JPH1015380A - Plasma type fluidized bed furnace - Google Patents

Plasma type fluidized bed furnace

Info

Publication number
JPH1015380A
JPH1015380A JP8173133A JP17313396A JPH1015380A JP H1015380 A JPH1015380 A JP H1015380A JP 8173133 A JP8173133 A JP 8173133A JP 17313396 A JP17313396 A JP 17313396A JP H1015380 A JPH1015380 A JP H1015380A
Authority
JP
Japan
Prior art keywords
fluidized bed
plasma
bed furnace
furnace
type fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8173133A
Other languages
Japanese (ja)
Inventor
Genichi Katagiri
源一 片桐
Makoto Koguchi
信 虎口
Yasushi Sakakibara
康史 榊原
Akio Shimizu
明夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8173133A priority Critical patent/JPH1015380A/en
Publication of JPH1015380A publication Critical patent/JPH1015380A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/42Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations this sub-group includes the fluidised bed subjected to electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/00442Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Abstract

PROBLEM TO BE SOLVED: To obtain a fluidized bed furnace that gives an oxidizing or reducing highly active atmosphere easily, is high in thermal efficiency, and can be used in a wide range of applications. SOLUTION: A fluidizing gas is introduced into a fluidizing gas introduction port 3 arranged in an opening section at a lower part of a vertical and cylindrical furnace vessel 1 with a low-loss heat resistant wall 1a. A deflector plate 2 for deflecting the current of the gas is positioned above the fluidizing gas introduction port 3 and a granular object 20 to be treated that is supplied from an object supplier 20 is placed on the plate 2 as a fluided bed. While a reaction gas is supplied from a reaction gas introduction port 7, a high-frequency current is passed through a high-frequency induction coil 8 coaxially arranged on the outside of the low-loss heatresistant wall 1a to produce and keep a plasma 9 that is sheathed with a sheath gas introduced from a sheath gas introduction port 6 to heat the object 20 with the plasma so that the object 20 is reacted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波誘導コイル
により生じるプラズマを利用して流動層の被処理物質の
反応、例えば黒鉛廃棄物の燃焼処理、あるいは、合成樹
脂類の廃棄物の炭化、ガス化処理等を効果的に行うプラ
ズマ式流動層炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the reaction of a substance to be treated in a fluidized bed using plasma generated by a high-frequency induction coil, for example, combustion treatment of graphite waste, carbonization of synthetic resin waste, gas The present invention relates to a plasma-type fluidized-bed furnace for effectively performing a gasification treatment and the like.

【0002】[0002]

【従来の技術】図6は、従来の流動層炉の基本構成を模
式的に示す断面図である。円筒状の炉容器61は、中心
軸を鉛直方向として配されており、その下端には流動化
ガス導入口63が、また上端には排気ガス排出口65が
設けられている。炉容器61の内部の下方には流動化ガ
ス導入口63より導入された流動化ガスの流れを整流す
る整流板62が組み込まれており、この整流板62の上
に、炉容器61の上部壁面に開口を設けて組み込まれた
被処理物供給器64から供給される粒状の被処理物20
が搭載される。なお「粒状」とは、図に模式的に示した
球状のみならず、楕円体の形状、黒鉛の破砕粒のごとき
形状、および概略直方体(六面体)もしくは三角錐(四
面体)の形状、ならびにいわゆる金平糖のごとく表面に
突出部を備えた形状をも含むものを言う。また、炉容器
61には、整流板62の下部に助燃用バーナー66が、
また整流板62の上部に補助バーナー67が配されてい
る。
2. Description of the Related Art FIG. 6 is a sectional view schematically showing the basic structure of a conventional fluidized bed furnace. The cylindrical furnace vessel 61 has a central axis arranged in a vertical direction, a fluidizing gas inlet 63 at a lower end thereof, and an exhaust gas outlet 65 at an upper end thereof. A rectifying plate 62 for rectifying the flow of the fluidizing gas introduced from the fluidizing gas inlet 63 is incorporated below the inside of the furnace container 61, and the upper wall surface of the furnace container 61 is placed on the rectifying plate 62. Object 20 supplied from the object supply device 64 incorporated with an opening in
Is mounted. The term “granular” refers not only to the spherical shape schematically shown in the figure, but also to the shape of an ellipsoid, the shape of crushed graphite, and the shape of a substantially rectangular parallelepiped (hexahedron) or triangular pyramid (tetrahedron), and so-called It also refers to one that includes a shape with protrusions on the surface, such as confetti. Further, in the furnace vessel 61, a burner 66 for assisting combustion is provided below the current plate 62.
An auxiliary burner 67 is provided above the current plate 62.

