JPH10149729A - Oxide superconductive wire rod and manufacture thereof - Google Patents

Oxide superconductive wire rod and manufacture thereof

Info

Publication number
JPH10149729A
JPH10149729A JP8307709A JP30770996A JPH10149729A JP H10149729 A JPH10149729 A JP H10149729A JP 8307709 A JP8307709 A JP 8307709A JP 30770996 A JP30770996 A JP 30770996A JP H10149729 A JPH10149729 A JP H10149729A
Authority
JP
Japan
Prior art keywords
wire
oxide superconducting
core
oxide
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8307709A
Other languages
Japanese (ja)
Other versions
JP3520699B2 (en
Inventor
Katsumi Nomura
克己 野村
Akira Nomoto
明 野本
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP30770996A priority Critical patent/JP3520699B2/en
Publication of JPH10149729A publication Critical patent/JPH10149729A/en
Application granted granted Critical
Publication of JP3520699B2 publication Critical patent/JP3520699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the critical current density of the whole of a wire material by forming a cross sectional area of a core of an oxide superconductive wire arranged at a center or an inner peripheral side larger than that of a core of an oxide superconductive wire arranged outside. SOLUTION: Periphery of a core 1, which is formed of an oxide superconductor, is coated with the metal sheath material 2 so as to form an oxide superconductive wire 23 having a hexagonal or circular cross section. At the same time, several kinds of oxide superconductive wires 3b, 3c having a different core ratio from each other are manufactured. At this stage, core ratio is set small in order of wires 3a, 3b, 3c so that the wire 3a has the maximum core ratio. To the case where cross sectional area of the core 1 of the wire 3a is set at 100, cross sectional area of the core 1 of the wire 3c is set at 50-85. An oxide superconductive wire bundle is inserted into a metal sheath material 4 so as to manufacture a multi-core billet 5, and diameter thereof is reduced so as to manufacture an oxide superconductive multi-core material 7. With this structure compressive stress is evenly applied to the whole of the oxide superconductive wire rod, and the oxide superconductors having the even shape are distributed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導線材
に係り、特に、コイル、給電用導体、および送電用導体
に用いられる酸化物超電導線材に関するものである。
The present invention relates to an oxide superconducting wire, and more particularly to an oxide superconducting wire used for a coil, a power supply conductor, and a power transmission conductor.

【0002】[0002]

【従来の技術】酸化物超電導線材(例えば、酸化物超電
導素線、酸化物超電導多芯線材)の代表的な作製方法と
して、金属被覆法(powder-in-tube method )が挙げら
れる。
2. Description of the Related Art As a typical method for producing an oxide superconducting wire (for example, an oxide superconducting element wire or an oxide superconducting multifilamentary wire), there is a metal-coating method (powder-in-tube method).

【0003】金属被覆法は、先ず、予め準備した酸化物
超電導粉末(適当な加熱処理を施すことによって酸化物
超電導体となるような粉末も含む)を適当なサイズの金
属シース材(Agシースを用いることが多い)に充填し
て、内部にコアを有するビレットを形成する。
In the metal coating method, first, an oxide superconducting powder prepared in advance (including a powder which becomes an oxide superconductor by performing an appropriate heat treatment) is coated with a metal sheath material (Ag sheath) of an appropriate size. (Often used) to form a billet having a core inside.

【0004】このビレットに押出加工、伸線加工、圧延
加工などの機械的加工を施して所定の線材形状に形成す
る。その後、この線材に熱処理を施して酸化物超電導線
材を作製する。この時、必要に応じて、熱処理後に機械
的加工と熱処理を繰返し施してもよい。
[0004] The billet is subjected to mechanical processing such as extrusion, drawing, and rolling to form a predetermined wire shape. Thereafter, the wire is subjected to a heat treatment to produce an oxide superconducting wire. At this time, if necessary, mechanical processing and heat treatment may be repeatedly performed after the heat treatment.

【0005】多芯線材の場合は、前記の機械的加工を施
して得られた線材の多数本を、パイプ状の金属シース材
内に挿入して多芯ビレットとし、その多芯ビレットに、
再度機械的加工を施して所定の線材形状とした後、熱処
理を施して酸化物超電導多芯線材を作製する。
In the case of a multifilamentary wire, a multifilamentary billet is formed by inserting a large number of wires obtained by performing the above-mentioned mechanical processing into a pipe-shaped metal sheath material to form a multifilament billet.
After mechanical processing is again performed to obtain a predetermined wire shape, heat treatment is performed to produce an oxide superconducting multi-core wire.

【0006】従来の酸化物超電導線材の横断面図を図2
に示す。図2(a)は、酸化物超電導線材を形成するた
めの多芯ビレットの横断面図の一例を示し、図2(b)
は、酸化物超電導線材を形成するための多芯ビレットの
横断面図の他の例を示し、図2(c)は、酸化物超電導
多芯線材の横断面図を示し、図2(d)は、平角状酸化
物超電導多芯線材の横断面図を示し、図2(e)は、テ
ープ状酸化物超電導多芯線材の横断面図を示している。
FIG. 2 is a cross-sectional view of a conventional oxide superconducting wire.
Shown in FIG. 2A shows an example of a cross-sectional view of a multifilament billet for forming an oxide superconducting wire, and FIG.
FIG. 2C shows another example of a cross-sectional view of a multifilament billet for forming an oxide superconducting wire, FIG. 2C shows a cross-sectional view of an oxide superconducting multicore wire, and FIG. Shows a cross-sectional view of a rectangular oxide superconducting multi-core wire, and FIG. 2 (e) shows a cross-sectional view of a tape-shaped oxide superconducting multi-core wire.

【0007】図2(a)に示すように、酸化物超電導多
芯線材は、コア21の周囲を金属シース材22で被覆
し、かつ、横断面を正六角形状に作製した酸化物超電導
素線23を多数本束ね(通常は、六角形を形成するよう
に配置することが多い)、その後、所定の内径を有した
金属シース材(Agシースを用いることが多い)24内
に挿入して多芯ビレット25を作製し、この多芯ビレッ
ト25に伸線加工及び/又は圧延加工などの機械的加工
を施して、図2(c)、(d)、(e)に示すような所
定の線材形状に形成し、最後に、この多芯線材に熱処理
を施して作製される。
As shown in FIG. 2 (a), the oxide superconducting multifilamentary wire has a core 21 covered with a metal sheath material 22 and has a regular hexagonal cross section. 23 are bundled (usually often arranged so as to form a hexagon) and then inserted into a metal sheath material (often using an Ag sheath) 24 having a predetermined inner diameter. The core billet 25 is manufactured, and mechanical processing such as wire drawing and / or rolling is performed on the multi-core billet 25 to obtain a predetermined wire rod as shown in FIGS. 2 (c), (d) and (e). It is formed into a shape, and finally, the multifilamentary wire is subjected to a heat treatment to be manufactured.

【0008】また、図2(b)に示すように、横断面丸
型の酸化物超電導素線33を同心円状に多数本束ね、そ
の後、所定の内径を有した金属シース材34内に挿入し
て作製した多芯ビレット35を用いて酸化物超電導多芯
線材を作製してもよい。
As shown in FIG. 2B, a large number of oxide superconducting wires 33 having a round cross section are bundled concentrically and then inserted into a metal sheath material 34 having a predetermined inner diameter. An oxide superconducting multi-core wire may be manufactured using the multi-core billet 35 manufactured as described above.

