JPH10154316A - Magnetic field generating method and magnetic characteristic measuring method using the same - Google Patents

Magnetic field generating method and magnetic characteristic measuring method using the same

Info

Publication number
JPH10154316A
JPH10154316A JP31168096A JP31168096A JPH10154316A JP H10154316 A JPH10154316 A JP H10154316A JP 31168096 A JP31168096 A JP 31168096A JP 31168096 A JP31168096 A JP 31168096A JP H10154316 A JPH10154316 A JP H10154316A
Authority
JP
Japan
Prior art keywords
magnetic field
data
waveform
memory
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31168096A
Other languages
Japanese (ja)
Inventor
Masashi Kawai
正志 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31168096A priority Critical patent/JPH10154316A/en
Publication of JPH10154316A publication Critical patent/JPH10154316A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • G11B2005/0016Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate a correct magnetic field waveform by storing data of the time base waveform of a desired magnetic field in a memory, generating a magnetic field base on the data and comparing measured data with the data of the waveform. SOLUTION: A signal from a magnetic field measuring instrument 17 is subjected to an A/D conversion with a control part 18 to be stored in a storage part 19 as the data of a measured magnetic field. Desired magnetic waveform data and the measured magnetic field data are read out from the storage part 19 and they are compared with each other with the correcting unit of the control part 18 to obtain a correction value and corrected magnetic field waveform data are stored in the storage part 19. A correction value is obtained again by comparing the measured magnetic field data after the correction with the desired magnetic field data with the correcting unit of the control part 18 and these recorrected data are stored in the storage part 19. When the recorrected magnetic waveform is distant from the desired magnetic field waveform, the magnetic field having a finally obtained magnetic field waveform is impressed on an MR head by repeating corrections moreover.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は任意な時間軸波形の
磁界を発生する方法及びそれを応用した磁気特性測定方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for generating a magnetic field having an arbitrary time axis waveform, and a method for measuring magnetic characteristics using the method.

【0002】[0002]

【従来の技術】各種材料、素子等の磁気や磁気光学的な
特性の測定で、ヘルムホルツコイル等で発生させた磁界
の被測定物への印加が行われる。この磁界の強度やその
強度の時間を関数とした変化、即ち時間軸波形、の制御
には、商用電源や発振器を用いる方法、更に、磁界の条
件を設定したマイコン等でコイル電源を制御する方法
(特開平6−150264等)が利用されている。
2. Description of the Related Art A magnetic field generated by a Helmholtz coil or the like is applied to an object to be measured in measuring magnetic or magneto-optical characteristics of various materials and elements. A method using a commercial power supply or an oscillator, and a method of controlling a coil power supply by a microcomputer or the like in which the conditions of the magnetic field are set are used to control the strength of the magnetic field and the change of the strength as a function of time, that is, the time axis waveform. (JP-A-6-150264, etc.) is used.

【0003】コイルがつくる磁界の強度は、コイルに流
れる電流又は磁界内に設置したホール素子等の出力によ
り計測される。磁界による被測定物の特性変化と磁界強
度との対応から、被測定物の物性や特性を知ることが出
来る。例えば、直線偏光した光を被測定物へ照射しなが
ら磁界強度を変化させ、反射又は透過した光の偏光面の
回転角を測定し、磁界強度と回転角の関係から、被測定
物の磁気光学的な特性を調べることができる。
[0003] The strength of the magnetic field generated by the coil is measured by the current flowing through the coil or the output of a Hall element or the like installed in the magnetic field. From the correspondence between the change in the characteristics of the device under test due to the magnetic field and the magnetic field strength, the physical properties and characteristics of the device under test can be known. For example, the magnetic field intensity is changed while irradiating linearly polarized light to the device under test, the rotation angle of the plane of polarization of the reflected or transmitted light is measured, and the magneto-optical Characteristic can be examined.

【0004】磁気抵抗効果を利用した磁気ヘッド(以下
MRヘッドと言う)の特性試験を一例として、具体的に
説明する。図8にはMRヘッドの特性試験の原理ブロッ
ク図を示した。定電流源1から電流を供給されたMRヘ
ッド2を、コイル3の中央に置く。コイル3にはコイル
電流源4から電流を供給し、コイル3がつくる磁界がM
Rヘッド2へ印加される。コイル電流源4はマイコン等
で制御される波形発生器5からの信号に従った波形の電
流をコイル3へ供給する。コイル3に直列に接続された
電流検出抵抗器6の電圧を電圧検出器7により検出し
て、コイル3がつくる磁界の強さを検知する。
A specific description will be given of a characteristic test of a magnetic head utilizing the magnetoresistance effect (hereinafter referred to as an MR head) as an example. FIG. 8 shows a principle block diagram of a characteristic test of the MR head. The MR head 2 supplied with current from the constant current source 1 is placed at the center of the coil 3. A current is supplied to the coil 3 from the coil current source 4 and the magnetic field generated by the coil 3 is M
Applied to the R head 2. The coil current source 4 supplies a current having a waveform according to a signal from a waveform generator 5 controlled by a microcomputer or the like to the coil 3. The voltage of a current detection resistor 6 connected in series to the coil 3 is detected by a voltage detector 7 to detect the strength of the magnetic field generated by the coil 3.

【0005】磁界が印加されるとMRヘッド2の抵抗値
が変化し、それによるMRヘッド2の出力電圧の変化を
電圧検出器8で検出する。オシロスコープ9のX座標端
子に電圧検出器7の出力を、Y座標端子に電圧検出器8
の出力を印加して(端子は図示せず)、印加磁界とMR
ヘッド2の出力の変化を表示させ、MRヘッド2の特性
を試験する。印加磁界には一定の振幅や一定の周波数の
磁界だけでなく、MRヘッドのノイズ特性評価のために
振幅や周波数がランダムな磁界を印加する場合もある
(特開昭59−90226)。更に、マルチのMRヘッ
ドの検査では、各MRヘッド毎に最適な強度の磁界を印
加し、MRヘッドの出力波形を一旦RAMに記憶し、R
AMから読み出したデータで出力波形を再生し、特性試
験をする方法もある(特開昭61−148607)。
When a magnetic field is applied, the resistance value of the MR head 2 changes, and a change in the output voltage of the MR head 2 caused by the change is detected by a voltage detector 8. The output of the voltage detector 7 is supplied to the X coordinate terminal of the oscilloscope 9 and the voltage detector 8 is supplied to the Y coordinate terminal.
(Terminals are not shown), and the applied magnetic field and MR
A change in the output of the head 2 is displayed to test the characteristics of the MR head 2. As the applied magnetic field, not only a magnetic field having a constant amplitude and a constant frequency, but also a magnetic field having a random amplitude and frequency may be applied to evaluate the noise characteristics of the MR head (Japanese Patent Laid-Open No. 59-90226). Further, in the inspection of multiple MR heads, a magnetic field having an optimum intensity is applied to each MR head, and the output waveform of the MR head is temporarily stored in RAM,
There is also a method in which an output waveform is reproduced with data read from the AM and a characteristic test is performed (Japanese Patent Laid-Open No. 61-148607).

【0006】図9は所定の試料の磁気光学的な特性を調
べる装置の一部(コイル電流源、同用波形発生装置、磁
界検出用素子、オシロスコープ等の図示を省略)を示し
た。コイル3のつくる磁界が印加されるように、測定す
る試料10を置く。光源11からの光を偏光子12で直
線偏光にし、試料10へ照射する。偏光子13には試料
10からの反射光が入射され、試料10へ磁界が印加さ
れない時は反射光を透過させないように偏光子13を設
定する。
FIG. 9 shows a part of a device for examining the magneto-optical characteristics of a predetermined sample (illustration of a coil current source, a common waveform generator, a magnetic field detecting element, an oscilloscope, etc. is omitted). The sample 10 to be measured is placed so that the magnetic field generated by the coil 3 is applied. The light from the light source 11 is converted into linearly polarized light by the polarizer 12 and is radiated to the sample 10. The reflected light from the sample 10 is incident on the polarizer 13, and the polarizer 13 is set so as not to transmit the reflected light when no magnetic field is applied to the sample 10.