【0003】本構成の流動層炉においては、流動化ガス
導入口63より導入され整流板62で整流された流動化
ガスにより、整流板62の上に搭載された粒状の被処理
物20に抗力を加え、自身に加わる重力とのバランスに
より被処理物20の流動層を形成し、助燃用バーナー6
6あるいは補助バーナー67によって空気、あるいは反
応ガスを加熱して処理温度を所定の温度に維持し、被処
理物20の反応、例えば廃棄物の焼却、あるいは、プラ
スチックの油化等を行っている。また、例えば黒鉛の燃
焼処理のごとき自燃性の処理の場合には、バーナーによ
り点火し、自燃状態に移行すると、加温した空気、ある
いは反応ガスを供給して反応を持続させる方法が採られ
ている。
[0003] In the fluidized bed furnace of this configuration, the fluidized gas introduced from the fluidizing gas inlet 63 and rectified by the rectifying plate 62 drags the granular workpiece 20 mounted on the rectifying plate 62 into a drag. To form a fluidized bed of the object to be treated 20 by balance with the gravity applied thereto,
The processing temperature is maintained at a predetermined temperature by heating the air or the reaction gas by the 6 or the auxiliary burner 67, and the reaction of the processing object 20, for example, incineration of waste or oiling of plastic is performed. Further, in the case of a self-combustion treatment such as a graphite combustion treatment, a method is employed in which the reaction is sustained by supplying heated air or a reaction gas when the fuel is ignited by a burner and the state shifts to a self-combustion state. I have.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来の
流動層炉はバーナーを用いて加熱しているので、被処理
物20の温度は雰囲気の温度とほぼ同等であり、反応の
処理速度は、通常の熱化学反応により律せられる。すな
わち、バーナーの火炎中は活性に富んだプラズマ状態と
なっているが、バーナーの性質上、その領域は極く狭い
領域に限定され、流動層の過半は雰囲気の温度とほぼ同
等に保持される。また、バーナーにより加熱する方式で
は、燃焼を伴うので、例えば酸素による酸化性雰囲気、
あるいは水素による還元性雰囲気を作るのは困難であ
る。これらの雰囲気を形成する方式としては、炉の外側
に配した熱源を用いて炉壁を通じての熱伝達により内部
の雰囲気ガスを加熱する方式があるが、熱効率が著しく
低いという難点がある。
As described above, since the conventional fluidized bed furnace is heated using a burner, the temperature of the object 20 is substantially equal to the temperature of the atmosphere, and the processing speed of the reaction is increased. Is governed by normal thermochemical reactions. In other words, the burner is in an active plasma state during the flame, but due to the nature of the burner, its area is limited to an extremely narrow area, and the majority of the fluidized bed is maintained at almost the same temperature as the atmosphere. . In the method of heating with a burner, since combustion is involved, for example, an oxidizing atmosphere with oxygen,
Alternatively, it is difficult to create a reducing atmosphere with hydrogen. As a method of forming these atmospheres, there is a method of heating an internal atmosphere gas by heat transfer through a furnace wall using a heat source disposed outside the furnace, but has a drawback that thermal efficiency is extremely low.

【0005】本発明の目的は、酸化性あるいは還元性の
高活性の雰囲気が容易に得られ、かつ熱効率が高く、広
い用途に利用できる流動床炉を提供することにある。
An object of the present invention is to provide a fluidized bed furnace which can easily obtain an oxidizing or reducing highly active atmosphere, has high thermal efficiency, and can be used for a wide range of applications.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、 (1)プラズマ式流動層炉を、下部に流動化ガス導入口
を備えた炉容器の内部に粒状の被処理物を搭載する整流
板を備え、炉容器の外側に同心状に配された高周波誘導
コイルを備えて構成し、流動化ガス導入口より流動化ガ
スを導入し、整流板に搭載された粒状の被処理物を流動
化ガスによる抗力と重力とによって流動層として保持
し、高周波誘導コイルの発生する高周波磁場により電磁
誘導で生じるプラズマを用いて、被処理物を反応させる
こととする。
In order to achieve the above object, the present invention provides: (1) a plasma type fluidized bed furnace in which a granular fluidized-bed furnace is provided inside a furnace vessel provided with a fluidizing gas inlet at a lower part thereof; Equipped with a rectifying plate for mounting the object to be processed, a high-frequency induction coil concentrically arranged outside the furnace vessel, and a fluidizing gas was introduced from the fluidizing gas inlet and mounted on the rectifying plate. The granular object to be processed is held as a fluidized bed by the drag and the gravity of the fluidizing gas, and the object to be processed is reacted using plasma generated by electromagnetic induction by a high-frequency magnetic field generated by a high-frequency induction coil.

【0007】(2)さらに、(1)のプラズマ式流動層
炉において、炉容器の流動層の上部に位置する壁面に、
粒状の被処理物を外部より整流板の上へと供給する被処
理物供給手段を備えることとする。 (3)さらに、(1)または(2)のプラズマ式流動層
炉において、流動床の下部に、被処理物を外部より整流
板の上へと供給する第2の被処理物供給手段を備えるこ
ととする。
(2) Further, in the plasma type fluidized bed furnace of (1), a wall located above the fluidized bed of the furnace vessel has
A workpiece supply means for supplying the granular workpiece from the outside onto the current plate is provided. (3) Further, in the plasma type fluidized bed furnace according to (1) or (2), a second workpiece supply means for supplying the workpiece from the outside onto the straightening plate is provided below the fluidized bed. It shall be.

