
とを特徴としている。また、上記泥漿は平均粒度を3.
2mic 以下に調整する。
In order to achieve the above object, a method for producing a low expansion and heat resistant porcelain according to the present invention comprises adjusting the particle size of a porcelain base material substantially composed of only petalite to obtain a deflocculant, It is characterized in that the slurry is a slurry mixed with a binder and a coagulant, and the slurry is formed by casting and firing. The above-mentioned slurry has an average particle size of 3.
Adjust to 2 mic or less.

【0007】以下本発明を更に詳細に説明する。本発明
による低膨張・耐熱性磁器の製造方法では、磁器素地原
料が実質的にペタライトのみからなる。ペタライトは特
定の温度で焼成したものを単独で用いてもよいが、異な
る温度で焼成した2種類以上のものを混合して使用する
ことも任意である。このぺタライトには、バインダーの
均一な分散を促進するために極少量の分散剤を添加する
ことができる。上記分散剤としては、ベントナイト、蛙
目粘土、カオリン等を挙げることができ、ペタライト10
0 重量%に対して1重量%以下の範囲で添加することに
より、バインダーの偏在を改善することが可能である
が、あくまでも副次的なものであり、必ずしも必要なも
のではない。上記磁器素地原料に、解膠剤と水を加えて
ミルで磨砕、撹拌し、粒度を調整して泥漿を製造する。
Hereinafter, the present invention will be described in more detail. In the method for producing a low-expansion and heat-resistant porcelain according to the present invention, the raw material of the porcelain base is substantially composed of only petalite. Petalite may be used singly fired at a specific temperature, or two or more kinds fired at different temperatures may be used as a mixture. To this petalite, a very small amount of a dispersant can be added to promote uniform dispersion of the binder. Examples of the dispersant include bentonite, frog eye clay, kaolin and the like.
By adding it in an amount of 1% by weight or less with respect to 0% by weight, it is possible to improve the uneven distribution of the binder, but it is only a secondary matter and is not always necessary. A deflocculating agent and water are added to the porcelain base material, and the mixture is ground and stirred by a mill to adjust the particle size to produce a slurry.

【0008】解膠剤は弱酸のソーダ及びリチウムの塩類
でアルカリ反応を示すものであれば、いずれを使用する
こともができるが、具体的には水酸化ソーダ、珪酸ソー
ダ、炭酸ソーダ、水酸化リチウム、炭酸リチウム等を挙
げることができる。また、これ以外の公知の無機解膠剤
や有機解膠剤を用いることも可能である。解膠剤の使用
料は多すぎても、少なくすぎても解膠を示さず、多すぎ
ると二次的な凝膠を起こす。解膠剤の添加料はペタライ
ト100 重量%に対して0.2 〜0.5 重量%の範囲が好適で
あり、水と調合して、予め所定量の磁器素地原料を投入
してあるたミルに投入する。水の添加量はぺタライト10
0 重量%に対して32〜38重量%が適量である。
As the deflocculant, any of a weak acid soda and a salt of lithium which show an alkaline reaction can be used, and specific examples thereof include sodium hydroxide, sodium silicate, sodium carbonate, and hydroxide. Lithium, lithium carbonate, and the like can be given. It is also possible to use other known inorganic or organic peptizers. If the peptizer usage is too high or too low, no peptization will occur and too much will cause secondary flocculation. The additive of the deflocculant is preferably in the range of 0.2 to 0.5% by weight with respect to 100% by weight of petalite, and is mixed with water and charged into a mill which has been previously charged with a predetermined amount of porcelain base material. Water addition amount is Petalite 10
The appropriate amount is 32 to 38% by weight based on 0% by weight.

【0009】上記の如く、本発明の方法では磁器素地原
料が実質的にペタライト100 %で構成され、粘性原料を
含んでいないため、可塑性を与えるために磁器素地原料
の微粉砕と最密充填を行う粒度分布を与えることが重要
である。そのため、本発明では泥漿を平均粒度4.5 mic
以下、好ましくは3.2mic以下に調整する。微細な粒子は
液体の中で著しい吸着力を示し、吸着力があるために各
粒子は液体の被膜で取り囲まれる。被膜は粒子相互の結
合を切らずに移動させることを可能にする。液相が粒子
に強く付着していればそれだけ素地自体は強固になる。
As described above, in the method of the present invention, the porcelain base material is substantially composed of 100% petalite and contains no viscous raw material. Therefore, in order to impart plasticity, the porcelain base material is finely pulverized and closest packed. It is important to give the particle size distribution to be performed. Therefore, in the present invention, the slurry has an average particle size of 4.5 mic.
It is adjusted below, preferably below 3.2 mic. Fine particles exhibit a remarkable adsorptive power in a liquid, and each particle is surrounded by a liquid film because of the adsorbent power. The coating allows the particles to move without breaking the bonds between them. The more the liquid phase adheres to the particles, the stronger the substrate itself becomes.