【0009】図2(c)、(d)、(e)に示すよう
に、酸化物超電導多芯線材は、機械的加工によって、丸
状酸化物超電導多芯線材27、平角状酸化物超電導多芯
線材28、テープ状酸化物超電導多芯線材29などに形
成される。
As shown in FIGS. 2 (c), (d) and (e), the oxide superconducting multifilamentary wire is formed by mechanical processing into a round oxide superconducting multifilamentary wire 27, a rectangular oxide superconducting multifilamentary wire. The core wire 28, the tape-shaped oxide superconducting multi-core wire 29 and the like are formed.

【0010】酸化物超電導多芯線材27,28,29
は、金属マトリックス26c,26d,26e中に酸化
物超電導体21c,21d,21eを分散した構造とな
る。
Oxide superconducting multi-core wires 27, 28, 29
Has a structure in which the oxide superconductors 21c, 21d, 21e are dispersed in the metal matrices 26c, 26d, 26e.

【0011】酸化物超電導線材の熱処理は、Nb3 Sn
などの金属系化合物超電導線材を用いた線材よりも高温
(800〜900℃)で、かつ、酸素雰囲気中で施すこ
とが多い。このため、酸化物超電導体と複合する金属基
材としては、酸化物超電導体との反応性を考慮して、A
gまたはAg合金、AuまたはAu合金などを用いるこ
とが多い。
The heat treatment of the oxide superconducting wire is performed by Nb 3 Sn
In many cases, the heating is performed at a higher temperature (800 to 900 ° C.) and in an oxygen atmosphere than a wire using a metal-based compound superconducting wire. For this reason, considering the reactivity with the oxide superconductor as the metal base material to be composited with the oxide superconductor, A
g or Ag alloy, Au or Au alloy, or the like is often used.

【0012】ここで、酸化物超電導線材は、酸化物超電
導体がセラミックスの一種であることから明らかなよう
に脆性材料である。このため、酸化物超電導線材または
導体にかかる曲げや引張りなどの機械的歪みに対して脆
いという難点がある。よって、最近では、機械的歪みに
対する特性を考慮して、Agシースなどの酸化物超電導
体と複合する金属シース材を合金化して強化したり、多
芯構造にすることが主流になりつつある。
Here, the oxide superconducting wire is a brittle material as apparent from the fact that the oxide superconductor is a kind of ceramic. For this reason, there is a problem that the oxide superconducting wire or the conductor is brittle against mechanical strain such as bending or tension applied to the conductor. Therefore, in recent years, in consideration of characteristics against mechanical strain, a metal sheath material that is composited with an oxide superconductor such as an Ag sheath is alloyed and strengthened, or a multi-core structure is becoming mainstream.

【0013】また、酸化物超電導線材を用いた製品(例
えば、コイルなど)は、線材を巻いてから熱処理を施す
という手法(いわゆるワインド&リアクト法)によって
作製されることが多い。この場合、熱処理条件が厳しい
ため、通常の有機物系絶縁材料を用いることができず、
セラミックスペーパ(例えば、アルミナペーパ)または
セラミックスファイバ(例えば、アルミナファイバ、ガ
ラスファイバ)編組などの耐熱絶縁材料を利用してい
る。
Further, products using an oxide superconducting wire (for example, a coil or the like) are often manufactured by a method of winding a wire and then performing a heat treatment (so-called wind & react method). In this case, since the heat treatment conditions are severe, ordinary organic insulating materials cannot be used,
A heat-resistant insulating material such as a ceramic paper (for example, alumina paper) or a ceramic fiber (for example, alumina fiber or glass fiber) braid is used.

【0014】ここで、ワインド&リアクト法による長尺
線材の熱処理では、線材同士が接触していると熱処理中
に線材同士が融着してしまうため、線材間に適当な間隔
を設けて疎に巻いたり、セラミックスペーパやセラミッ
クスファイバ編組などの絶縁材料をスペーサとして線材
間に巻き込むなどの対策がとられている。
Here, in the heat treatment of long wires by the wind & react method, if the wires are in contact with each other, the wires will fuse together during the heat treatment. Countermeasures are taken such as winding or winding an insulating material such as ceramic paper or ceramic fiber braid between wires as a spacer.

【0015】酸化物超電導体は、電流を流し易い結晶面
と電流を流しにくい結晶軸方向を有しており、電気的特
性および結晶構造から二次元性が非常に強い。酸化物超
電導体を線材として用いる場合には、多結晶体として用
いることが多いため、電流を流し易い結晶面同士の接合
性(以下、結晶同士の接合性と呼ぶ)は、超電導特性を
左右する重要なファクターとなる。
The oxide superconductor has a crystal plane through which current can easily flow and a crystal axis direction through which current does not easily flow, and has a very strong two-dimensional property from the electrical characteristics and crystal structure. When an oxide superconductor is used as a wire, it is often used as a polycrystalline body. Therefore, the bonding property between crystal planes through which a current easily flows (hereinafter referred to as the bonding property between crystals) determines superconducting characteristics. It is an important factor.

【0016】ここで、結晶同士の接合性を向上させるた
めには、二次元性の強い板状結晶を配向させることが必
要条件であり、結晶の接合性と結晶配向性は同義で表現
されることが多い。結晶配向性と臨界電流密度Jcとの
間には相関関係があることが判ってきた。
Here, in order to improve the bondability between crystals, it is a necessary condition that a plate-like crystal having a strong two-dimensional property is oriented, and the bondability of the crystal and the crystal orientation are synonymously expressed. Often. It has been found that there is a correlation between the crystal orientation and the critical current density Jc.

【0017】Agシース法に代表される金属被覆法で作
製した酸化物超電導線材においては、一般に、伸線加工
を施した後に圧延加工を施してテープ状に成形する。テ
ープ状に成形する理由としては、上述したような酸化物
超電導体の特徴を考慮して、結晶配向性を向上させるた
めである。また、酸化物超電導線材中の酸化物超電導体
からなるコアの厚みが大きいと、結晶が配向しにくいと
いう相関関係があることが判ってきた。
An oxide superconducting wire produced by a metal coating method typified by an Ag sheath method is generally formed into a tape by performing a drawing process followed by a rolling process. The reason for forming into a tape shape is to improve the crystal orientation in consideration of the characteristics of the oxide superconductor as described above. Also, it has been found that there is a correlation that if the thickness of the core made of the oxide superconductor in the oxide superconducting wire is large, the crystals are unlikely to be oriented.

【0018】酸化物超電導多芯線材を形成するための多
芯ビレットの作製方法としては、図2(a)に示したよ
うに、多数本の横断面が六角形状の酸化物超電導素線2
3を六角形状(蜂の巣状)に束ね、この六角形状の酸化
物超電導素線束を金属シース材24内に挿入して多芯ビ
レット25を作製することが一般的である。
As a method for producing a multifilament billet for forming a multifilamentary oxide superconducting wire, as shown in FIG. 2A, a number of hexagonal oxide superconducting wires 2 having a hexagonal cross section are used.
In general, a multifilament billet 25 is manufactured by bundling 3 in a hexagonal shape (honeycomb shape) and inserting the hexagonal oxide superconducting element bundle into a metal sheath material 24.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、この六
角形状の酸化物超電導素線束を金属シース材24内に挿
入するため、酸化物超電導素線束の最外周と金属シース
材24の間には必然的に大きな隙間が生じる。これは、
横断面が丸形の酸化物超電導素線33を同心円状に束
ね、この同心円状の酸化物超電導素線束を金属シース材
34内に挿入して作製する多芯ビレット35においても
同様である。
However, since this hexagonal oxide superconducting wire bundle is inserted into the metal sheath material 24, it is inevitable between the outermost periphery of the oxide superconducting wire bundle and the metal sheath material 24. Large gaps occur in this is,
The same applies to a multifilament billet 35 produced by bundling oxide superconducting element wires 33 having a round cross section concentrically and inserting the concentric oxide superconducting element bundle into a metal sheath material 34.