【0008】(4)また、(1)〜(3)のプラズマ式
流動層炉において、被処理物が反応するプラズマ領域の
上部に、燃焼ガスを導入してガスを燃焼させる副燃焼室
を備えることとする。 (5)また、(1)〜(4)のプラズマ式流動層炉にお
いて、運転時に炉容器の内部の圧力を減圧状態に保持す
ることとする。
(4) Further, in the plasma type fluidized bed furnace of (1) to (3), a sub-combustion chamber for introducing a combustion gas and burning the gas is provided above the plasma region where the object to be treated reacts. It shall be. (5) In the plasma type fluidized bed furnace of (1) to (4), the pressure inside the furnace vessel is maintained at a reduced pressure during operation.

【0009】(6)また、(1)〜(5)のプラズマ式
流動層炉において、流動化ガス導入口より導入される流
動化ガスを、炉容器より排出された排出ガスを用いて加
熱される熱交換器により加熱して供給することとする。 上記の(1)のごとく、内部に粒状の被処理物を搭載す
る整流板を備えた炉容器の外側に同心状に高周波誘導コ
イルを配置し、高周波電流を通電すれば、炉容器の内部
に高周波磁界が形成され、この磁界により電磁誘導作用
により電界が生じ、さらにこの電界によりプラズマが生
成、維持されることとなる。このように生成されたプラ
ズマは、活性度が非常に高く反応性に富んでおり、その
温度は 5000 ℃を越え、場合によっては 10000℃をこえ
る。したがって、このプラズマを用いれば、例えば酸素
による酸化性雰囲気、あるいは水素による還元性雰囲気
を容易に長時間、安定して作ることができる。このよう
にして形成された雰囲気下において流動層を形成すれ
ば、被処理物が高温高活性のプラズマに直接接触するこ
ととなるので、熱化学反応のみならず、イオン、電子、
ラジカル活性種の関与したプラズマ化学反応を利用し、
効果的な反応を行うことができる。
(6) In the plasma type fluidized bed furnace of (1) to (5), the fluidizing gas introduced from the fluidizing gas inlet is heated by using the exhaust gas discharged from the furnace vessel. The heat is supplied by a heat exchanger. As described in (1) above, if a high-frequency induction coil is concentrically arranged outside a furnace vessel provided with a rectifying plate on which a granular workpiece is mounted and a high-frequency current is supplied, the inside of the furnace vessel becomes A high-frequency magnetic field is formed, and the magnetic field generates an electric field by an electromagnetic induction action, and the electric field generates and maintains plasma. The plasma generated in this way is very active and highly reactive, its temperature exceeding 5000 ° C and in some cases exceeding 10,000 ° C. Therefore, if this plasma is used, for example, an oxidizing atmosphere with oxygen or a reducing atmosphere with hydrogen can be easily and stably formed for a long time. If a fluidized bed is formed under the atmosphere thus formed, the object to be processed comes into direct contact with high-temperature and high-activity plasma, so that not only thermochemical reactions but also ions, electrons,
Utilizing plasma chemical reaction involving radical active species,
An effective reaction can be performed.

【0010】また、このプラズマ式流動層炉を(2)の
ごとくに構成すれば、被処理物を連続して供給すること
ができるので、より効率的に反応させることができる。
さらにこのプラズマ式流動層炉を(3)のごとくに構成
すれば、粒子が微小で飛散しやすい被処理物にあって
も、容易に整流板の上に供給できることとなる。さら
に、二つの被処理物供給手段より供給された二つの被処
理物を混合して反応させることができる。また、第2の
被処理物供給手段より供給される被処理物を棒状体とす
れば、粒状の被処理物と棒状の被処理物を混合して反応
させることができる。
Further, if the plasma type fluidized bed furnace is configured as shown in (2), the object to be processed can be continuously supplied, so that the reaction can be performed more efficiently.
Further, if this plasma type fluidized bed furnace is configured as shown in (3), even if the processing target is minute and particles are easily scattered, it can be easily supplied onto the rectifying plate. Further, the two workpieces supplied from the two workpiece supply means can be mixed and reacted. Further, if the processing object supplied from the second processing object supply means is a rod-shaped body, the granular processing object and the rod-shaped processing object can be mixed and reacted.

【0011】また、(4)のごとくとすれば、プラズマ
領域を通過した被処理物の未処理物質が、副燃焼室にお
いて導入した燃焼ガスにより燃焼されるので、炉外へ排
出される未処理物質による粉塵量が抑制される。また、
(5)のごとくとすれば、炉容器の内部のガスの密度の
低下とともに熱密度が低下し、被処理物の温度を低く抑
えることが可能となる。したがって、例えばプラスチッ
ク類のごとく低温での処理が必要な物質の反応を効果的
に行うことができる。
In the case of (4), the untreated substance of the object to be treated that has passed through the plasma region is burned by the combustion gas introduced into the sub-combustion chamber. The amount of dust due to the substance is suppressed. Also,
According to (5), the heat density decreases as the gas density inside the furnace vessel decreases, and the temperature of the object to be processed can be suppressed to a low level. Therefore, for example, a reaction of a substance requiring a low-temperature treatment such as plastics can be effectively performed.

【0012】また、(6)のごとくとすれば、反応によ
り加熱されて排出された排出ガスが、導入される流動化
ガスの加熱に効果的に使用されることとなるので、系の
熱効率が大幅に向上することとなる。
[0012] Further, in the case of (6), the exhaust gas heated and discharged by the reaction is effectively used for heating the fluidized gas to be introduced, so that the thermal efficiency of the system is reduced. It will be greatly improved.