【0007】コイル3のつくる磁界が試料10へ印加さ
れると、試料10の磁化状態が変化し、反射光の偏光面
が回転するので、回転角に対応した光量が偏光子13を
透過する。透過した光量を光検知器14で電圧に変換
し、それに接続された電圧検出器15の出力で試料10
の反射光の偏光面の回転状態を知ることができる。図8
と同様にオシロスコープ9のY座標端子に電圧検出器1
5の出力を供給し、X座標端子には図7と同様にコイル
3の電流に対応する電圧又は磁界中に設置した磁気検出
素子からの電圧を供給する。オシロスコープの画面で、
試料10へ印加した磁界による試料10の反射光の偏光
面の回転角度の変化を知ることができる。
When the magnetic field generated by the coil 3 is applied to the sample 10, the magnetization state of the sample 10 changes and the plane of polarization of the reflected light rotates, so that the amount of light corresponding to the rotation angle passes through the polarizer 13. The transmitted light amount is converted into a voltage by the photodetector 14, and the output of the voltage detector 15 connected to the
The rotation state of the polarization plane of the reflected light can be known. FIG.
Similarly, the voltage detector 1 is connected to the Y-coordinate terminal of the oscilloscope 9.
7, and a voltage corresponding to the current of the coil 3 or a voltage from a magnetic detection element installed in a magnetic field is supplied to the X coordinate terminal as in FIG. On the oscilloscope screen,
The change in the rotation angle of the polarization plane of the reflected light of the sample 10 due to the magnetic field applied to the sample 10 can be known.

【0008】材料やデバイス等の磁気的な物性、磁化変
化のメカニズム、特性への磁界の影響等を詳細に調べる
には、印加する磁界の強度、周波数、時間軸波形等を様
々に変化させ、精密な測定をすることが必要で、任意で
精密な磁界の時間軸波形を発生させる磁界発生方法の実
現が重要となる。
In order to investigate in detail the magnetic properties of materials and devices, the mechanism of magnetization change, the effect of a magnetic field on characteristics, and the like, various changes are made to the intensity, frequency, time axis waveform, etc. of the applied magnetic field. Precise measurement is required, and it is important to realize a magnetic field generation method for generating an arbitrarily precise time-axis waveform of a magnetic field.

【0009】[0009]

【発明が解決しようとする課題】従来の磁気特性測定に
使用されている磁界発生方法は、所望する磁界の時間軸
波形の条件やデータを波形発生器等へ入力し,波形発生
器等によりコイル電流源を制御し、磁界を発生させてい
た。しかし、実際に発生する磁界の時間軸波形は、コイ
ル、コイル配線、コイル電流源等のインピーダンス、キ
ャパシタンス等の影響を受け、所望する磁界の時間軸波
形との差異を生ずる。磁界変化の周波数が高くなる程、
この差異も大きくなる。
A conventional magnetic field generation method used for measuring magnetic characteristics is to input a condition or data of a desired magnetic field on a time axis to a waveform generator or the like, and use the waveform generator or the like to generate a coil. The current source was controlled to generate a magnetic field. However, the time axis waveform of the magnetic field actually generated is affected by the impedance, capacitance, and the like of the coil, the coil wiring, the coil current source, and the like, and causes a difference from the time axis waveform of the desired magnetic field. The higher the frequency of the magnetic field change,
This difference also increases.

【0010】又、コイルを交換すると差異の状態も変わ
り、試料の測定データの連続性が損なわれることもあ
る。更にはコイルの設置条件によって、磁界の時間軸波
形が大きく歪むこともあり、その修正には相当な手間が
かかる。高い精度での試料の磁気特性の測定や磁化メカ
ニズムの解析には、コイルが発生する磁界の時間軸波形
を所望する理想的な波形に限りなく近づけることが必要
である。又、印加磁界による特性変化の結果から、特定
磁界の部分を詳細に観測するために、その磁界部分に対
応して、時間軸波形の局部の波形を変えるなど、自在に
磁界の時間軸波形を発生できる磁界発生装置は、従来の
波形発生装置等によるコイル電流源の制御方式では実現
されない。
When the coil is replaced, the state of the difference also changes, and the continuity of the measurement data of the sample may be lost. Further, the time axis waveform of the magnetic field may be greatly distorted depending on the installation conditions of the coil, and the correction thereof requires considerable time and effort. In order to measure the magnetic properties of the sample and analyze the magnetization mechanism with high accuracy, it is necessary to bring the time axis waveform of the magnetic field generated by the coil as close as possible to the desired ideal waveform. Also, in order to observe the specific magnetic field part in detail from the result of the characteristic change due to the applied magnetic field, the time axis waveform of the magnetic field can be freely changed, such as changing the local waveform of the time axis waveform corresponding to the magnetic field part. A magnetic field generator that can be generated cannot be realized by a conventional method of controlling a coil current source using a waveform generator or the like.

【0011】[0011]

【課題を解決するための手段】本発明での解決手段の原
理は、所望する磁界の時間軸波形のデータをメモリに記
憶し、そのデータを基に一旦磁界を発生させ、発生磁界
の実測データと前記の所望する磁界の時間軸波形データ
とを比較し、前記両データの差異を補正したデータを作
成し、その補正したデータを基に、所望の波形の磁界を
発生させる。更には、必要に応じて、磁界波形を部分的
に変更した磁界を発生させる。これらの発生磁界によ
り、高い精度の磁気特性等の測定を可能にする。
The principle of the solving means in the present invention is that data of a time axis waveform of a desired magnetic field is stored in a memory, a magnetic field is generated once based on the data, and the measured data of the generated magnetic field is measured. And the time axis waveform data of the desired magnetic field are compared to generate data in which the difference between the two data is corrected, and a magnetic field having a desired waveform is generated based on the corrected data. Further, if necessary, a magnetic field with a partially changed magnetic field waveform is generated. These generated magnetic fields enable highly accurate measurement of magnetic characteristics and the like.

【0012】本発明の一つの手段は、所望する磁界の時
間軸波形の第1のデータを第1のメモリに記憶し、第1
のデータによりコイルの電源を制御して磁界を発生させ
る。その実測の磁界波形の第2のデータを第2のメモリ
に記憶する。第1のデータと第2のデータを補正器で比
較し、前記両データの差異を補償するための補正値を求
める。第1のデータと補正値とから補正された磁界の時
間軸波形の第3のデータを作成し、第1のメモリに記憶
する。第3のデータを基に、コイルの電源を制御し、磁
界を発生させる。
One means of the present invention stores first data of a time axis waveform of a desired magnetic field in a first memory,
The power of the coil is controlled based on the data of (1) to generate a magnetic field. The second data of the actually measured magnetic field waveform is stored in the second memory. The first data and the second data are compared by a corrector, and a correction value for compensating for the difference between the two data is obtained. The third data of the time axis waveform of the magnetic field corrected from the first data and the correction value is created and stored in the first memory. Based on the third data, the power of the coil is controlled to generate a magnetic field.

【0013】本手段により、簡便に所望する磁界の時間
軸波形を発生させることができので、磁気特性の測定精
度が高まり、又コイル等を交換しても絶えず同一条件の
測定が可能になる。他の手段は、所望する磁界の時間軸
波形の第1のデータを第1のメモリに記憶し、第1のデ
ータによりコイルの電源を制御して磁界を発生させる。
その実測磁界の時間軸波形の第2のデータを第2のメモ
リに記憶する。第1のデータと第2のデータを補正器で
比較し、前記両データの差異を補償するための補正値を
求める。第1のデータと補正値とから、補正された磁界
の時間軸波形の第3のデータを作成し、第2のメモリに
記憶する。第3のデータを基に、コイルの電源を制御
し、補正された磁界を発生させる。
According to this means, a desired time-axis waveform of the magnetic field can be easily generated, so that the measurement accuracy of the magnetic characteristics is improved, and the measurement under the same conditions can be continuously performed even if the coil or the like is replaced. Another means stores first data of a time axis waveform of a desired magnetic field in a first memory, and controls a power supply of the coil based on the first data to generate a magnetic field.
The second data of the time axis waveform of the actually measured magnetic field is stored in the second memory. The first data and the second data are compared by a corrector, and a correction value for compensating for the difference between the two data is obtained. From the first data and the correction value, the third data of the time axis waveform of the corrected magnetic field is created and stored in the second memory. Based on the third data, the power of the coil is controlled to generate a corrected magnetic field.