【0020】この酸化物超電導素線束の最外周と金属シ
ース材24の間に隙間を有した多芯ビレット25に縮径
加工を施して形成する横断面丸型の酸化物超電導多芯線
材27の場合、酸化物超電導素線束の中心部より外周部
の方が酸化物超電導素線23の変形量が大きくなるた
め、図2(c)に示したように、酸化物超電導多芯線材
27の外周部における酸化物超電導体21cの形状が乱
れやすい。
A multi-core billet 25 having a round cross section formed by subjecting a multi-core billet 25 having a gap between the outermost periphery of the oxide superconducting element bundle and the metal sheath material 24 to a diameter reduction process. In this case, since the amount of deformation of the oxide superconducting element wire 23 is larger at the outer peripheral part than at the central part of the oxide superconducting element bundle, as shown in FIG. The shape of the oxide superconductor 21c in the portion is easily disturbed.

【0021】酸化物超電導多芯線材27の外周部におけ
る酸化物超電導体21cの形状の乱れは結晶配向性の低
下につながることから、横断面が丸状の酸化物超電導多
芯線材27においては、外周部の臨界電流密度Jcが低
く、中心部の臨界電流密度Jcが高くなるというように
バラツキが生じるという問題があった。
Since the disorder of the shape of the oxide superconductor 21c in the outer peripheral portion of the oxide superconducting multi-core wire 27 leads to a decrease in crystal orientation, the oxide superconducting multi-core wire 27 having a round cross section has the following characteristics. There has been a problem that the critical current density Jc at the outer peripheral portion is low and the critical current density Jc at the central portion is high, causing variations.

【0022】また、多芯ビレットに縮径加工および圧延
加工を施して形成する平角状・テープ状の酸化物超電導
多芯線材28,29の場合、圧延ロール(図示せず)と
接している部分には圧縮応力がかかるため、その部分の
酸化物超電導体21d,21eの厚みは薄くなる。しか
し、圧延ロールと接していない部分には圧縮応力ではな
く圧縮方向と垂直な方向に拡がろうとする流れが生じる
ため、図2(d)、(e)に示したように、その部分の
酸化物超電導体21d,21eの厚みは厚いままであ
る。
In the case of rectangular or tape-shaped oxide superconducting multi-core wires 28 and 29 formed by subjecting a multi-core billet to a diameter reduction process and a rolling process, a portion in contact with a rolling roll (not shown) Is subjected to compressive stress, and the thickness of the oxide superconductors 21d and 21e in that portion is reduced. However, since a flow that is not compressive stress but tends to spread in a direction perpendicular to the compression direction occurs in a portion that is not in contact with the rolling roll, as shown in FIGS. The thickness of the superconductors 21d and 21e remains large.

【0023】このような平角状・テープ状の酸化物超電
導多芯線材28,29の場合、線材の中央部における酸
化物超電導体厚が薄い部分で臨界電流密度Jcが高く、
線材の横幅方向両端部(図中の左右両端部)における酸
化物超電導体厚が厚い部分で臨界電流密度Jcが低いた
め、線材全体に一様な電流が流れないという問題があっ
た。
In the case of such a rectangular or tape-shaped oxide superconducting multifilamentary wire 28 or 29, the critical current density Jc is high in the thin portion of the oxide superconductor at the center of the wire,
Since the critical current density Jc is low in the portion where the thickness of the oxide superconductor is large at both ends in the width direction of the wire (the left and right ends in the figure), there is a problem that a uniform current does not flow through the entire wire.

【0024】すなわち、線材全体の臨界電流密度Jcが
大きくならないと共に、これらの酸化物超電導線材を用
いて作製するコイルなどの酸化物超電導導体において設
計通りの磁場(磁場強度や均質性)が発生しないといっ
た問題があった。
That is, the critical current density Jc of the entire wire does not increase, and a magnetic field (magnetic field strength and homogeneity) as designed does not occur in an oxide superconducting conductor such as a coil manufactured using these oxide superconducting wires. There was such a problem.

【0025】そこで本発明は、上記課題を解決し、線材
全体に一様な電流が流れ、かつ、線材全体の臨界電流密
度が高い酸化物超電導線材を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an oxide superconducting wire in which a uniform current flows through the entire wire and the critical current density of the entire wire is high.

【0026】[0026]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、金属マトリックス中に酸化物超電
導体からなるコアを多数本、六角形状または同心円状に
配置してなる酸化物超電導線材において、中心または内
周側における上記酸化物超電導素線の上記コアの断面積
を外側部における上記酸化物超電導素線の上記コアの断
面積よりも大きくしたものである。
In order to solve the above-mentioned problems, an invention according to claim 1 is an oxide comprising a plurality of cores made of an oxide superconductor arranged in a metal matrix in a hexagonal or concentric shape. In the superconducting wire, the cross-sectional area of the core of the oxide superconducting wire on the center or inner peripheral side is larger than the cross-sectional area of the core of the oxide superconducting wire on the outer side.

【0027】請求項2の発明は、中心または最内周の上
記酸化物超電導素線のコアの断面積を100とした時、
最外周の上記酸化物超電導素線のコアの断面積が50〜
85となるように径方向で差を持たせた請求項1記載の
酸化物超電導線材である。
According to a second aspect of the present invention, when the sectional area of the core of the oxide superconducting element wire at the center or the innermost periphery is 100,
The cross-sectional area of the outermost core of the oxide superconducting element wire is 50 to
2. The oxide superconducting wire according to claim 1, wherein a difference is provided in the radial direction so as to be 85.

【0028】請求項3の発明は、上記酸化物超電導線材
の横断面形状が、丸状である請求項1および請求項2記
載の酸化物超電導線材である。
According to a third aspect of the present invention, there is provided the oxide superconducting wire according to any one of the first and second aspects, wherein the cross-sectional shape of the oxide superconducting wire is round.

【0029】請求項4の発明は、上記酸化物超電導線材
に圧延加工を施し、その横断面形状をテープ状または平
角状とする請求項3記載の酸化物超電導線材である。
According to a fourth aspect of the present invention, there is provided the oxide superconducting wire according to the third aspect, wherein the oxide superconducting wire is subjected to a rolling process so that a cross-sectional shape thereof is tape-shaped or rectangular.