【0013】[0013]

【発明の実施の形態】図1は、本発明によるプラズマ式
流動層炉の第1の実施例の基本構成を模式的に示す断面
図である。図において、鉛直方向に中心軸を配した炉容
器1は、耐熱性電気絶縁材料のアルミナ耐火レンガから
なる低損失耐熱壁1aを壁面に用いて構成されており、
下端には流動化ガス導入口3が、また上端には排気ガス
排出口5が設置されている。炉容器1の内部の下方に
は、流動化ガス導入口3より導入された流動化ガスの流
れを整流するアルミナフォームからなる整流板2が組み
込まれている。上部の壁面には、外部より被処理物20
を供給する被処理物供給器4が備えられている。また、
炉容器1の下端には、反応に用いられる反応ガスを導入
する反応ガス導入口7と、シースガスを導入するシース
ガス導入口6が設けられている。さらに、炉容器1の低
損失耐熱壁1aの外側には、高周波電流が通電される高
周波誘導コイル8が同軸状に配されている。
FIG. 1 is a sectional view schematically showing a basic structure of a first embodiment of a plasma type fluidized bed furnace according to the present invention. In the figure, a furnace vessel 1 having a central axis arranged in the vertical direction is configured by using a low-loss heat-resistant wall 1a made of alumina refractory brick made of a heat-resistant electrical insulating material as a wall surface,
A fluidizing gas inlet 3 is provided at a lower end, and an exhaust gas outlet 5 is provided at an upper end. A rectifying plate 2 made of alumina foam for rectifying the flow of the fluidizing gas introduced from the fluidizing gas inlet 3 is incorporated below the inside of the furnace vessel 1. On the upper wall, the object 20
Is provided. Also,
At the lower end of the furnace vessel 1, a reaction gas inlet 7 for introducing a reaction gas used for the reaction and a sheath gas inlet 6 for introducing a sheath gas are provided. Further, a high-frequency induction coil 8 through which a high-frequency current flows is coaxially arranged outside the low-loss heat-resistant wall 1a of the furnace vessel 1.

【0014】本構成において、流動化ガス導入口3より
流動化ガスを導入すると、整流板2の上に供給された被
処理物20は、流動化ガスによる抗力と自重とにより流
動層を形成して保持される。また、高周波誘導コイル8
に高周波電流を通電すると、炉容器1の内部に高周波磁
界が生じ、電磁誘導により高周波電界を発生し、この電
界によりプラズマ9が生成される。このとき、シースガ
ス導入口6から導入されたシースガスは、プラズマ9に
対して熱ピンチ作用をして、炉容器1の低損失耐熱壁1
aをプラズマ9から隔てて保護する役割を果たす。した
がって、流動層として保持された被処理物20は、高温
高活性のプラズマ9に直接接触し、効果的に反応するこ
ととなるので、例えば、黒鉛廃棄物の燃焼処理や、鉄鉱
石の流動還元処理等に、特に効果的である。
In this configuration, when the fluidizing gas is introduced from the fluidizing gas inlet 3, the workpiece 20 supplied on the flow straightening plate 2 forms a fluidized bed by the drag of the fluidizing gas and its own weight. Is held. The high-frequency induction coil 8
When a high-frequency current is supplied to the furnace vessel 1, a high-frequency magnetic field is generated inside the furnace vessel 1, and a high-frequency electric field is generated by electromagnetic induction. At this time, the sheath gas introduced from the sheath gas inlet 6 performs a thermal pinch action on the plasma 9, and causes the low-loss heat-resistant wall 1 of the furnace vessel 1.
plays a role of protecting a from the plasma 9. Therefore, the treatment object 20 held as a fluidized bed comes into direct contact with the high-temperature and high-activity plasma 9 and effectively reacts. For example, the combustion treatment of graphite waste or the fluid reduction of iron ore is performed. It is particularly effective for processing and the like.

【0015】なお、流動化ガスに反応ガスを用いても良
いが、本実施例のごとく反応ガス導入口7より別途反応
ガスを供給することとすれば、反応速度の調整が可能と
なる。なお、本構成では、反応によって発生した排気ガ
スは、図示しない排気手段によって上端の排気ガス排出
口5より外部へ排出するよう構成されている。図2は、
本発明によるプラズマ式流動層炉の第2の実施例の基本
構成を模式的に示す断面図である。
Although a reaction gas may be used as the fluidizing gas, if the reaction gas is separately supplied from the reaction gas inlet 7 as in this embodiment, the reaction speed can be adjusted. In this configuration, the exhaust gas generated by the reaction is configured to be exhausted to the outside from the exhaust gas outlet 5 at the upper end by an exhaust unit (not shown). FIG.
FIG. 4 is a cross-sectional view schematically showing a basic configuration of a second embodiment of the plasma type fluidized bed furnace according to the present invention.