【0014】補正された磁界の波形が、なお、所望する
磁界の時間軸波形の条件を満足していなければ、次の再
補正を実施する。第3のデータを基に発生させた磁界を
実測して得た時間軸波形の第4のデータを第2のメモリ
に記憶する。第1のデータと第4のデータを補正器で比
較し、第1と第4のデータの差異を補償するための第2
の補正値を求める。第1のデータと第2の補正値とか
ら、再補正された磁界の時間軸波形の第5のデータを作
成し、第2のメモリに記憶する。第5のデータを基に、
コイルの電源を制御し、再補正された磁界を発生させ
る。
If the corrected magnetic field waveform does not satisfy the condition of the desired magnetic field time axis waveform, the next re-correction is performed. The fourth data of the time axis waveform obtained by actually measuring the magnetic field generated based on the third data is stored in the second memory. A first data and a fourth data are compared by a corrector, and a second data for compensating for a difference between the first and the fourth data.
Is calculated. From the first data and the second correction value, the fifth data of the time axis waveform of the re-corrected magnetic field is created and stored in the second memory. Based on the fifth data,
The power of the coil is controlled to generate a re-corrected magnetic field.

【0015】補正された磁界の波形が、所望する磁界の
時間軸波形の条件範囲内になるまで、この補正を繰り返
し、最終的に得た磁界の時間軸波形のデータを第2のメ
モリに記憶する。このデータを基に、コイルの電源を制
御し、磁界を発生させ、試料に印加することで、精密な
磁気特性等が測定できる。別の手段を以下に記述する。
所望の磁界の時間軸波形の第1のデータを第1のメモリ
に記憶する。第1のデータを基にコイルの電源を制御し
て磁界を発生させ、実測した磁界の時間軸波形の第2の
データを第2のメモリに記憶する。第1と第2のデータ
を補正器で比較し、両データの差異を補償するための補
正値を求める。第1のデータと補正値から補正した磁界
の時間軸波形の第3のデータを作成し、第3のメモリに
記憶する。第3のデータをを基に、コイルの電源を制御
し、補正された磁界を発生させる。
This correction is repeated until the corrected magnetic field waveform falls within the condition range of the desired magnetic field time axis waveform, and the finally obtained magnetic field time axis waveform data is stored in the second memory. I do. Based on the data, the power of the coil is controlled, a magnetic field is generated, and the magnetic field is applied to the sample, whereby precise magnetic characteristics and the like can be measured. Another means is described below.
First data of a time axis waveform of a desired magnetic field is stored in a first memory. A magnetic field is generated by controlling the power supply of the coil based on the first data, and the second data of the time axis waveform of the actually measured magnetic field is stored in the second memory. The first and second data are compared by a corrector, and a correction value for compensating for the difference between the two data is obtained. The third data of the time axis waveform of the magnetic field corrected from the first data and the correction value is created and stored in the third memory. Based on the third data, the power supply of the coil is controlled to generate a corrected magnetic field.

【0016】補正された磁界の波形が、なお、所望の磁
界の時間軸波形の条件を満足していなければ、次の再補
正を実施する。第3のデータを基に発生させた磁界を実
測して得た時間軸波形の第4のデータを第3のメモリに
記憶する。第1のデータと第4のデータを補正器で比較
し、第1と第4のデータの差異を補償するための第2の
補正値を求める。第1のデータと第2の補正値とから、
再補正された磁界の時間軸波形の第5のデータを作成
し、第3のメモリに記憶する。第5のデータを基に、コ
イルの電源を制御し、再補正された磁界を発生させる。
If the corrected magnetic field waveform does not satisfy the condition of the desired time axis waveform of the magnetic field, the next re-correction is performed. The fourth data of the time axis waveform obtained by actually measuring the magnetic field generated based on the third data is stored in the third memory. The first data and the fourth data are compared by a corrector, and a second correction value for compensating for the difference between the first and fourth data is obtained. From the first data and the second correction value,
The fifth data of the time axis waveform of the re-corrected magnetic field is created and stored in the third memory. The power of the coil is controlled based on the fifth data to generate a re-corrected magnetic field.

【0017】補正された磁界の波形が、所望の磁界の時
間軸波形の条件範囲内になるまで、この補正を繰り返
し、最終的な磁界の時間軸波形のデータを第3のメモリ
に記憶する。このデータを基に、コイルの電源を制御
し、磁界を発生させ、試料に印加することで、精密な磁
気特性等が測定できる。以上に記述のそれぞれの手段
で、所望する磁界の時間軸波形条件に適う磁界を発生さ
せることが可能となる。磁界の波形条件は自在に設定で
き、例えば磁界に対する被測定物の特性変化を観察し、
その特性変化の変曲点近傍に対応する磁界波形の局部の
条件を変えることも可能である。又コイルを交換しても
連続した特性のデータが得られるので、被測定物の磁気
特性等の高精度で再現性の優れた測定、試験等が可能に
なる。
This correction is repeated until the corrected magnetic field waveform falls within the condition range of the desired magnetic field time axis waveform, and the final magnetic field time axis waveform data is stored in the third memory. Based on the data, the power of the coil is controlled, a magnetic field is generated, and the magnetic field is applied to the sample, whereby precise magnetic characteristics and the like can be measured. With the respective means described above, it is possible to generate a magnetic field that satisfies the desired time-axis waveform condition of the magnetic field. The waveform conditions of the magnetic field can be set freely, for example, by observing the change in the characteristics of the DUT with respect to the magnetic field,
It is also possible to change the local condition of the magnetic field waveform corresponding to the vicinity of the inflection point of the characteristic change. Further, since the data of the continuous characteristics can be obtained even if the coil is replaced, it is possible to perform the measurement and the test with high accuracy and excellent reproducibility such as the magnetic characteristics of the measured object.

【0018】[0018]

【発明の実施の形態】図1には、MRヘッドの特性測定
装置を例とした装置全体の概略の構成ブロック図を示し
た。MRヘッド2(後述の磁界波形の補正後に配置して
も構わない)及び磁気検出素子16(ホール素子等)
を、コイル3の中央部に置く。先ず、MRヘッド2へ印
加したい所望の磁界の時間軸波形(以下、磁界波形と言
う)の条件等を制御部18へ入力する。制御部18で所
望の磁界波形データを作成し、記憶部19に記憶する。
記憶部19から読み出された磁界波形データは制御部1
8でD/A変換され、コイル電流源4を制御する信号と
なる。この信号に対応した電流をコイル3に流し、コイ
ル3がつくる磁界はMRヘッド2及び磁気検出素子16
へ印加される。磁気検出素子16へ印加した磁界による
出力電圧の変化は、磁界測定器17で増幅され、発生磁
界の出力信号として制御部18へ入力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic block diagram of the entire apparatus, taking an example of an apparatus for measuring the characteristics of an MR head. MR head 2 (may be arranged after correction of a magnetic field waveform described later) and magnetic detecting element 16 (Hall element etc.)
At the center of the coil 3. First, a condition of a time axis waveform (hereinafter, referred to as a magnetic field waveform) of a desired magnetic field to be applied to the MR head 2 is input to the control unit 18. The desired magnetic field waveform data is created by the control unit 18 and stored in the storage unit 19.
The magnetic field waveform data read from the storage unit 19 is stored in the control unit 1
At 8, the signal is converted into a signal for controlling the coil current source 4. A current corresponding to this signal is passed through the coil 3, and the magnetic field generated by the coil 3
Is applied. The change in the output voltage due to the magnetic field applied to the magnetic detection element 16 is amplified by the magnetic field measuring device 17 and input to the control section 18 as an output signal of the generated magnetic field.

【0019】磁界測定器17からの信号は制御部18で
A/D変換され、実測された磁界波形のデータとして記
憶部19に記憶される。記憶部19から所望の磁界波形
データと実測の磁界波形データを読出し、後述する制御
部18の補正器で、所望と実測の磁界波形データを比較
し、両データの差異を補償するための補正値を求め、制
御部18のCPUで補正した磁界波形データを作成す
る。補正した磁界波形データは記憶部19に記憶され
る。
The signal from the magnetic field measuring device 17 is A / D converted by the control unit 18 and stored in the storage unit 19 as data of the actually measured magnetic field waveform. The desired magnetic field waveform data and the actually measured magnetic field waveform data are read from the storage unit 19, and the correction unit of the control unit 18 compares the desired and actually measured magnetic field waveform data with each other, and corrects the difference between the two data. And magnetic field waveform data corrected by the CPU of the control unit 18 is created. The corrected magnetic field waveform data is stored in the storage unit 19.