【0030】請求項5の発明は、コアが酸化物超電導体
からなる酸化物超電導素線を多数本、パイプ状の金属シ
ース材内に六角形状または同心円状に挿入して多芯ビレ
ットとし、その多芯ビレットに機械的加工を施して所定
の線材形状とした後、その線材に熱処理を施す酸化物超
電導線材の製造方法において、中心または内周側におけ
る上記酸化物超電導素線の上記コアの断面積が外周部に
おける上記酸化物超電導素線の上記コアの断面積よりも
大きくなるように多数本の上記酸化物超電導素線を配置
して多芯ビレットとするものである。
According to a fifth aspect of the present invention, a multifilament billet is formed by inserting a large number of oxide superconducting wires whose cores are made of an oxide superconductor and hexagonally or concentrically inserted into a pipe-shaped metal sheath material. In a method for producing an oxide superconducting wire, in which a multifilament billet is subjected to mechanical working to form a predetermined wire shape and then subjected to a heat treatment, the cutting of the core of the oxide superconducting wire at the center or inner peripheral side is performed. A multi-core billet is formed by arranging a number of the above-mentioned oxide superconducting wires so that the area thereof is larger than the cross-sectional area of the above-mentioned core of the above-mentioned oxide superconducting wires.

【0031】上記数値範囲を限定した理由を以下に説明
する。
The reason for limiting the above numerical range will be described below.

【0032】中心または最内周の酸化物超電導素線のコ
アの断面積を100とした時、最外周の酸化物超電導素
線のコアの断面積が50〜85となるように径方向で差
を持たせたのは、最外周の酸化物超電導素線のコアの断
面積が85よりも大きいと、大きな変形を伴う縮径加工
や圧延加工の際、コアの周囲に被覆された安定化材であ
る金属マトリックスが全ての変形を吸収できず、コアの
形状が乱れるためである。また、最外周の酸化物超電導
素線のコアの断面積が50よりも小さいと、酸化物超電
導線材全体のコア比(酸化物超電導体比)が低下し過ぎ
て線材全体の臨界電流密度Jcが小さくなるためであ
る。
When the cross-sectional area of the core of the central or innermost oxide superconducting element wire is 100, the difference in the radial direction is such that the cross-sectional area of the core of the outermost oxide superconducting element wire is 50 to 85. The reason is that when the cross-sectional area of the core of the outermost oxide superconducting element wire is larger than 85, the stabilizing material coated around the core during diameter reduction or rolling with large deformation This is because the metal matrix cannot absorb all the deformation, and the shape of the core is disturbed. Further, when the cross-sectional area of the core of the outermost oxide superconducting element wire is smaller than 50, the core ratio (oxide superconductor ratio) of the entire oxide superconducting wire is excessively reduced, and the critical current density Jc of the entire wire is reduced. This is because it becomes smaller.

【0033】以上の構成によれば、各コアの断面積を径
方向で差を持たせたため、各コアが略均一形状となり、
線材全体に一様な電流が流れ、かつ、線材全体の臨界電
流密度が高い酸化物超電導線材を得ることができる。
According to the above configuration, since the cross-sectional areas of the respective cores have a difference in the radial direction, the respective cores have a substantially uniform shape.
An oxide superconducting wire can be obtained in which a uniform current flows through the entire wire and the critical current density of the entire wire is high.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0035】前述したように、六角形状または同心円状
に配置した酸化物超電導素線束と金属シース材との間に
は大きな隙間が生じており、この多芯ビレットに大きな
変形を伴う縮径及び/又は圧延加工を施すと、酸化物超
電導素線束における外周部の酸化物超電導素線ほど変形
量(圧縮応力)が大きくなっていた。
As described above, a large gap is formed between the hexagonal or concentrically arranged oxide superconducting element bundle and the metal sheath material. Alternatively, when rolling was performed, the amount of deformation (compressive stress) was greater in the oxide superconducting element wire at the outer peripheral portion in the oxide superconducting element bundle.

【0036】本発明者らは、酸化物超電導素線のコアの
周囲に被覆される安定化材(金属マトリックス)とコア
である酸化物超電導体の硬さ及び変形に対する流動性の
違いに着目した。
The present inventors have paid attention to the difference in fluidity with respect to hardness and deformation between the stabilizer (metal matrix) coated around the core of the oxide superconducting element wire and the oxide superconductor as the core. .

【0037】安定化材は金属であるため、軟らかく(ビ
ッカース硬度:約90)て外力に対して変形し易い。し
かし、酸化物超電導体はセラミックスであるため、硬く
(ビッカース硬度:約120)て外力に対して変形しに
くく、無理に変形させるとコアの形状が乱れやすい。
Since the stabilizing material is a metal, it is soft (Vickers hardness: about 90) and easily deformed by an external force. However, since the oxide superconductor is a ceramic, it is hard (Vickers hardness: about 120) and is hardly deformed by an external force. If it is forcibly deformed, the shape of the core is easily disturbed.

【0038】そこで、酸化物超電導素線束における外周
部の酸化物超電導素線ほど安定化材の比率を高める(酸
化物超電導素線におけるコア比を小さくする)ことで、
大きな変形量を安定化材に吸収させ、コアの形状を安定
させることができるということを見出した。
Therefore, by increasing the ratio of the stabilizing material (the core ratio in the oxide superconducting element wire) to the outer peripheral portion of the oxide superconducting element bundle in the oxide superconducting element bundle,
It has been found that a large amount of deformation can be absorbed by the stabilizing material and the shape of the core can be stabilized.

【0039】本発明の酸化物超電導線材は、略均一形状
の各酸化物超電導体の周囲に金属マトリックス(例え
ば、Ag)を配置してなるものである。
The oxide superconducting wire of the present invention is obtained by disposing a metal matrix (for example, Ag) around each oxide superconductor having a substantially uniform shape.

【0040】酸化物超電導体としては、特に限定するも
のではなく、例えば、Y−Ba−Cu−O系、La−B
a−Cu−O系(Laはランタン系列元素)、Bi−
(Pb)−Sr−Ca−Cu−O系、Tl−(Pb)−
Ba−Sr−Ca−Cu−O系、Hg−Ba−Sr−C
a−Cu−O系などが挙げられる。
The oxide superconductor is not particularly limited, and examples thereof include Y-Ba-Cu-O-based, La-B
a-Cu-O system (La is a lanthanum series element), Bi-
(Pb) -Sr-Ca-Cu-O, Tl- (Pb)-
Ba-Sr-Ca-Cu-O system, Hg-Ba-Sr-C
a-Cu-O type and the like.

【0041】金属マトリックスとしては、例えば、 AgおよびAg合金、 AgおよびAg合金の外側に、組成の異なるAg合
金、他の金属、酸化物、または金属と酸化物の複合体を
被覆したもの、 AgおよびAg合金の内側に、組成の異なるAg合
金、他の金属、酸化物、または金属と酸化物の複合体を
配置したもの、 AgおよびAg合金の内部に、組成の異なるAg合
金、他の金属、酸化物、または金属と酸化物の複合体を
配置したもの などが挙げられる。また、適宜、Agの代わりにAuを
用いてもよいことは言うまでもない。
Examples of the metal matrix include Ag and Ag alloys, Ag and Ag alloys coated with Ag alloys having different compositions, other metals, oxides, or composites of metals and oxides. Ag alloys, other metals, oxides, or composites of metals and oxides with different compositions are arranged inside the Ag alloy and Ag alloys. Ag alloys, other metals with different compositions inside Ag and Ag alloys , An oxide, or a composite of a metal and an oxide. Needless to say, Au may be used instead of Ag as appropriate.

【0042】酸化物超電導線材の形状としては、丸状、
平角状、テープ状、またはパイプ状などが挙げられる。
The shape of the oxide superconducting wire is round,
Examples include a rectangular shape, a tape shape, and a pipe shape.