【0016】本実施例の第1の実施例との差異は、炉容
器1の下端に第2の被処理物供給器、すなわち棒状被処
理物30を炉外より整流板2Aの上の流動層部分へと供
給する棒状被処理物供給装置10が組み込まれているこ
とにある。本構成の棒状被処理物供給装置10は、図に
見られるように、棒状被処理物30を、中央部分に貫通
孔を備えた流動化ガス導入口3Aと整流板2Aとを貫通
させ、気密を保持して流動層部分へと連続的に供給でき
るように構成されている。したがって、本装置では、上
部に設置された被処理物供給器4より供給される粒状の
被処理物20と上記の棒状被処理物30を、ともにプラ
ズマ9に直接接触させ、効果的な反応を行うことができ
るので、例えば、黒鉛の原子炉制御棒を、予め粉砕処理
することなく、棒状のまま直接投入して処理することが
可能となり、また、粒状、粉状の黒鉛と同時に処理する
こともできる。
The difference between this embodiment and the first embodiment is that a second workpiece supply device, that is, a rod-like workpiece 30 is provided at the lower end of the furnace vessel 1 from outside the furnace in a fluidized bed on the rectifying plate 2A. That is, the rod-shaped workpiece supply device 10 for supplying the material to the portion is incorporated. As shown in the figure, the rod-shaped workpiece supply apparatus 10 having this configuration allows the rod-shaped workpiece 30 to pass through the fluidizing gas inlet 3A having a through hole in the center portion and the rectifying plate 2A, thereby achieving airtightness. And it can be continuously supplied to the fluidized bed portion. Therefore, in the present apparatus, both the granular workpiece 20 supplied from the workpiece supply device 4 installed above and the rod-shaped workpiece 30 are brought into direct contact with the plasma 9 to effect an effective reaction. Therefore, for example, it is possible to directly process graphite reactor control rods in the form of rods without prior pulverization processing without pulverizing, and to process simultaneously with granular or powdery graphite. Can also.

【0017】図3は、本発明によるプラズマ式流動層炉
の第3の実施例の基本構成を模式的に示す断面図であ
る。本実施例の特徴は、炉容器1の下端に、粒状の被処
理物を炉外より整流板2Bの上の流動層部分へと供給す
る粒状被処理物供給装置11が付加されている点にあ
る。粒状被処理物供給装置11は、下端より供給された
粒状の被処理物を、中央部分に貫通孔を備えた流動化ガ
ス導入口3Bと整流板2Bとを貫通させ、整流板2Bの
上部へと送るよう構成されている。したがって、本装置
では、被処理物供給器4と粒状被処理物供給装置11と
より供給される2種類の粒状の被処理物をプラズマ9に
直接接触させ、効果的な反応を行うことができるので、
石灰石を混入しての脱硫処理に効果的であり、また、上
部の被処理物供給器4からの投入では飛散する微粉状の
被処理物の処理に特に効果的である。
FIG. 3 is a sectional view schematically showing the basic structure of a third embodiment of the plasma type fluidized bed furnace according to the present invention. The feature of the present embodiment is that a granular workpiece supply device 11 for supplying a granular workpiece from the outside of the furnace to a fluidized bed portion above the rectifying plate 2B is added to the lower end of the furnace vessel 1. is there. The granular workpiece supply device 11 allows the granular workpiece supplied from the lower end to pass through the fluidizing gas inlet 3B having a through hole at the center and the rectifying plate 2B, and to the upper part of the rectifying plate 2B. It is configured to send. Therefore, in the present apparatus, two kinds of granular workpieces supplied from the workpiece supply device 4 and the granular workpiece supply device 11 are brought into direct contact with the plasma 9 and an effective reaction can be performed. So
It is effective for desulfurization treatment by mixing limestone, and is particularly effective for treatment of scattered fine-powder objects when charged from the upper object supply device 4.

【0018】図4は、本発明によるプラズマ式流動層炉
の第4の実施例におけるガス供給、排気系統の基本構成
を示すフロー図である。図において、流動層炉50は、
例えば図1〜3に示した第1〜第3の実施例のプラズマ
式流動層炉である。本図の構成においては、流動層炉5
0において反応により発生した高温の排気ガスは、排気
ブロワ54によって吸引されて流動層炉50の排気ガス
排出口より排出され、熱交換器52の2次側へと送られ
たのち外部へ排出される。一方、流動化ガス供給装置5
1より供給される流動化ガスは、熱交換器52の1次側
へと送られたのち、流量制御器53で流量制御され、流
動層炉50へと導入される。したがって、導入される流
動化ガスは、熱交換器52において排熱を利用して加熱
されるので、熱効率の高い運転が可能となる。また、排
気ブロワ54の吸気能力と流量制御器53によって、制
御流量の調整・制御を行うことにより、流動層炉50を
減圧雰囲気に保持して運転することができるという利点
があり、したがって、例えばプラスチック類のごとく低
温での処理が必要な物質の反応を効果的に行うことがで
きる。
FIG. 4 is a flowchart showing a basic configuration of a gas supply and exhaust system in a fourth embodiment of the plasma type fluidized bed furnace according to the present invention. In the figure, a fluidized bed furnace 50 is
For example, the plasma type fluidized bed furnace of the first to third embodiments shown in FIGS. In the configuration of FIG.
The high-temperature exhaust gas generated by the reaction at 0 is sucked by the exhaust blower 54, discharged from the exhaust gas outlet of the fluidized bed furnace 50, sent to the secondary side of the heat exchanger 52, and then discharged to the outside. You. On the other hand, the fluidizing gas supply device 5
After the fluidizing gas supplied from 1 is sent to the primary side of the heat exchanger 52, the flow rate is controlled by the flow rate controller 53, and the fluidized gas is introduced into the fluidized bed furnace 50. Therefore, the fluidized gas to be introduced is heated by using the exhaust heat in the heat exchanger 52, so that operation with high thermal efficiency becomes possible. In addition, by adjusting and controlling the control flow rate by the intake capacity of the exhaust blower 54 and the flow rate controller 53, there is an advantage that the fluidized bed furnace 50 can be operated while being kept in a reduced pressure atmosphere. The reaction of a substance requiring a low-temperature treatment such as plastics can be effectively performed.