【0020】補正した磁界波形データを制御部18でD
/A変換し、この信号でコイル電流源4を制御し、補正
した磁界波形データを基にした磁界波形をコイル3で発
生させる。制御部18からの制御で、定電流源1からM
Rヘッド2へ特性測定のための電流を供給する。この補
正した磁界をMRヘッド2及び磁気検出素子16へ印加
し、電圧検出器8及び磁界測定器17から出力される電
圧は、制御部18を経由して、オシロスコープ9のY座
標端子及びX座標端子のそれぞれに印加される。印加し
た磁界とMRヘッド2の出力の関係はオシロスコープ9
に表示され、MRヘッド2の磁気特性を調べることが出
来る。又、オシロスコープのX座標軸は時間軸とし、Y
座標軸のY1端子に磁界測定器17からの出力を、Y2
端子にMRヘッド2からの出力を印加すれば、時間軸に
対するそれぞれの出力波形の変化を表示し、その波形の
関連を調べる事も出来る。オシロスコープ9の代わり
に、レコーダー等の別の手段を用いてもよい。又、MR
ヘッド2の出力特性を、A/D変換し、一旦メモリに記
憶してから、表示等をしてもよい。
The corrected magnetic field waveform data is stored in
A / A conversion is performed, and the coil current source 4 is controlled by this signal, and the coil 3 generates a magnetic field waveform based on the corrected magnetic field waveform data. Under the control of the control unit 18, the constant current source 1
A current for characteristic measurement is supplied to the R head 2. The corrected magnetic field is applied to the MR head 2 and the magnetic detecting element 16, and the voltages output from the voltage detector 8 and the magnetic field measuring device 17 are sent to the Y coordinate terminal and the X coordinate of the oscilloscope 9 via the control unit 18. Applied to each of the terminals. The relationship between the applied magnetic field and the output of the MR head 2 is determined by an oscilloscope 9.
And the magnetic characteristics of the MR head 2 can be checked. The oscilloscope's X coordinate axis is the time axis, and Y
The output from the magnetic field measuring device 17 is applied to the Y1 terminal of the coordinate axis,
If the output from the MR head 2 is applied to the terminal, the change of each output waveform with respect to the time axis can be displayed, and the relation between the waveforms can be examined. Instead of the oscilloscope 9, another means such as a recorder may be used. Also, MR
The output characteristics of the head 2 may be A / D converted, temporarily stored in a memory, and then displayed.

【0021】前記の補正した磁界波形を実測し、なお所
望の磁界波形とに隔たりがある場合には、補正後の実測
の磁界波形データと所望の磁界波形データとから、前記
と同様に再度補正することも出来る。即ち、制御部18
の補正器で、補正後の実測の磁界波形データと所望の磁
界波形データを比較し、両データの差異を補償するため
の補正値を再度求め、CPUで再補正の磁界波形データ
を作成し、この再補正のデータを記憶部19に記憶す
る。
The corrected magnetic field waveform is measured, and if there is a gap between the corrected magnetic field waveform and the desired magnetic field waveform, the corrected magnetic field waveform data and the desired magnetic field waveform data are corrected again in the same manner as described above. You can do it. That is, the control unit 18
In the corrector, the measured magnetic field waveform data after correction is compared with the desired magnetic field waveform data, a correction value for compensating for the difference between the two data is again obtained, and the CPU generates re-corrected magnetic field waveform data. The re-correction data is stored in the storage unit 19.

【0022】再補正の磁界波形データを前記と同様にD
/A変換し、その信号でコイル電流源4を制御し、再補
正された磁界をMRヘッド2及び磁気検出素子16へ印
加する。前記と同様に再補正した磁界の印加によるMR
ヘッド2及び磁気検出素子16の出力変動をオシロスコ
ープ9で調べる。前記の再補正した磁界波形が、尚所望
の磁界波形と隔たりがあれば、更に補正を繰り返すこと
で、最終的に得た磁界波形の磁界をMRヘッドに印加す
ることが可能となる。
The magnetic field waveform data for re-correction is converted to D
A / A conversion is performed, the coil current source 4 is controlled by the signal, and the re-corrected magnetic field is applied to the MR head 2 and the magnetic detection element 16. MR by applying a magnetic field re-corrected as described above
The output fluctuations of the head 2 and the magnetic detection element 16 are checked by the oscilloscope 9. If the re-corrected magnetic field waveform is still different from the desired magnetic field waveform, the correction is repeated to apply the magnetic field of the finally obtained magnetic field waveform to the MR head.

【0023】以下には、図1の制御部18と記憶部19
での、磁界波形データを補正する詳細な実施例を示す。
図2は第一の実施例のブロック図を示す。先ず、CPU
20へ所望の磁界波形のデータや条件を入力し、所望の
磁界波形データを作成し、同データをメモリ21へ記憶
する。メモリ21から読み出された所望の磁界波形デー
タは、CPU20で制御される切替器22を経由してD
/A変換器23でコイル電流源4を制御する信号に変換
され、コイルの磁界を発生させる。
The control unit 18 and the storage unit 19 shown in FIG.
A detailed example of correcting the magnetic field waveform data in FIG.
FIG. 2 shows a block diagram of the first embodiment. First, CPU
Data and conditions of a desired magnetic field waveform are input to 20, desired magnetic field waveform data is created, and the data is stored in the memory 21. The desired magnetic field waveform data read from the memory 21 is supplied to the switch 22 controlled by the CPU 20 via the switch 22.
The signal is converted into a signal for controlling the coil current source 4 by the / A converter 23 to generate a coil magnetic field.

【0024】コイルの発生する磁界に対応する磁界測定
器17からの信号はA/D変換器24でデジタル化さ
れ、実測の磁界波形のデータとしてメモリ25に記憶さ
れる。メモリ21の所望の磁界波形データは切替器22
の制御で補正器26へ、又メモリ25の実測の磁界波形
データも補正器26へ入力され、両データを比較し、補
正値を求める。具体的な求め方は後述する。この補正値
を使い、CPU20で補正した磁界波形データを作成
し、メモリ21へ記憶させる。
A signal from the magnetic field measuring device 17 corresponding to the magnetic field generated by the coil is digitized by the A / D converter 24 and stored in the memory 25 as data of the actually measured magnetic field waveform. The desired magnetic field waveform data in the memory 21 is
, And the actually measured magnetic field waveform data in the memory 25 are also input to the corrector 26, and the two data are compared to obtain a correction value. A specific method for obtaining the value will be described later. Using this correction value, magnetic field waveform data corrected by the CPU 20 is created and stored in the memory 21.

【0025】メモリ21の補正された磁界波形データを
切替器22でD/A変換器23へ送り、D/A変換し、
コイル電流源4を制御する信号とする。コイル3は補正
された磁界波形データに基づく磁界をMRヘッド及び磁
気検出素子へ印加する。図1にて説明したように、定電
流源1から電流を供給されたMRヘッドの磁気特性を試
験する。所望の磁界波形による試験が可能となる。
The corrected magnetic field waveform data in the memory 21 is sent to the D / A converter 23 by the switch 22 and D / A converted.
It is a signal for controlling the coil current source 4. The coil 3 applies a magnetic field based on the corrected magnetic field waveform data to the MR head and the magnetic detection element. As described with reference to FIG. 1, the magnetic characteristics of the MR head supplied with current from the constant current source 1 are tested. Testing with a desired magnetic field waveform becomes possible.