【0043】酸化物超電導線材の種類としては、酸化物
超電導多芯線材、各種の酸化物超電導多芯線材を集合、
積層、または複合したもの、各酸化物超電導多芯線材を
更に多芯化したものなどが挙げられる。
As the type of the oxide superconducting wire, an oxide superconducting multi-core wire, various oxide superconducting multi-core wires are assembled,
Laminated or composite ones, and those obtained by further multiplying each oxide superconducting multi-core wire rod and the like are included.

【0044】本発明の酸化物超電導線材の横断面図を図
1に示す。図1(a)は、酸化物超電導線材を形成する
ための多芯ビレットの横断面図の一例を示し、図1
(b)は、酸化物超電導線材を形成するための多芯ビレ
ットの横断面図の他の例を示し、図1(c)は、酸化物
超電導多芯線材の横断面図を示し、図1(d)は、平角
状酸化物超電導多芯線材の横断面図を示し、図1(e)
は、テープ状酸化物超電導多芯線材の横断面図を示して
いる。
FIG. 1 shows a cross-sectional view of the oxide superconducting wire of the present invention. FIG. 1A shows an example of a cross-sectional view of a multifilament billet for forming an oxide superconducting wire.
FIG. 1B shows another example of a cross-sectional view of a multifilament billet for forming an oxide superconducting wire, and FIG. 1C shows a cross-sectional view of the oxide superconducting multifilament wire. (D) shows a cross-sectional view of the rectangular oxide superconducting multi-core wire, and FIG.
Shows a cross-sectional view of a tape-shaped oxide superconducting multi-core wire.

【0045】図1(a)、(b)に示すように、酸化物
超電導体からなるコア1(11)の外周に金属シース材
(金属マトリックス)2(12)を被覆して横断面が六
角形状または丸形の酸化物超電導素線3a(13a)を
作製する。同時に、コア比(コア断面積/酸化物超電導
素線断面積)の異なる数種類(図中では2種類)の酸化
物超電導素線3b,3c…(13b,13c…)も作製
する。この時、酸化物超電導素線3a(13a)のコア
比が最大となるように、酸化物超電導素線3a(13
a)、酸化物超電導素線3b(13b)、酸化物超電導
素線3c(13c)、…の順にコア比を小さくする。
As shown in FIGS. 1A and 1B, the outer periphery of a core 1 (11) made of an oxide superconductor is covered with a metal sheath material (metal matrix) 2 (12) to form a hexagonal cross section. A shape or round oxide superconducting element wire 3a (13a) is produced. At the same time, several kinds (two kinds in the figure) of oxide superconducting wires 3b, 3c... (13b, 13c...) Having different core ratios (core sectional area / oxide superconducting wire sectional area) are also produced. At this time, the oxide superconducting wires 3a (13a) are maximized so that the core ratio of the oxide superconducting wires 3a (13a) is maximized.
a), the oxide superconducting element wire 3b (13b), the oxide superconducting element wire 3c (13c),...

【0046】その後、酸化物超電導素線3a(13a)
を中心とし、酸化物超電導素線3a(13a)の周囲に
酸化物超電導素線3b(13b)を6本、更にその外側
に酸化物超電導素線3c(13c)を多数本(図中では
12本)配置して六角形状または同心円状とする。この
時、中心または最内周の酸化物超電導素線(図中では酸
化物超電導素線3a(13a))のコア1の断面積を1
00とした時、最外周の酸化物超電導素線(図中では酸
化物超電導素線3c(13c))のコア1の断面積が5
0〜85となるようにする。
Thereafter, the oxide superconducting element wire 3a (13a)
And six oxide superconducting wires 3b (13b) around the oxide superconducting wires 3a (13a), and a large number of oxide superconducting wires 3c (13c) Book) to be arranged in a hexagonal or concentric shape. At this time, the cross-sectional area of the core 1 of the central or innermost oxide superconducting element wire (the oxide superconducting element wire 3a (13a) in the figure) is set to 1
00, the cross-sectional area of the core 1 of the outermost oxide superconducting element wire (the oxide superconducting element wire 3c (13c) in the figure) is 5
0 to 85.

【0047】この六角形状または同心円状の酸化物超電
導素線束を金属シース材4(14)内に挿入して多芯ビ
レット5(15)を作製する。
The hexagonal or concentric oxide superconducting element bundle is inserted into the metal sheath material 4 (14) to produce a multi-core billet 5 (15).

【0048】この多芯ビレット5に縮径加工を施して、
図1(c)に示すように、丸状酸化物超電導多芯線材7
を作製する。
The multi-core billet 5 is subjected to a diameter reducing process,
As shown in FIG. 1C, the round oxide superconducting multi-core wire 7
Is prepared.

【0049】また、図1(d)、(e)に示す平角状酸
化物超電導多芯線材8またはテープ状酸化物超電導多芯
線材9は、図1(c)に示した丸状酸化物超電導多芯線
材7のような形態の線材に、平角ダイス伸線加工または
圧延加工を施して作製する。
Further, the rectangular oxide superconducting multifilamentary wire 8 or the tape-shaped oxide superconducting multifilamentary wire 9 shown in FIGS. 1D and 1E is the round oxide superconducting wire shown in FIG. 1C. A wire having a form such as the multifilament wire 7 is formed by drawing or rolling a rectangular die.

【0050】本発明の酸化物超電導線材の製造方法にお
いても、酸化物超電導線材の外周部または横幅方向両端
部においては大きな圧縮応力がかかり、酸化物超電導線
材の中心部においては小さな圧縮応力がかかる。
Also in the method for manufacturing an oxide superconducting wire of the present invention, a large compressive stress is applied to the outer peripheral portion or both ends in the width direction of the oxide superconducting wire, and a small compressive stress is applied to the central portion of the oxide superconducting wire. .

【0051】しかし、酸化物超電導線材の外周部または
横幅方向両端部における酸化物超電導素線のコア比を、
酸化物超電導線材の中心部における酸化物超電導素線の
コア比よりも小さくして、酸化物超電導線材の外周部ま
たは横幅方向両端部における変形吸収量を高めている。
However, the core ratio of the oxide superconducting wire at the outer peripheral portion or both ends in the width direction of the oxide superconducting wire is
The core ratio of the oxide superconducting wire at the center of the oxide superconducting wire is smaller than that of the oxide superconducting wire, so that the amount of deformation absorption at the outer peripheral portion or both ends in the width direction of the oxide superconducting wire is increased.

【0052】このため、結果的に、酸化物超電導線材全
体に均一な圧縮応力がかかるようになり、酸化物超電導
線材中に略均一形状の酸化物超電導体が分散した構造と
なる。
As a result, a uniform compressive stress is applied to the entire oxide superconducting wire, resulting in a structure in which the oxide superconductor having a substantially uniform shape is dispersed in the oxide superconducting wire.

【0053】すなわち、本発明の酸化物超電導線材の製
造方法によれば、丸状酸化物超電導多芯線材における外
周部、平角状・テープ状酸化物超電導多芯線材における
横幅方向両端部などにおいて臨界電流密度Jcが低下す
ることなく、線材全体に一様な電流が流れ、線材全体の
臨界電流密度Jc(Overall Jc)が大きく向
上することとなる。
That is, according to the method for producing an oxide superconducting wire of the present invention, the criticality is determined at the outer peripheral portion of the round oxide superconducting multifilamentary wire, and at both ends in the width direction of the rectangular / tape-shaped oxide superconducting multifilamentary wire. A uniform current flows through the entire wire without lowering the current density Jc, and the critical current density Jc (Overall Jc) of the entire wire is greatly improved.