【0019】図5は、本発明によるプラズマ式流動層炉
の第5の実施例の基本構成を模式的に示す断面図であ
る。本実施例の特徴は、炉容器1の上部、すなわち反応
によって発生したガスの排出側に、仕切り板41によっ
て仕切られた副燃焼室40が設けられていることにあ
る。本構成においては、プラズマ領域を通過したガス
は、仕切り板41の通気孔を通って副燃焼室40へと導
かれ、ガスの中に含まれる被処理物の未処理物質が、副
燃焼ガス導入口42より導入される燃焼ガスによって燃
焼されるので、炉外へ排出される未処理物質による粉塵
量が抑制されることとなる。
FIG. 5 is a sectional view schematically showing the basic structure of a fifth embodiment of the plasma type fluidized bed furnace according to the present invention. This embodiment is characterized in that a sub-combustion chamber 40 partitioned by a partition plate 41 is provided in the upper part of the furnace vessel 1, that is, on the discharge side of the gas generated by the reaction. In this configuration, the gas that has passed through the plasma region is guided to the sub-combustion chamber 40 through the ventilation hole of the partition plate 41, and the unprocessed substance of the processing target contained in the gas is introduced into the sub-combustion gas. Since the fuel is burned by the combustion gas introduced from the port 42, the amount of dust due to untreated substances discharged outside the furnace is suppressed.

【0020】[0020]

【発明の効果】上述のごとく、本発明によれば、 (1)プラズマ式流動層炉を請求項1に記載のごとく構
成することとしたので、粒状の被処理物が流動層を形成
する部分に高温のプラズマが生成、維持され、被処理物
がこのプラズマに接して加熱され、反応することとなっ
た。したがって、酸化性あるいは還元性の高活性の雰囲
気にが容易に得られ、かつ熱効率の高い流動層炉が得ら
れることとなった。
As described above, according to the present invention, (1) Since the plasma type fluidized bed furnace is constituted as described in claim 1, the portion where the granular object to be treated forms a fluidized bed is provided. Then, a high-temperature plasma was generated and maintained, and the object to be processed was heated and reacted in contact with the plasma. Therefore, an oxidizing or reducing highly active atmosphere can be easily obtained, and a fluidized bed furnace with high thermal efficiency can be obtained.

【0021】(2)また、請求項2に記載のごとくとす
れば、被処理物を連続的に供給して処理することが可能
となり、さらに請求項3に記載のごとくとすれば、二つ
の被処理物、例えば、粒状の被処理物と粒状の被処理
物、あるいは粒状の被処理物と棒状の被処理物を混合し
て、反応させることができるので、広い用途に利用でき
る流動層炉が得られることとなる。
(2) According to the second aspect of the present invention, it is possible to continuously supply and process the object to be processed. A fluidized-bed furnace that can be used for a wide range of applications because it is possible to mix and react a workpiece, for example, a granular workpiece and a granular workpiece, or a granular workpiece and a rod-shaped workpiece. Is obtained.

【0022】(3)また、請求項4に記載のごとくとす
れば、プラズマ領域を通過した被処理物の未処理物質が
燃焼処理され、炉外へ排出される粉塵量が抑制されるの
で、流動層炉として好適である。 (4)また、請求項5に記載のごとくとすれば、被処理
物の温度を低下できることとなるので、例えばプラスチ
ック類のごとく低温での処理が必要な物質の反応を効果
的に行うことができ、流動床炉として好適である。
(3) According to the fourth aspect of the present invention, the unprocessed substance of the object to be processed that has passed through the plasma region is burned, and the amount of dust discharged outside the furnace is suppressed. It is suitable as a fluidized bed furnace. (4) According to the fifth aspect, since the temperature of the object to be processed can be reduced, it is possible to effectively perform the reaction of a substance which needs to be processed at a low temperature such as plastics. It is suitable as a fluidized bed furnace.

【0023】(5)また、請求項6に記載のごとくとす
れば、反応、焙焼処理に伴う発熱が導入される流動層ガ
スの加熱に効果的に再利用され、系の熱効率が大幅に向
上することとなるので、流動層炉として好適である。
(5) According to the sixth aspect, the heat generated by the reaction and the roasting is effectively reused for heating the fluidized bed gas to be introduced, and the thermal efficiency of the system is greatly improved. Therefore, it is suitable as a fluidized bed furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるプラズマ式流動層炉の第1の実施
例の基本構成を模式的に示す断面図
FIG. 1 is a sectional view schematically showing a basic configuration of a first embodiment of a plasma type fluidized bed furnace according to the present invention.