【0026】又、コイル3やコイル電流源4を交換した
場合には、前述と同様に、所望の磁界波形のデータと実
測した磁界波形のデータを比較し、補正された磁界波形
データを作成する。このデータをD/A変換し、コイル
電流源4の制御信号にし、コイル3の磁界を発生させ、
交換前と同様の所望の磁界波形が得られる。上記のデー
タの補正の具体的な一例を以下に説明する。図3A、
B、Cにメモリセルの番地に対応する磁界波形データを
示した。図Aには図2のメモリ21に所望する磁界波形
データを記憶した状態、図Bには図2のメモリ25に実
測した磁界波形データを記憶した状態、図Cに図2のメ
モリ21に補正した磁界波形データを記憶した状態を示
した。図の枡目はメモリセルを表し、枠外の上部の00
〜09はXアドレスを、枠外の左部の00〜30はYア
ドレスを示し、例えばXアドレスが04、Yアドレスが
10のセル番地を(04,10)番地とし、以下に説明
する。
When the coil 3 or the coil current source 4 is replaced, the desired magnetic field waveform data is compared with the actually measured magnetic field waveform data to generate corrected magnetic field waveform data as described above. . This data is D / A converted to a control signal for the coil current source 4 to generate a magnetic field for the coil 3,
A desired magnetic field waveform similar to that before replacement is obtained. A specific example of the above data correction will be described below. FIG. 3A,
B and C show magnetic field waveform data corresponding to the address of the memory cell. FIG. A shows a state in which desired magnetic field waveform data is stored in the memory 21 of FIG. 2, FIG. B shows a state in which actually measured magnetic field waveform data is stored in the memory 25 of FIG. 2, and FIG. This shows a state in which the stored magnetic field waveform data is stored. The cells in the figure represent the memory cells, and the upper 00
09 indicates an X address, and 00-30 on the left outside the frame indicates a Y address. For example, a cell address having an X address of 04 and a Y address of 10 is assumed to be an address (04,10), which will be described below.

【0027】図Aは所望の磁界の時間軸波形が正弦波の
場合のデータを、メモリ21の各セル番地に対応して示
した。図2で説明の通り、このデータを読み出し、磁界
を発生させ、実測値の磁界波形データをメモリ25に記
憶する。メモリ25の各セル番地はメモリ21のセル番
地に対応させ、各セルに実測値のデータを記憶したもの
が図Bである。メモリ21、25の各番地でデータに差
がある。
FIG. A shows data in the case where the time axis waveform of the desired magnetic field is a sine wave, corresponding to each cell address of the memory 21. As described with reference to FIG. 2, this data is read out, a magnetic field is generated, and the measured magnetic field waveform data is stored in the memory 25. FIG. B is a diagram in which each cell address of the memory 25 is made to correspond to the cell address of the memory 21 and the data of the actually measured value is stored in each cell. There is a difference in data at each address of the memories 21 and 25.

【0028】簡単な補正方法として、各セル番地ごとの
データの差分の値を図2の補正器26で求め、差分値を
考慮した補正データをCPU20で作成する。例えば、
(00,00)番地では、所望のデータの0に対して、
実測のデータは1で、実測値が1だけ多い。(00,0
0)番地の補正データとして−1のデータを作成し、図
Cのメモリ21の(00,00)番地に記憶する。又、
(08,00)番地のデータの場合は、補正器26で、
所望データの98に対する実測データの95の差分値−
3を求め、CPU20で不足分の3を所望データに加算
して101のデータを作成し、その補正データをメモリ
21の(08,00)番地に記憶する。同様に、(0
4,20)番地の場合は、所望データが−86で、実測
データも−86であり、差分値は0となり、メモリ21
の(04,20)番地には−86のデータが記憶され
る。
As a simple correction method, a difference value of data for each cell address is obtained by the corrector 26 shown in FIG. 2, and correction data considering the difference value is created by the CPU 20. For example,
At the address (00,00), for 0 of desired data,
The actual measurement data is 1, and the actual measurement value is one more. (00,0
0) Data of -1 is created as the correction data of the address, and is stored at the address (00, 00) of the memory 21 in FIG. or,
In the case of the data at the address (08,00), the corrector 26
Difference value between 95 of desired data and 95 of measured data−
3 is obtained, the CPU 20 adds the shortage 3 to the desired data to create the data 101, and stores the correction data at the address (08,00) in the memory 21. Similarly, (0
In the case of address (4, 20), the desired data is -86, the measured data is -86, the difference value is 0,
At address (04, 20), data of -86 is stored.

【0029】即ち、補正データ=所望データ+(所望デ
ータ−実測データ)の式で、順次に求められる補正デー
タをメモリ21の(00,00)〜(06,30)番地
に記憶する。図Cは、このように補正し、メモリ21の
各セル番地に記憶した補正データを示す。メモリ21に
記憶した各番地の補正データを順次読み出し、D/A変
換し、図1のコイル電流源4を制御することで、補正さ
れた磁界の時間軸波形を発生させることは、既述の通り
である。
That is, the correction data sequentially obtained by the equation of correction data = desired data + (desired data−actually measured data) is stored at addresses (00, 00) to (06, 30) of the memory 21. FIG. C shows the correction data thus corrected and stored at each cell address of the memory 21. As described above, the correction data of each address stored in the memory 21 is sequentially read, D / A converted, and the time axis waveform of the corrected magnetic field is generated by controlling the coil current source 4 in FIG. It is on the street.

【0030】前記の補正データは、所望データと実測デ
ータの差分値を加減して求めたが、補正方法はこれに限
られるものではない。例えば、(0n,m0)番地と次
の(0n+1,m0)番地の所望データの変化率を求
め、(0n,m0)番地の補正データへその変化率を乗
算して(0n+1,m0)番地の補正データを作成して
もよい。又、磁界の時間軸波形の変曲点や変化率の不連
続点に対応するデータの補正では、所定の番地のデータ
と次番地の所望データの変化率で重み付けした次番地の
補正データの作成が、高精度の磁界波形の発生をもたら
す。波形データの抽出点の多寡も磁界波形の精度と関連
することも明白である。この様な補正で、正弦波以外の
任意波形を発生させることができる。
The correction data is obtained by adding or subtracting the difference value between the desired data and the actually measured data, but the correction method is not limited to this. For example, the change rate of the desired data at the address (0n, m0) and the next address (0n + 1, m0) is obtained, and the correction data at the address (0n, m0) is multiplied by the change rate to obtain the change rate of the address (0n + 1, m0). Correction data may be created. In correcting data corresponding to an inflection point or a discontinuity in the rate of change of the time axis waveform of the magnetic field, correction data of a next address is weighted by a change rate of data of a predetermined address and desired data of a next address. Causes the generation of a highly accurate magnetic field waveform. It is clear that the number of extraction points of the waveform data is also related to the accuracy of the magnetic field waveform. By such correction, an arbitrary waveform other than a sine wave can be generated.

【0031】図4は、図2と同様に記憶部19と制御部
18の詳細について、他の実施例のブロック図を示す。
先ず、CPU20へ所望の磁界波形のデータや条件を入
力し、所望の磁界波形データを作成する。CPU20の
制御で切替器27を操作し、同データをメモリ21へ送
り、記憶させる。メモリ21の所望の磁界波形のデータ
を切替器22でD/A変換器23へ送り、コイル電流源
4を制御する信号に変換する。同信号に対応した電流が
コイル3に流れ、磁界が発生される。
FIG. 4 is a block diagram of another embodiment showing details of the storage unit 19 and the control unit 18 as in FIG.
First, desired magnetic field waveform data and conditions are input to the CPU 20 to create desired magnetic field waveform data. By operating the switch 27 under the control of the CPU 20, the same data is sent to the memory 21 and stored therein. The data of the desired magnetic field waveform in the memory 21 is sent to the D / A converter 23 by the switch 22 and is converted into a signal for controlling the coil current source 4. A current corresponding to the signal flows through the coil 3 to generate a magnetic field.

【0032】コイル3の発生する磁界を検出し、磁界測
定器17から出力された電圧をA/D変換器24でデジ
タル化し、その実測された磁界波形のデータをメモリ2
5に記憶する。次に、メモリ21の所望の磁界波形デー
タは切替器22の制御で補正器26へ、又メモリ25の
実測の磁界波形データも切替器28の制御で補正器26
へ入力され、両データを比較し、前述したように、補正
値を求める。この補正値を使い、CPU20で補正した
磁界波形データを作成する。補正した磁界波形データは
切替器27の制御でメモリ25へ記憶させる。
The magnetic field generated by the coil 3 is detected, the voltage output from the magnetic field measuring device 17 is digitized by the A / D converter 24, and the data of the actually measured magnetic field waveform is stored in the memory 2.
5 is stored. Next, the desired magnetic field waveform data in the memory 21 is sent to the corrector 26 under the control of the switch 22, and the actually measured magnetic field waveform data in the memory 25 is also sent to the corrector 26 under the control of the switch 28.
And the two data are compared to obtain a correction value as described above. Using this correction value, magnetic field waveform data corrected by the CPU 20 is created. The corrected magnetic field waveform data is stored in the memory 25 under the control of the switch 27.