【0054】[0054]

【実施例】【Example】

(実施例1)予め用意したBi2 Sr2 Ca1 Cu2
X 酸化物超電導粉末を、3種類のAgパイプ(パイプ
A:外径15mm、内径13mm,パイプB:外径15
mm、内径12.5mm,パイプC:外径15mm、内
径12mm)内に充填密度1.65g/cm3 でそれぞ
れ充填する。その後、各Agパイプに冷間引抜き加工を
施して外径2.57mmに形成し、酸化物超電導コア比
の異なる3種類の線材(線材A;コア比0.5、線材
B;コア比0.45、線材C;コア比0.4)を準備す
る。各線材(線材A、線材B、線材C)の諸元を表1に
示す。
(Example 1) Bi 2 Sr 2 Ca 1 Cu 2 O prepared in advance
X oxide superconducting powder was mixed with three kinds of Ag pipes (pipe A: outer diameter 15 mm, inner diameter 13 mm, pipe B: outer diameter 15
mm, inner diameter 12.5 mm, pipe C: outer diameter 15 mm, inner diameter 12 mm) at a packing density of 1.65 g / cm 3 . Thereafter, each Ag pipe is subjected to cold drawing to form an outer diameter of 2.57 mm, and three types of wires having different oxide superconducting core ratios (wire A: core ratio 0.5, wire B: core ratio 0. 45, wire C: core ratio 0.4) is prepared. Table 1 shows the specifications of each wire (wire A, wire B, wire C).

【0055】[0055]

【表1】 [Table 1]

【0056】次に、1本の線材Aを中心として、その線
材Aの周りに6本の線材Bを配置すると共に、線材Aと
線材Bの束の周りに12本の線材Cを配置し、19芯か
らなる線材束を作製する。
Next, with one wire A as a center, six wires B are arranged around the wire A, and twelve wires C are arranged around a bundle of the wires A and B. A wire bundle consisting of 19 cores is manufactured.

【0057】この線材束を外径15mm、内径13mm
のAg合金(Ag-0.015wt%Mg-0.015wt%Ni)
パイプ内に挿入して多芯ビレットを作製する。この多芯
ビレットに伸線加工を施して、外径1.00mmの多芯
線材に形成する。
An outer diameter of 15 mm and an inner diameter of 13 mm
Ag alloy (Ag-0.015wt% Mg-0.015wt% Ni)
Insert into a pipe to make a multi-core billet. This multifilament billet is subjected to wire drawing to form a multifilament wire having an outer diameter of 1.00 mm.

【0058】この多芯線材に、Bi2 Sr2 Ca1 Cu
2 X 系超電導線材に特徴的な部分溶融−徐冷熱処理
(室温から884℃まで300℃/hrの速度で昇温→
884℃で10min保持→884℃から834℃まで
5℃/hrの速度で徐冷→834℃で1hr保持→炉
冷)を酸素気流中で施して、酸化物超電導線材(線材
D)を作製する。
Bi 2 Sr 2 Ca 1 Cu was added to this multifilamentary wire.
2 O X system characteristic partial melting superconducting wire - Xu cooling heat treatment (heating at a rate of 300 ° C. / hr from room temperature to 884 ° C. →
The oxide superconducting wire (wire D) is prepared by holding at 884 ° C for 10 minutes → gradually cooling from 884 ° C to 834 ° C at a rate of 5 ° C / hr → holding at 834 ° C for 1 hour → furnace cooling) in an oxygen stream. .

【0059】同時に、19芯の全てが線材Aからなる線
材束を作製し、線材Dと同様の工程を施して酸化物超電
導線材(線材E)を作製する。
At the same time, a wire bundle consisting of wire A having all 19 cores is prepared, and the same process as wire D is performed to prepare an oxide superconducting wire (wire E).

【0060】線材Dおよび線材Eについて超電導特性を
評価した。この評価結果を表2に示す。評価としては、
液体ヘリウム温度(4.2K)における臨界電流値Ic
(A)、酸化物超電導線材全体のJc(以下、Over
all Jcと呼ぶ;(A/cm2 ))、コア比、コア
の平均臨界電流密度(以下、平均コアJcと呼ぶ;(A
/cm2 ))、およびコア形状を対象とする。
The superconducting properties of the wire D and the wire E were evaluated. Table 2 shows the evaluation results. As an evaluation,
Critical current value Ic at liquid helium temperature (4.2K)
(A), Jc of the whole oxide superconducting wire (hereinafter referred to as Over)
(A / cm 2 )), core ratio, average critical current density of the core (hereinafter, average core Jc; (A
/ Cm 2 )) and core shape.

【0061】臨界電流値Icの測定は通常の四端子法で
行い、臨界電流値Icのしきい値は1μV/cmとし
た。コア比は横断面を観察して測量した。コア形状は、
コア形状が良好なものを良好、そうでないものを不良と
した。
The measurement of the critical current value Ic was performed by the usual four-terminal method, and the threshold value of the critical current value Ic was 1 μV / cm. The core ratio was measured by observing the cross section. The core shape is
A core having a good shape was regarded as good, and a core having a poor shape was regarded as bad.

【0062】[0062]

【表2】 [Table 2]

【0063】表2に示すように、本発明の酸化物超電導
線材の製造方法で作製した線材Dは、従来の酸化物超電
導線材の製造方法で作製した線材Eと比較してコア比が
小さくなっている。しかし、線材Eのコア形状は多芯ビ
レット時における状態を全く保っていないのに対して、
線材Dのコア形状は多芯ビレット時における状態をほぼ
保っており、良好であった。また、線材Dの臨界電流値
Ic、OverallJc、および平均コアJcは、線
材Eの約2倍の値を示していた。
As shown in Table 2, the core ratio of the wire D manufactured by the method of manufacturing an oxide superconducting wire of the present invention is smaller than that of the wire E manufactured by the method of manufacturing a conventional oxide superconducting wire. ing. However, while the core shape of the wire E does not maintain the state at the time of the multifilament billet at all,
The core shape of the wire D substantially maintained the state at the time of the multifilament billet, and was good. Further, the critical current value Ic, the OverallJc, and the average core Jc of the wire D were about twice as large as those of the wire E.

【0064】(実施例2)予め用意した(Bi,Pb)
2 Sr2 Ca2 Cu3 X 酸化物超電導粉末を、3種類
のAgパイプ(パイプF:外径15mm、内径13m
m,パイプG:外径15mm、内径12.5mm,パイ
プH:外径15mm、内径12mm)内に充填密度1.
65g/cm3 でそれぞれ充填する。その後、各Agパ
イプに冷間引抜き加工を施して外径2.57mmに形成
し、酸化物超電導コア比の異なる3種類の線材(線材
F;コア比0.5、線材G;コア比0.45、線材H;
コア比0.4)を準備する。各線材(線材F、線材G、
線材H)の諸元を表3に示す。
Example 2 (Bi, Pb) prepared in advance
2 Sr 2 Ca 2 Cu 3 O X oxide superconducting powder was mixed with three kinds of Ag pipes (pipe F: outer diameter 15 mm, inner diameter 13 m
m, pipe G: outer diameter 15 mm, inner diameter 12.5 mm, pipe H: outer diameter 15 mm, inner diameter 12 mm).
Each is filled with 65 g / cm 3 . Thereafter, each Ag pipe is subjected to cold drawing to form an outer diameter of 2.57 mm, and three types of wires having different oxide superconducting core ratios (wire F: core ratio 0.5, wire G: core ratio 0. 45, wire H;
A core ratio of 0.4) is prepared. Each wire (wire F, wire G,
Table 3 shows the specifications of the wire rod H).