【図2】本発明によるプラズマ式流動層炉の第2の実施
例の基本構成を模式的に示す断面図
FIG. 2 is a cross-sectional view schematically showing a basic configuration of a second embodiment of a plasma type fluidized bed furnace according to the present invention.

【図3】本発明によるプラズマ式流動層炉の第3の実施
例の基本構成を模式的に示す断面図
FIG. 3 is a sectional view schematically showing a basic configuration of a third embodiment of a plasma type fluidized bed furnace according to the present invention.

【図4】本発明によるプラズマ式流動層炉の第4の実施
例におけるガス供給、排気系統の基本構成を示すフロー
FIG. 4 is a flowchart showing a basic configuration of a gas supply and exhaust system in a fourth embodiment of the plasma type fluidized bed furnace according to the present invention.

【図5】本発明によるプラズマ式流動層炉の第5の実施
例の基本構成を模式的に示す断面図
FIG. 5 is a sectional view schematically showing a basic configuration of a fifth embodiment of the plasma type fluidized bed furnace according to the present invention.

【図6】従来の流動層炉の基本構成を模式的に示す断面
FIG. 6 is a cross-sectional view schematically showing a basic configuration of a conventional fluidized bed furnace.

【符号の説明】[Explanation of symbols]

1 炉容器 1a 炉容器 1b 炉容器 2 整流板 2A 整流板 2B 整流板 3 流動化ガス導入口 3A 流動化ガス導入口 4 被処理物供給器 5 排気ガス排出口 6 シースガス導入口 7 反応ガス導入口 8 高周波誘導コイル 9 プラズマ 10 棒状被処理物供給装置 11 粒状被処理物供給装置 20 被処理物 30 棒状被処理物 40 副燃焼室 41 仕切り板 42 副燃焼ガス導入口 50 流動層炉 51 流動化ガス供給装置 52 熱交換器 53 流量制御器 54 排気ブロワ DESCRIPTION OF SYMBOLS 1 Furnace container 1a Furnace container 1b Furnace container 2 Rectifier plate 2A Rectifier plate 2B Rectifier plate 3 Fluidizing gas inlet 3A Fluidizing gas inlet 4 Workpiece feeder 5 Exhaust gas outlet 6 Sheath gas inlet 7 Reaction gas inlet Reference Signs List 8 high frequency induction coil 9 plasma 10 rod-shaped workpiece supply device 11 granular workpiece supply apparatus 20 workpiece 30 rod-shaped workpiece 40 sub-combustion chamber 41 partition plate 42 sub-combustion gas inlet 50 fluidized bed furnace 51 fluidizing gas Supply device 52 Heat exchanger 53 Flow controller 54 Exhaust blower

フロントページの続き (72)発明者 清水 明夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内Continuation of the front page (72) Inventor Akio Shimizu 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】下部に流動化ガス導入口を備えた炉容器の
内部に粒状の被処理物を搭載する整流板を備え、炉容器
の外側に同心状に配された高周波誘導コイルを備えて構
成し、流動化ガス導入口より流動化ガスを導入し、整流
板に搭載された粒状の被処理物を流動化ガスによる抗力
と重力とによって流動層として保持し、高周波誘導コイ
ルの発生する高周波磁場により電磁誘導で生じるプラズ
マを用いて、被処理物を反応させることを特徴とするプ
ラズマ式流動層炉。
1. A rectifying plate for mounting a granular object to be processed is provided inside a furnace vessel provided with a fluidizing gas inlet at a lower portion, and a high-frequency induction coil arranged concentrically outside the furnace vessel. The fluidizing gas is introduced from the fluidizing gas inlet, and the granular processing object mounted on the flow straightening plate is held as a fluidized bed by the drag and gravity caused by the fluidizing gas. A plasma type fluidized bed furnace characterized by reacting an object to be processed using plasma generated by electromagnetic induction by a magnetic field.
【請求項2】請求項1に記載のプラズマ式流動層炉にお
いて、炉容器の流動層の上部に位置する壁面に、粒状の
被処理物を外部より整流板の上へと供給する被処理物供
給手段を備えたことを特徴とするプラズマ式流動層炉。
2. A plasma-type fluidized bed furnace according to claim 1, wherein a granular object to be processed is externally supplied onto a flow straightening plate on a wall located above a fluidized bed of a furnace vessel. A plasma type fluidized bed furnace comprising a supply means.
【請求項3】請求項1または2に記載のプラズマ式流動
層炉において、流動層の下部に、被処理物を外部より整
流板の上へと供給する第2の被処理物供給手段を備えた
ことを特徴とするプラズマ式流動層炉。
3. The plasma type fluidized bed furnace according to claim 1, further comprising a second object supply means for supplying the object to be processed from the outside onto the rectifying plate below the fluidized bed. A plasma type fluidized bed furnace characterized by the above-mentioned.
【請求項4】請求項1、2または3に記載のプラズマ式
流動層炉において、被処理物が反応するプラズマ領域の
上部に、燃焼ガスを導入してガスを燃焼させる副燃焼室
を備えたことを特徴とするプラズマ式流動層炉。
4. The plasma type fluidized bed furnace according to claim 1, further comprising a sub-combustion chamber for introducing a combustion gas and burning the gas above the plasma region where the object reacts. A plasma type fluidized bed furnace characterized by the above-mentioned.
【請求項5】請求項1、2、3または4に記載のプラズ
マ式流動層炉において、運転時に炉容器の内部の圧力が
減圧状態に保持されることを特徴とするプラズマ式流動
層炉。
5. The plasma type fluidized bed furnace according to claim 1, wherein the pressure inside the furnace vessel is maintained at a reduced pressure during operation.
【請求項6】請求項1、2、3、4または5に記載のプ
ラズマ式流動層炉において、流動化ガス導入口より導入
される流動化ガスが、炉容器より排出された排出ガスを
用いて加熱される熱交換器によって加熱して供給される
ことを特徴とするプラズマ式流動層炉。
6. The plasma type fluidized bed furnace according to claim 1, wherein the fluidizing gas introduced from the fluidizing gas inlet is an exhaust gas discharged from the furnace vessel. A plasma-type fluidized bed furnace supplied by being heated by a heat exchanger that is heated by heating.
JP8173133A 1996-07-03 1996-07-03 Plasma type fluidized bed furnace Withdrawn JPH1015380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8173133A JPH1015380A (en) 1996-07-03 1996-07-03 Plasma type fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8173133A JPH1015380A (en) 1996-07-03 1996-07-03 Plasma type fluidized bed furnace