【0033】メモリ25の補正した磁界波形データは切
替器28の制御で、D/A変換器27へ送られ、D/A
変換され、コイル電流源4を制御し、コイル3で補正さ
れた磁界波形を発生させる。この補正された磁界波形
を、前記と同様に検出し、メモリ25に補正後の実測の
磁界波形データを記憶することができる。前記の補正と
同様に、補正後の実測のデータとメモリ21の所望の磁
界波形データとを補正器26で再度比較し、再補正値を
求める。再補正値が所定の範囲内なら、即ち、所望の磁
界波形データと補正後の実測の磁界波形データとの差異
が所望の範囲内なら、メモリ25の補正された磁界波形
データを基にして磁界を発生させ、例えば図1のMRヘ
ッド2の特性試験を行なう。
The magnetic field waveform data corrected in the memory 25 is sent to the D / A converter 27 under the control of the switch 28, and the D / A
The converted and controlled coil current source 4 generates a magnetic field waveform corrected by the coil 3. The corrected magnetic field waveform can be detected in the same manner as described above, and the corrected magnetic field waveform data can be stored in the memory 25. Similarly to the above-described correction, the corrected data and the desired magnetic field waveform data in the memory 21 are again compared by the corrector 26 to obtain a re-correction value. If the recorrection value is within a predetermined range, that is, if the difference between the desired magnetic field waveform data and the actually measured magnetic field waveform data after correction is within the desired range, the magnetic field is corrected based on the corrected magnetic field waveform data in the memory 25. Is generated, for example, a characteristic test of the MR head 2 of FIG. 1 is performed.

【0034】前記の再補正値が所定の範囲外なら、即
ち、前記の補正された磁界波形が所望の磁界波形の条件
を満していない場合は、再補正値を用いてCPU20で
再補正の磁界波形データを作成し、切替器27の制御で
メモリ25に記憶する。再補正の磁界波形データは、切
替器28の制御でD/A変換器23へ送り、コイル3で
再補正の磁界波形を、前記同様に、発生させる。所望の
磁界波形と実測の磁界波形の差異が所定の条件を満たす
まで、この磁界波形の補正を繰り返すことができる。こ
の最終の補正をした磁界で、試料の精密な測定が可能と
なる。
If the re-correction value is out of the predetermined range, that is, if the corrected magnetic field waveform does not satisfy the condition of the desired magnetic field waveform, the CPU 20 uses the re-correction value to perform re-correction. Magnetic field waveform data is created and stored in the memory 25 under the control of the switch 27. The re-corrected magnetic field waveform data is sent to the D / A converter 23 under the control of the switch 28, and the coil 3 generates a re-corrected magnetic field waveform in the same manner as described above. This correction of the magnetic field waveform can be repeated until the difference between the desired magnetic field waveform and the actually measured magnetic field waveform satisfies a predetermined condition. The final corrected magnetic field enables precise measurement of the sample.

【0035】図5にも、図2と同様に記憶部19と制御
部18の詳細について、別の実施例のブロック図を示
す。図6は、図5の実施例の概略の手順を示すフローチ
ャートである。先ず、CPU20へ所望の磁界波形のデ
ータや条件を入力し、所望の磁界波形データを作成す
る。CPU20の制御で切替器29を操作し、同データ
をメモリ21へ送り記憶させる。メモリ21の所望の磁
界波形のデータを切替器22でD/A変換器23へ送
り、コイル電流源4を制御する信号に変換する。同信号
に対応した電流がコイル3に流れ、磁界を発生させる。
FIG. 5 is a block diagram of another embodiment showing details of the storage unit 19 and the control unit 18 similarly to FIG. FIG. 6 is a flowchart showing a schematic procedure of the embodiment of FIG. First, desired magnetic field waveform data and conditions are input to the CPU 20 to create desired magnetic field waveform data. The switch 29 is operated under the control of the CPU 20, and the same data is sent to the memory 21 and stored therein. The data of the desired magnetic field waveform in the memory 21 is sent to the D / A converter 23 by the switch 22 and is converted into a signal for controlling the coil current source 4. A current corresponding to the signal flows through the coil 3 to generate a magnetic field.

【0036】コイル3の発生する磁界を検出し、A/D
変換器24でデジタル化し、その実測の磁界波形のデー
タをメモリ25に記憶する。次に、メモリ21の所望の
磁界波形データは切替器22の制御で補正器26へ、又
メモリ25の実測の磁界波形データも補正器26へ入力
され、両データを比較し、補正値を求める。この補正値
が、所定の許容条件内であれば、メモリ21の磁界波形
データにより発生させるコイル3の磁界を、磁気測定等
でそのまま使用すればよい。
The magnetic field generated by the coil 3 is detected, and the A / D
The data is digitized by the converter 24 and the data of the actually measured magnetic field waveform is stored in the memory 25. Next, the desired magnetic field waveform data in the memory 21 is input to the corrector 26 under the control of the switch 22, and the actually measured magnetic field waveform data in the memory 25 is also input to the corrector 26, and the two data are compared to obtain a correction value. . If this correction value is within a predetermined allowable condition, the magnetic field of the coil 3 generated based on the magnetic field waveform data of the memory 21 may be used as it is for magnetic measurement and the like.

【0037】前記の発生された磁界波形が、所望の磁界
波形の条件を満足しなければ、前記の補正値を使用し
て、CPU20で補正された磁界波形データを作成す
る。この補正された磁界波形データを、切替器29を制
御し、メモリ30へ記憶させる。メモリ30の補正され
た磁界波形データを読み出し,D/A変換器23へ送
り、D/A変換し、コイル電流源4を制御し、コイル3
から補正された磁界波形を発生させる。
If the generated magnetic field waveform does not satisfy the condition of the desired magnetic field waveform, the CPU 20 creates magnetic field waveform data corrected by the CPU 20 using the correction value. The controller 29 controls the switch 29 to store the corrected magnetic field waveform data in the memory 30. The corrected magnetic field waveform data in the memory 30 is read, sent to the D / A converter 23, D / A converted, and the coil current source 4 is controlled.
To generate a corrected magnetic field waveform.

【0038】この補正された磁界波形を検出し、A/D
変換器24でA/D変換し、メモリ25に補正後の実測
の磁界波形データを記憶させる。メモリ21の所望の磁
界波形データを切替器22を経由し、またメモリ25の
補正後の実測の磁界波形データをそれぞれ補正器26へ
入力し、データを再度比較し、再補正値を求める。再補
正値が所定の条件を満足していれば、即ち、所望の磁界
波形と補正後の実測の磁界波形の差が満足できる範囲内
なら、メモリ30の磁界波形データを基に、コイル3で
発生させる磁界を試料の特性の測定等に用いる。
By detecting the corrected magnetic field waveform, the A / D
A / D conversion is performed by the converter 24, and the measured magnetic field waveform data after correction is stored in the memory 25. The desired magnetic field waveform data in the memory 21 is input to the corrector 26 via the switch 22 and the actually measured magnetic field waveform data after correction in the memory 25, and the data is compared again to obtain a recorrection value. If the re-correction value satisfies a predetermined condition, that is, if the difference between the desired magnetic field waveform and the actually measured magnetic field waveform after correction is within a range that can be satisfied, the coil 3 is used based on the magnetic field waveform data in the memory 30. The generated magnetic field is used for measuring the characteristics of the sample.

【0039】前記の差が満足できる範囲外なら、CPU
20で前記の再補正値から再補正された磁界波形データ
を作成し、メモリ30へ記憶する。所望の磁界波形と補
正された実測の磁界波形との差異が満足できる条件の範
囲内になるまで、この補正を繰り返す。満足できる最終
的な補正をした波形データをメモリ30へ記憶し、その
データを基にコイル3の磁界を発生させる。
If the above difference is out of the satisfactory range, the CPU
At 20, re-corrected magnetic field waveform data is created from the re-corrected value and stored in the memory 30. This correction is repeated until the difference between the desired magnetic field waveform and the corrected actually measured magnetic field waveform falls within the range of the satisfying condition. Satisfactory final corrected waveform data is stored in the memory 30, and a magnetic field of the coil 3 is generated based on the data.