【0065】[0065]

【表3】 [Table 3]

【0066】次に、1本の線材Fを中心として、その線
材Fの周りに6本の線材Gを配置すると共に、線材Fと
線材Gの束の周りに12本の線材Hを配置し、19芯か
らなる線材束を作製する。
Next, with one wire F as the center, six wires G are arranged around the wire F, and twelve wires H are arranged around the bundle of the wires F and G. A wire bundle consisting of 19 cores is manufactured.

【0067】この線材束を外径15mm、内径13mm
のAg合金(Ag-0.015wt%Mg-0.015wt%Ni)
パイプ内に挿入して多芯ビレットを作製する。この多芯
ビレットに伸線加工を施して、外径1.50mmの多芯
線材に形成する。
The bundle of wires is made to have an outer diameter of 15 mm and an inner diameter of 13 mm
Ag alloy (Ag-0.015wt% Mg-0.015wt% Ni)
Insert into a pipe to make a multi-core billet. The multifilament billet is subjected to wire drawing to form a multifilament wire having an outer diameter of 1.50 mm.

【0068】この多芯線材に冷間で第一段圧延加工を施
して、厚さ0.5mm、幅3mmのテープ状多芯線材に
形成する。その後、電気炉を用いて、テープ状多芯線材
に空気中、840℃、50hrの第一段熱処理を施し
て、第1酸化物超電導中間線材を作製する。
This multifilamentary wire is cold-rolled to the first stage to form a tape-like multifilamentary wire having a thickness of 0.5 mm and a width of 3 mm. Thereafter, the tape-shaped multifilamentary wire is subjected to a first-stage heat treatment at 840 ° C. for 50 hours in the air using an electric furnace to produce a first oxide superconducting intermediate wire.

【0069】その後、第1酸化物超電導中間線材に第2
段圧延加工を施して、厚さ0.25mm、幅4.5mm
に形成した後、電気炉を用い、空気中、840℃、50
hrの第二段熱処理を施して、第2酸化物超電導中間線
材を作製する。
After that, the second oxide superconducting intermediate wire is
Step rolling, thickness 0.25mm, width 4.5mm
Then, using an electric furnace, in the air, 840 ℃, 50
A second heat treatment of hr is performed to produce a second oxide superconducting intermediate wire.

【0070】その後、さらに、第2酸化物超電導中間線
材に第3段圧延加工を施して、厚さ0.15mm、幅
5.1mmに形成した後、電気炉を用い、空気中、84
0℃、50hrの第三段熱処理を施して、酸化物超電導
線材(線材I)を作製する。
Then, the second oxide superconducting intermediate wire is further subjected to third-stage rolling to form a thickness of 0.15 mm and a width of 5.1 mm.
A third-stage heat treatment at 0 ° C. for 50 hours is performed to produce an oxide superconducting wire (wire I).

【0071】同時に、19芯の全てが線材Fからなる線
材束を作製し、線材Iと同様の工程を施して酸化物超電
導線材(線材J)を作製する。
At the same time, a wire bundle consisting of wire F, all of which have 19 cores, is manufactured, and the same process as wire I is performed to manufacture an oxide superconducting wire (wire J).

【0072】線材Iおよび線材Jについて超電導特性を
評価した。この評価結果を表4に示す。評価としては、
液体窒素温度(77K)における臨界電流値Ic
(A)、Overall Jc(A/cm2 )、コア
比、平均コアJc(A/cm2 )、およびコア厚みを対
象とする。
The superconducting properties of the wire I and the wire J were evaluated. Table 4 shows the evaluation results. As an evaluation,
Critical current value Ic at liquid nitrogen temperature (77K)
(A), Overall Jc (A / cm 2 ), core ratio, average core Jc (A / cm 2 ), and core thickness.

【0073】臨界電流値Icの測定は通常の四端子法で
行い、臨界電流値Icのしきい値は1μV/cmとし
た。コア比およびコア厚みは横断面を観察して測量し
た。
The measurement of the critical current value Ic was performed by the usual four-terminal method, and the threshold value of the critical current value Ic was 1 μV / cm. The core ratio and core thickness were measured by observing the cross section.

【0074】[0074]

【表4】 [Table 4]

【0075】表4に示すように、本発明の酸化物超電導
線材の製造方法で作製した線材Iは、従来の酸化物超電
導線材の製造方法で作製した線材Jと比較してコア比が
小さくなっている。しかし、線材Jのコア厚みが10〜
50μmとバラツキがあるのに対して、線材Iのコア厚
みは10〜20μmと平均していた。また、線材Iの臨
界電流値Ic、Overall Jc、および平均コア
Jcは、線材Jの約3〜4倍の値を示していた。
As shown in Table 4, the wire I produced by the method for producing an oxide superconducting wire of the present invention has a smaller core ratio than the wire J produced by the conventional method for producing an oxide superconducting wire. ing. However, the core thickness of the wire J is 10
While there was a variation of 50 μm, the core thickness of the wire I was 10-20 μm on average. In addition, the critical current value Ic, the Overall Jc, and the average core Jc of the wire I were about three to four times the value of the wire J.

【0076】(実施例3)予め用意したBi2 Sr2
1 Cu2 X 酸化物超電導粉末を、3種類のAg合金
(Ag−10at%Au)パイプ(パイプK:外径15
mm、内径13mm,パイプL:外径15mm、内径1
2.5mm,パイプM:外径15mm、内径12mm)
内に充填密度1.65g/cm3 でそれぞれ充填する。
その後、各Agパイプに冷間引抜き加工を施して外径
2.57mmに形成し、酸化物超電導コア比の異なる3
種類の線材(線材K;コア比0.5、線材L;コア比
0.45、線材M;コア比0.4)を準備する。各線材
(線材K、線材L、線材M)の諸元を表5示す。
(Example 3) Bi 2 Sr 2 C prepared in advance
a 1 Cu 2 O X oxide superconducting powder was mixed with three types of Ag alloy (Ag-10 at% Au) pipe (pipe K: outer diameter 15).
mm, inner diameter 13mm, pipe L: outer diameter 15mm, inner diameter 1
2.5mm, pipe M: outer diameter 15mm, inner diameter 12mm)
Each is filled with a packing density of 1.65 g / cm 3 .
Thereafter, each of the Ag pipes is subjected to cold drawing to form an outer diameter of 2.57 mm.
A type of wire (wire K: core ratio 0.5, wire L: core ratio 0.45, wire M: core ratio 0.4) is prepared. Table 5 shows the specifications of each wire (wire K, wire L, wire M).