Publications (1)

Publication Number Publication Date
JPH1015380A true JPH1015380A (en) 1998-01-20

Family

ID=15954741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8173133A Withdrawn JPH1015380A (en) 1996-07-03 1996-07-03 Plasma type fluidized bed furnace

Country Status (1)

Country Link
JP (1) JPH1015380A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071840A1 (en) * 2002-02-15 2003-08-28 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
US7297323B2 (en) 2001-09-25 2007-11-20 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing fine particles
CN102120166A (en) * 2010-12-17 2011-07-13 中国科学技术大学 Low-temperature cold plasma magnetic fluidized bed reactor
JP2014504316A (en) * 2010-12-08 2014-02-20 イノベイティブ・カーボン・リミテッド Granular materials, composite materials containing them, their preparation and use
CN108012400A (en) * 2017-11-24 2018-05-08 电子科技大学 A kind of normal pressure high frequency cold plasma processing unit
JP2020116034A (en) * 2019-01-22 2020-08-06 株式会社タクマ Ozone/plasma treatment device and oxidative decomposition treatment method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297323B2 (en) 2001-09-25 2007-11-20 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing fine particles
US7678326B2 (en) 2001-09-25 2010-03-16 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing fine particles
WO2003071840A1 (en) * 2002-02-15 2003-08-28 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
JP2014504316A (en) * 2010-12-08 2014-02-20 イノベイティブ・カーボン・リミテッド Granular materials, composite materials containing them, their preparation and use
CN102120166A (en) * 2010-12-17 2011-07-13 中国科学技术大学 Low-temperature cold plasma magnetic fluidized bed reactor
CN108012400A (en) * 2017-11-24 2018-05-08 电子科技大学 A kind of normal pressure high frequency cold plasma processing unit
JP2020116034A (en) * 2019-01-22 2020-08-06 株式会社タクマ Ozone/plasma treatment device and oxidative decomposition treatment method using the same

Similar Documents

Publication Publication Date Title
US4631384A (en) Bitumen combustion process
US4469508A (en) Process and installation for heating a fluidized bed by plasma injection
RU2518822C1 (en) System and method for ore body thermal processing
US4249889A (en) Method and apparatus for preheating, positioning and holding objects
JPH1015380A (en) Plasma type fluidized bed furnace
JP3553499B2 (en) Method and apparatus for heat treatment of fine particulate matter in a coarse-grained fluidized bed
CN107708283A (en) The temprature control method and equipment of a kind of microwave plasma
US20020189497A1 (en) Method of reducing carbon levels in fly ash
JP2002539415A (en) Method and apparatus for reducing feedstock in a rotary hearth furnace
JPH1074581A (en) Plasma type fluidized bed reactor
CN113614049A (en) Method and apparatus for producing quick lime using coke dry fire extinguishing equipment
TW406036B (en) Process and device for the depletion of metal from molten glass or molten slag
CA2417022A1 (en) A method of reducing unburned carbon levels in coal ash
JP2002257480A (en) Low-co2 exhausting type burning apparatus and method for using the same
RU2298453C2 (en) Method for treating powdered, especially metal containing initial material and apparatus for performing the same
Devyatykh et al. Mathematical Model of Heat Exchange of a Plasma Furnace
JPS5938015B2 (en) Calcination equipment for powder and granular raw materials
EP4329930A1 (en) Plasma cyclone reactor
JPS6136573B2 (en)
RU2170138C1 (en) Electrodynamic superhigh-frequency installation for decomposition of calcium carbonate
RU2040559C1 (en) Method for beneficiation of agglomerate burden for sintering
JP2006102630A (en) Contaminant decomposition apparatus and contaminant treatment apparatus in soil
Nagata et al. Change of Energy Transfer Medium from High Temperature Gas to Microwave
JPH10220967A (en) Circulating fluidized bed reducing apparatus
JPS6383579A (en) Fluidized bed type calciner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051207