【0040】このような磁界発生装置は、MRヘッドだ
けでなく、例えば、磁気光学的特性の精密な測定装置に
組み込み、高性能な測定を可能にする。更に、高性能な
測定の例として、磁界に対応した特性の変化を観察しな
がら、特に詳細な変化を観測したい磁界の強度範囲にお
いて、その磁界波形を、観測に都合が良いように磁界波
形データを変更すること等もできる。又この所望する変
更の磁界波形データも必要に応じて、補正しても構わな
い。
Such a magnetic field generator is incorporated not only in an MR head but also in, for example, a device for precisely measuring magneto-optical characteristics, thereby enabling high-performance measurement. Furthermore, as an example of high-performance measurement, while observing a change in characteristics corresponding to a magnetic field, in the range of the strength of the magnetic field in which it is desired to observe a detailed change, the magnetic field waveform data is used so that it is convenient for observation. Can be changed. The magnetic field waveform data of the desired change may be corrected as needed.

【0041】図7には、前記の磁界波形の補正の状態と
その磁界波形を変更した場合についいて、その磁界に対
応する被測定物の磁気光学特性の変化の一例を、X座標
を時間軸として示した(任意目盛)。図Aの、点線は所
望する磁界波形aを、一点鎖線は補正前の磁界波形b
を、破線は補正後の磁界波形cを示し、補正した磁界を
印加した時の磁気光学特性(Keer効果)dを実線で
示した。図Bは、図Aの補正した磁界波形cの一部を変
更した磁界波形eを破線で示し、それに対応した磁気光
学特性fの変化を実線で示し、特性変化の詳細な様子が
明らかになる。
FIG. 7 shows an example of the change in the magneto-optical characteristics of the device under test corresponding to the magnetic field waveform when the magnetic field waveform is corrected and when the magnetic field waveform is changed. (Arbitrary scale). In FIG. A, a dotted line indicates a desired magnetic field waveform a, and a dashed line indicates a magnetic field waveform b before correction.
The broken line indicates the corrected magnetic field waveform c, and the solid line indicates the magneto-optical characteristic (Keer effect) d when the corrected magnetic field is applied. In FIG. B, a magnetic field waveform e in which a part of the corrected magnetic field waveform c in FIG. A is changed is shown by a broken line, and a corresponding change in the magneto-optical characteristic f is shown by a solid line, and a detailed state of the characteristic change becomes clear. .

【0042】又、図4、5の説明では、特には補正値を
求める具体例を記述しなかったが、図2に関連して述べ
た補正方法が利用でき、更には、所望する磁界の時間軸
波形の微分係数と実測した磁界の時間軸波形の微分係数
の差異の関係を求め、所望の波形の微分係数に応じた補
正値を定める方法等があり、補正値の求め方は記載のも
のに限られることはない。
In the description of FIGS. 4 and 5, a specific example of obtaining a correction value is not described, but the correction method described with reference to FIG. 2 can be used. There is a method of determining the relationship between the differential coefficient of the axial waveform and the differential coefficient of the measured time axis waveform of the magnetic field, and determining a correction value according to the differential coefficient of the desired waveform. It is not limited to.

【0043】[0043]

【発明の効果】請求項1では、簡便な方法で正確な磁界
波形を発生することができ、又コイルや電源を交換して
も、交換に依存しない磁界波形を発生できる。請求項2
乃至請求項5では、精度の高い任意の磁界波形を発生す
ることができ、又特性測定の結果に応じて、磁界波形の
変更も自在にできる。
According to the first aspect, an accurate magnetic field waveform can be generated by a simple method, and a magnetic field waveform independent of replacement can be generated even if a coil or a power supply is replaced. Claim 2
According to the present invention, an arbitrary magnetic field waveform with high accuracy can be generated, and the magnetic field waveform can be freely changed according to the result of the characteristic measurement.

【0044】請求項6は請求項1乃至請求項5の効果を
有する磁界発生方法を利用することで、各種の磁気特性
や磁化メカニズム等を精度良く測定できる。
According to a sixth aspect of the present invention, various magnetic characteristics, a magnetization mechanism, and the like can be accurately measured by using the magnetic field generating method having the effects of the first to fifth aspects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のMRヘッドの特性測定装置を例とした
装置全体の概略の構成ブロック図である。
FIG. 1 is a schematic configuration block diagram of an entire apparatus that exemplifies an MR head characteristic measuring apparatus of the present invention.

【図2】第一の実施例を示すブロック図である。FIG. 2 is a block diagram showing a first embodiment.

【図3】図2の実施例での、データの補正の一例を示す
図である。
FIG. 3 is a diagram showing an example of data correction in the embodiment of FIG.

【図4】他の実施例を示すブロック図である。FIG. 4 is a block diagram showing another embodiment.

【図5】別の実施例を示すブロック図である。FIG. 5 is a block diagram showing another embodiment.

【図6】図5の実施例での、磁界補正の手順のフローチ
ャートである。
FIG. 6 is a flowchart of a magnetic field correction procedure in the embodiment of FIG.

【図7】磁界波形と印加磁界による磁気特性の変化の例
を示す図である。
FIG. 7 is a diagram illustrating an example of a change in magnetic characteristics due to a magnetic field waveform and an applied magnetic field.

【図8】MRヘッドの特性測定装置の従来例を示す図で
ある。
FIG. 8 is a diagram showing a conventional example of an MR head characteristic measuring device.

【図9】磁気光学的特性を測定する部分的な構成を示す
図である。
FIG. 9 is a diagram showing a partial configuration for measuring magneto-optical characteristics.

【符号の説明】[Explanation of symbols]

1,定電流源、2,MRヘッド、3,コイル、4,コイ
ル電流源 5,波形発生器、6,電流検出抵抗器、7〜8,電圧検
出器、9,オシロスコープ、10,試料、11,光源、
12〜13,偏光子、14,光検知器、15,電圧検出
器、16,磁気検出素子、17,磁界測定器、18,制
御部、19,記憶部、20,CPU、21,メモリ、2
2,切替器、23,D/A変換器、24,A/D変換
器、25,メモリ、26,補正器、27〜29,切替
器、30,メモリ、
1, constant current source, 2, MR head, 3, coil, 4, coil current source 5, waveform generator, 6, current detection resistor, 7-8, voltage detector, 9, oscilloscope, 10, sample, 11 ,light source,
12-13, polarizer, 14, photodetector, 15, voltage detector, 16, magnetic detecting element, 17, magnetic field measuring instrument, 18, control section, 19, storage section, 20, CPU, 21, memory, 2
2, switch, 23, D / A converter, 24, A / D converter, 25, memory, 26, corrector, 27-29, switch, 30, memory,