【0010】粒度調整された泥漿にはペタライト100 重
量%に対して1〜3重量%のバインダーと、0.01〜0.2
重量%の凝固剤を後入れで添加し、撹拌混合する。上記
凝固剤として、具体的には塩化アンモニウム、塩化マグ
ネシウム等を挙げることができる。
[0010] Particle size-adjusted slurry contains 1 to 3% by weight of binder with respect to 100% by weight of petalite, and 0.01 to 0.2%.
% By weight of coagulant is added in the back and stirred and mixed. Specific examples of the coagulant include ammonium chloride and magnesium chloride.

【0011】以上のようにして製造調整された泥漿は、
泥漿鋳込み成形により所要の形状に成形する。この泥漿
鋳込み成形においては、勿論通常の圧力鋳込みを用いる
事ができるが、泥漿をヘッド圧のみで石膏型に鋳込む、
最も単純な方法を採用する事も可能である。
The slurry produced and adjusted as described above is
It is formed into a required shape by slurry casting. In this slurry casting, of course, normal pressure casting can be used, but the slurry is cast into a gypsum mold only by head pressure.
It is also possible to adopt the simplest method.

【0012】成形した素地は、硬化脱型後、乾燥して焼
成を行う。これらの処理はペタライト系陶磁器の製造に
おいて常用される条件下、例えば焼成温度;1250℃、焼
成時間;1時間で行うことができる。上記のようにして
製造した陶磁器は、熱膨張係数が極めて小さく、熱衝撃
に強く、機械的強度や耐熱性にも優れたものが得られ
る。
The molded body is cured and removed from the mold, dried, and fired. These treatments can be performed under conditions commonly used in the production of petalite-based ceramics, for example, at a firing temperature of 1250 ° C., for a firing time of 1 hour. The porcelain manufactured as described above has an extremely small coefficient of thermal expansion, is resistant to thermal shock, and has excellent mechanical strength and heat resistance.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を実施
例により説明し、本発明の方法により得られる陶磁器の
熱膨張係数が極めて小さく、熱衝撃に強く、機械的強度
や耐熱性にも優れていることを明らかにする。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described below with reference to examples. The ceramics obtained by the method of the present invention have a very small coefficient of thermal expansion, are strong against thermal shock, and have low mechanical strength and heat resistance. Reveal that it is also excellent.

【0014】[0014]