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】所望の磁界の時間軸波形を発生させるため
の第1のデータを第1のメモリに記憶する工程と、 前記第1のデータを基に発生させた磁界を検出して得た
磁界の時間軸波形の第2のデータを第2のメモリに記憶
する工程と、 前記第1のデータと前記第2のデータを比較し、前記両
データの差異を補償するための補正値を補正器で求める
工程とを含み、 前記第1のデータと前記補正値とから作成した磁界の時
間軸波形の第3のデータを前記第1のメモリに記憶し、
前記第3のデータを基に磁界を発生させることを特徴と
する磁界発生方法。
A step of storing first data for generating a time axis waveform of a desired magnetic field in a first memory; and detecting and obtaining a magnetic field generated based on the first data. Storing second data of a time-axis waveform of a magnetic field in a second memory; comparing the first data with the second data to correct a correction value for compensating for a difference between the two data; And storing in the first memory third data of a time-axis waveform of the magnetic field created from the first data and the correction value;
A method for generating a magnetic field, comprising: generating a magnetic field based on the third data.
【請求項2】所望の磁界の時間軸波形を発生させるため
の第1のデータを第1のメモリに記憶する工程と、 前記第1のデータを基に発生させた磁界を検出して得た
磁界の時間軸波形の第2のデータを第2のメモリに記憶
する工程と、 前記第1のデータと前記第2のデータを比較し、前記両
データの差異を補償するための補正値を補正器で求める
工程とを含み、 前記第1のデータと前記補正値とから作成した磁界の時
間軸波形の第3のデータを前記第2のメモリに記憶し、
前記第3のデータを基に磁界を発生させることを特徴と
する磁界発生方法。
2. A step of storing first data for generating a time axis waveform of a desired magnetic field in a first memory, and detecting and obtaining a magnetic field generated based on the first data. Storing second data of a time-axis waveform of a magnetic field in a second memory; comparing the first data with the second data to correct a correction value for compensating for a difference between the two data; Storing the third data of the time-axis waveform of the magnetic field created from the first data and the correction value in the second memory;
A method for generating a magnetic field, comprising: generating a magnetic field based on the third data.
【請求項3】請求項2において、前記第3のデータを基
に発生させた磁界を検出して得た磁界の時間軸波形の第
4のデータを第2のメモリに記憶し、前記補正器で前記
第1のデータと前記第4のデータを比較し、前記第1と
第4のデータの差異を補償するための第2の補正値を求
め、前記第1のデータと前記第2の補正値とから作成し
た磁界の時間軸波形の第5のデータを前記第2のメモリ
に記憶し、前記第5のデータを基に磁界を発生させるこ
とを特徴とする磁界発生方法。
3. The compensator according to claim 2, wherein fourth data of a time axis waveform of the magnetic field obtained by detecting a magnetic field generated based on the third data is stored in a second memory, Comparing the first data with the fourth data to obtain a second correction value for compensating for the difference between the first and fourth data, and calculating the second correction value with the first data and the second correction. A fifth magnetic field generating method comprising: storing fifth data of a time-axis waveform of a magnetic field created from the values in the second memory; and generating a magnetic field based on the fifth data.
【請求項4】所望の磁界の時間軸波形を発生させるため
の第1のデータを第1のメモリに記憶する工程と、 前記第1のデータを基に発生させた磁界を検出して得た
磁界の時間軸波形の第2のデータを第2のメモリに記憶
する工程と、 前記第1のデータと前記第2のデータを比較し、前記両
データの差異を補償するための補正値を補正器で求める
工程と、 前記第1のデータと前記補正値とから作成した磁界の時
間軸波形の第3のデータを第3のメモリに記憶する工程
とを含み、 前記第3のデータを基に磁界を発生させることを特徴と
する磁界発生方法。
4. A step of storing first data for generating a time axis waveform of a desired magnetic field in a first memory; and detecting and obtaining a magnetic field generated based on the first data. Storing second data of a time-axis waveform of a magnetic field in a second memory; comparing the first data with the second data to correct a correction value for compensating for a difference between the two data; And storing the third data of the time-axis waveform of the magnetic field created from the first data and the correction value in a third memory, based on the third data. A method for generating a magnetic field, comprising: generating a magnetic field.
【請求項5】請求項4において、前記第3のデータを基
に発生させた磁界を検出して得た磁界の時間軸波形の第
4のデータを第3のメモリに記憶し、前記補正器で前記
第1のデータと前記第4のデータを比較し、前記第1と
第4のデータの差異を補償するための第2の補正値を求
め、前記第1のデータと前記第2の補正値とから作成し
た磁界の時間軸波形の第5のデータを前記第3のメモリ
に記憶し、前記第5のデータを基に磁界を発生させるこ
とを特徴とする磁界発生方法。
5. The compensator according to claim 4, wherein fourth data of a time axis waveform of the magnetic field obtained by detecting a magnetic field generated based on the third data is stored in a third memory, Comparing the first data with the fourth data to obtain a second correction value for compensating for the difference between the first and fourth data, and calculating the second correction value with the first data and the second correction. A fifth magnetic field generating method, comprising: storing fifth data of a time axis waveform of a magnetic field created from the values in the third memory, and generating a magnetic field based on the fifth data.
【請求項6】請求項1乃至請求項5記載の磁界発生方法
で発生する磁界を被測定物へ印加し、前記磁界による前
記被測定物の特性変化を測定する磁気特性測定方法。
6. A magnetic property measuring method for applying a magnetic field generated by the magnetic field generating method according to claim 1 to a device under test, and measuring a change in characteristics of the device under test due to the magnetic field.
JP31168096A 1996-11-22 1996-11-22 Magnetic field generating method and magnetic characteristic measuring method using the same Pending JPH10154316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31168096A JPH10154316A (en) 1996-11-22 1996-11-22 Magnetic field generating method and magnetic characteristic measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31168096A JPH10154316A (en) 1996-11-22 1996-11-22 Magnetic field generating method and magnetic characteristic measuring method using the same

Publications (1)

Publication Number Publication Date
JPH10154316A true JPH10154316A (en) 1998-06-09

Family

ID=18020182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31168096A Pending JPH10154316A (en) 1996-11-22 1996-11-22 Magnetic field generating method and magnetic characteristic measuring method using the same

Country Status (1)

Country Link
JP (1) JPH10154316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000728A (en) * 2001-06-21 2003-01-07 Og Giken Co Ltd Interference low frequency medical treatment apparatus with display
JP2008269681A (en) * 2007-04-18 2008-11-06 Hitachi Computer Peripherals Co Ltd Device and method for measuring magnetic head characteristics
JP2016094951A (en) * 2014-11-12 2016-05-26 アズビル株式会社 Electropneumatic converter device
US9818523B2 (en) 2014-08-19 2017-11-14 Toshiba Memory Corporation Electromagnet, tester and method of manufacturing magnetic memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000728A (en) * 2001-06-21 2003-01-07 Og Giken Co Ltd Interference low frequency medical treatment apparatus with display
JP2008269681A (en) * 2007-04-18 2008-11-06 Hitachi Computer Peripherals Co Ltd Device and method for measuring magnetic head characteristics
US9818523B2 (en) 2014-08-19 2017-11-14 Toshiba Memory Corporation Electromagnet, tester and method of manufacturing magnetic memory
JP2016094951A (en) * 2014-11-12 2016-05-26 アズビル株式会社 Electropneumatic converter device

Similar Documents

Publication Publication Date Title
US7511468B2 (en) Harmonics measurement instrument with in-situ calibration
Cataliotti et al. Metrological performances of voltage and current instrument transformers in harmonics measurements
JP2000171529A (en) Circuit defect-detecting system and method for detecting circuit defect
CN104459588A (en) System and method for current sensor test
US6064312A (en) Method and apparatus for automatic verification of measurement probe functionality and compensation
JP2539897B2 (en) Leakage current test equipment
CN110501458A (en) A kind of concentration measuring instrument calibration method, device and concentration measuring instrument
JPH10154316A (en) Magnetic field generating method and magnetic characteristic measuring method using the same
JP2007003407A (en) Method and apparatus for measuring impedance
US20050075076A1 (en) Method and apparatus for measuring impedance of electrical component under high interference conditions
EP0431560B1 (en) AC evaluation equipment for an IC tester
KR940002720B1 (en) Method and equipment for calibrating output levels of wave form analyzing apparatus
KR20160137784A (en) Testing device and testing method of pico amphere meter
CN111190134B (en) Dynamic response time characteristic test method and verification device for electric energy meter
Crotti et al. Performance evaluation of instrument transformers in power quality measurements: Activities and results from 19NRM05 IT4PQ Project
JP3052754B2 (en) Semiconductor test equipment
JP3376972B2 (en) Signal inspection method
Rolain et al. Why are nonlinear microwave systems measurements so involved?
Demerdziev et al. Active power measurement uncertainty budget modelling in case of harmonically distorted voltages and currents
Lapuh et al. Digital oscilloscope calibration using asynchronously sampled signal estimation
Filipovic-Grcic et al. An Improved Method for Performance Testing of Partial Discharge Calibrators
Demerdziev et al. METROLOGY AMBIGUITIES IN PROTOCOLS FOR TRANS-CONDUCTANCE AMPLIFIER CALIBRATION BY USING HIGH CURRENT ENERGY COMPARATOR
JP3376924B2 (en) Layer corona test circuit
SU1157490A1 (en) Method of checking electromechanical wattmeters
KR940002616A (en) Method and apparatus for calibrating the horizontal electronic scale of an oscilloscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524