【実施例】ペタライト10Kg(1250℃で焼成したペタライ
ト6.0 Kg、900 ℃で焼成したペタライト4Kgに)に、ベ
ントナイト50g を軽く混合してミルに投入し、更に水3.
5Kgに珪酸ソーダ40g を加えた調合水をミルに入れて、
ミルを駆動させ、磨砕、撹拌した。70時間後、粒度分析
用の資料をミルから採取し、平均粒径が3.2mic以下であ
るのを確認して、バインダー200 g と、塩化アンモニウ
ム10g を投入添加し、更にミルを10分間駆動させ泥漿を
製造した。上記得られた泥漿は0.5mm の篩を通して密閉
蓋付の容器に収納しておき、この泥漿を使って泥漿鋳込
み成形により320 mm角、厚さ10mmの板を成形し、硬化脱
型後、乾燥させ、1250℃で焼成して陶板を得た。得られ
た陶板の特性は以下の通りであった。 真比重;2.42g /cm3 かさ比重;2.27g /cm3 曲げ強度;900Kg /cm2 耐熱温度;1200℃ 熱膨脹係数;20〜700 ℃で、−4〜−5×10- 7 /℃ 熱衝撃強度;600 →0℃で、異常無し。 吸水性;無し。 透光性;有り。 以上の結果、本発明の方法で製造した陶磁器は、結晶化
ガラスにほぼ匹敵する、低熱膨張、耐熱性及び機械的強
度を有することが明らかになった。
Example: To 10 kg of petalite (6.0 kg of petalite fired at 1250 ° C. and 4 kg of petalite fired at 900 ° C.), 50 g of bentonite was lightly mixed and charged into a mill.
Add water prepared by adding 40g of sodium silicate to 5Kg into a mill,
The mill was driven, ground and stirred. After 70 hours, data for particle size analysis was collected from the mill, and after confirming that the average particle size was 3.2 mic or less, 200 g of a binder and 10 g of ammonium chloride were added, and the mill was driven for another 10 minutes. A slurry was produced. The slurry obtained above is stored in a container with a closed lid through a 0.5 mm sieve, and a 320 mm square, 10 mm thick plate is formed by slurry casting using this slurry, cured, demolded, and dried. The mixture was fired at 1250 ° C. to obtain a ceramic plate. The properties of the obtained ceramic plate were as follows. True specific gravity: 2.42 g / cm 3 bulk density; 2.27 g / cm 3 Flexural strength; 900 Kg / cm 2 heat-resistant temperature: 1200 ° C. Thermal expansion coefficient; 20 to 700 at ℃, -4~-5 × 10 - 7 / ℃ Thermal Shock Strength: 600 → 0 ° C, no abnormality. Absorbent; none. Translucent; yes. As a result, it was revealed that the porcelain manufactured by the method of the present invention has low thermal expansion, heat resistance and mechanical strength almost comparable to crystallized glass.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】実質的にペタライトのみからなる磁器素地
原料を粒度調整して、解膠剤、バインダー、凝固剤の配
合された泥漿とし、この泥漿を鋳込み成形により成形し
て、焼成することを特徴とする低膨張・耐熱性磁器の製
造方法。
1. A method in which a porcelain base material substantially composed only of petalite is subjected to particle size adjustment to obtain a slurry containing a deflocculant, a binder, and a coagulant, and the slurry is formed by casting and firing. Manufacturing method of low expansion and heat resistant porcelain.
【請求項2】泥漿はペタライトの平均粒度が3.2mic
以下に調整されることを特徴とする請求項1記載の低膨
張・耐熱性磁器の製造方法。
2. The slurry has a petalite average particle size of 3.2 mic.
The method for producing a low expansion and heat resistant porcelain according to claim 1, wherein the porcelain is adjusted as follows.
JP8319246A 1996-11-29 1996-11-29 Production of low-expansion and heat-resistant porcelain Pending JPH10158057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8319246A JPH10158057A (en) 1996-11-29 1996-11-29 Production of low-expansion and heat-resistant porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8319246A JPH10158057A (en) 1996-11-29 1996-11-29 Production of low-expansion and heat-resistant porcelain

Publications (1)

Publication Number Publication Date
JPH10158057A true JPH10158057A (en) 1998-06-16

Family

ID=18108052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8319246A Pending JPH10158057A (en) 1996-11-29 1996-11-29 Production of low-expansion and heat-resistant porcelain

Country Status (1)

Country Link
JP (1) JPH10158057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751720A (en) * 2022-04-21 2022-07-15 景德镇乐华陶瓷洁具有限公司 Low-shrinkage ceramic product and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751720A (en) * 2022-04-21 2022-07-15 景德镇乐华陶瓷洁具有限公司 Low-shrinkage ceramic product and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0785175B1 (en) Synthetic clay for ceramics and process for preparing the same
JPH0218309B2 (en)
SE430783B (en) UNFORMATED, UNBURNED ELFABLE MATERIAL, PROCEDURE FOR ITS MANUFACTURING AND THE USE OF THE SAME FOR THE MANUFACTURE OF MONOLITIC ELFABLE CONSTRUCTIONS OR FORM
US4101330A (en) Leucite-containing porcelains and method of making same
US3959002A (en) Method of manufacturing white furnace boats for firing ceramic articles and novel furnace boats
JPH10158057A (en) Production of low-expansion and heat-resistant porcelain
US3998650A (en) Expanded synthetic calcium silicates
JPH09227223A (en) Production of free-cutting combined ceramics
US3928058A (en) Expanded synthetic calcium silicates
JP2005272231A (en) Solid for hygiene porcelain glaze and manufacturing method of ceramic ware
KR100328923B1 (en) Method for preparing silica radome by direct coagulation casting process
KR100328916B1 (en) Method for preparing silica radome by slip casting process
KR100328943B1 (en) Method for preparing silica radome by slip casting process
JPS5917064B2 (en) Fireproof Calcium Aluminate Cement
KR100328920B1 (en) Method for preparing silica radome by sol-gel process
KR100328945B1 (en) Method for preparing silica radome by direct coagulation casting process
KR100302229B1 (en) Method for producing silica radome using slip casting process
JPS60186412A (en) Preparation of cristobalite
JPH10226561A (en) Production of low-temperature calcined argil and its ceramic
JPH05238846A (en) Mullite based foaming type porous ceramics and its production
JPH0244060A (en) Production of anorthite series sintered body
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body
KR100328924B1 (en) Method for preparing silica radome by direct coagulation casting process
JPS6291463A (en) Manufacture of formed body from al2o3 and zro2
US1401215A (en) Mold for metal-founders&#39; use and composition of matter for making same