【0077】[0077]

【表5】 [Table 5]

【0078】次に、1本の線材Kを中心として、その線
材Kの周りに6本の線材Lを配置すると共に、線材Kと
線材Lの束の周りに12本の線材Mを配置し、19芯か
らなる線材束を作製する。
Next, with one wire K as the center, six wires L are arranged around the wire K, and 12 wires M are arranged around the bundle of the wire K and the wire L. A wire bundle consisting of 19 cores is manufactured.

【0079】この線材束を外径15mm、内径13mm
のAg合金(Ag−10at%Au)パイプ内に挿入し
て多芯ビレットを作製する。この多芯ビレットに伸線加
工を施して、外径1.50mmの多芯線材に形成する。
This wire rod bundle is formed with an outer diameter of 15 mm and an inner diameter of 13 mm
Into an Ag alloy (Ag-10 at% Au) pipe to produce a multifilament billet. The multifilament billet is subjected to wire drawing to form a multifilament wire having an outer diameter of 1.50 mm.

【0080】次に、この多芯線材に冷間圧延加工を施し
て、厚さ1mm、幅1.7mmのテープ状多芯線材を作
製する。その後、このテープ状多芯線材に平角ダイス伸
線加工を施して、厚さ0.9mm、幅1.6mmの平角
状多芯線材を作製する。
Next, the multifilamentary wire is subjected to cold rolling to produce a tape-like multifilamentary wire having a thickness of 1 mm and a width of 1.7 mm. Thereafter, the tape-shaped multi-core wire is subjected to a rectangular die drawing process to produce a flat multi-core wire having a thickness of 0.9 mm and a width of 1.6 mm.

【0081】その後、この平角状多芯線材に、Bi2
2 Ca1 Cu2 X 系超電導線材に特徴的な部分溶融
−徐冷熱処理(室温から884℃まで300℃/hrの
速度で昇温→884℃で10min保持→884℃から
834℃まで5℃/hrの速度で徐冷→834℃で1h
r保持→炉冷)を酸素気流中で施して、酸化物超電導線
材(線材N)を作製する。
Thereafter, Bi 2 S was added to this rectangular multifilamentary wire.
Partial melting-slow cooling heat treatment characteristic of r 2 Ca 1 Cu 2 O X -based superconducting wire (heating from room temperature to 884 ° C. at a rate of 300 ° C./hr→holding at 884 ° C. for 10 minutes → 5 from 884 ° C. to 834 ° C.) Slow cooling at a rate of ° C / hr → 834 ° C for 1 hour
(retention → furnace cooling) in an oxygen stream to produce an oxide superconducting wire (wire N).

【0082】同時に、19芯の全てが線材Kからなる線
材束を作製し、線材Nと同様の工程を施して酸化物超電
導線材(線材O)を作製する。
At the same time, a wire bundle consisting of the wire K with all 19 cores is prepared, and the same process as for the wire N is performed to prepare an oxide superconducting wire (wire O).

【0083】線材Nおよび線材Oについて超電導特性を
評価した。この評価結果を表6に示す。評価としては、
液体ヘリウム温度(4.2K)における臨界電流値Ic
(A)、Overall Jc(A/cm2 )、コア
比、平均コアJc(A/cm2)、およびコア形状を対
象とする。
The superconducting properties of the wire N and the wire O were evaluated. Table 6 shows the evaluation results. As an evaluation,
Critical current value Ic at liquid helium temperature (4.2K)
(A), Overall Jc (A / cm 2 ), core ratio, average core Jc (A / cm 2 ), and core shape.

【0084】臨界電流値Icの測定は通常の四端子法で
行い、臨界電流値Icのしきい値は1μV/cmとし
た。コア比は横断面を観察して測量した。コア形状は、
コア形状が良好なものを良好、そうでないものを不良と
した。
The measurement of the critical current value Ic was performed by the usual four-terminal method, and the threshold value of the critical current value Ic was 1 μV / cm. The core ratio was measured by observing the cross section. The core shape is
A core having a good shape was regarded as good, and a core having a poor shape was regarded as bad.

【0085】[0085]

【表6】 [Table 6]

【0086】表6に示すように、本発明の酸化物超電導
線材の製造方法で作製した線材Nは、従来の酸化物超電
導線材の製造方法で作製した線材Oと比較してコア比が
小さくなっている。しかし、線材Oのコア形状は多芯ビ
レット時における状態を全く保っていないのに対して、
線材Nのコア形状は多芯ビレット時における状態をほぼ
保っており、良好であった。また、線材Nの臨界電流値
Ic、OverallJc、および平均コアJcは、線
材Oの約2倍の値を示していた。
As shown in Table 6, the core ratio of the wire N manufactured by the method of manufacturing an oxide superconducting wire of the present invention is smaller than that of the wire O manufactured by the method of manufacturing a conventional oxide superconducting wire. ing. However, while the core shape of the wire O does not maintain the state at the time of the multifilament billet at all,
The core shape of the wire rod N almost maintained the state at the time of the multifilament billet, and was good. Also, the critical current value Ic, OverallJc, and average core Jc of the wire N were about twice as large as those of the wire O.

【0087】すなわち、本発明の酸化物超電導線材の製
造方法によって、線材のコアにおける臨界電流密度Jc
が高く、かつ、線材全体の臨界電流値Icおよび線材全
体の臨界電流密度Jcが高いという優れた超電導特性を
有した酸化物超電導線材が得られる。
That is, the critical current density Jc in the core of the wire is obtained by the method for manufacturing an oxide superconducting wire according to the present invention.
And an oxide superconducting wire having excellent superconducting properties such as high critical current value Ic of the entire wire and high critical current density Jc of the entire wire.

【0088】本発明によって得られた酸化物超電導線材
は、コイル、給電用導体、送電用導体などに用いること
が可能である。特に、本発明の酸化物超電導線材を用い
て作製したコイルは、設計通りに磁場(磁場強度や均質
性)を発生するため、NMR(核磁気共鳴)やMRI
(磁気共鳴断層検診装置)などの高均質性が要求される
マグネットに対して非常に有用である。
The oxide superconducting wire obtained by the present invention can be used for a coil, a power supply conductor, a power transmission conductor, and the like. In particular, a coil produced by using the oxide superconducting wire of the present invention generates a magnetic field (magnetic field strength and homogeneity) as designed, so that a NMR (nuclear magnetic resonance) or MRI
This is very useful for magnets requiring high homogeneity, such as (magnetic resonance tomography examination devices).

【0089】[0089]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0090】(1) 線材全体に一様な電流が流れ、か
つ、線材全体の臨界電流密度が高い酸化物超電導線材を
得ることができる。
(1) An oxide superconducting wire in which a uniform current flows through the entire wire and the critical current density of the entire wire is high can be obtained.

【0091】(2) 酸化物超電導線材を形成する酸化
物超電導素線のコア比を、従来に比べてやや低くしてい
るため、各種加工の加工性が向上する。
(2) Since the core ratio of the oxide superconducting wires forming the oxide superconducting wire is slightly lower than in the conventional case, the workability of various processes is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸化物超電導線材の横断面図である。FIG. 1 is a cross-sectional view of an oxide superconducting wire of the present invention.

【図2】従来の酸化物超電導線材の横断面図である。FIG. 2 is a cross-sectional view of a conventional oxide superconducting wire.

【符号の説明】[Explanation of symbols]

1,11 コア 2,12 金属シース材(金属マトリックス) 3,13 酸化物超電導素線 4,14 金属シース材(金属マトリックス) 6 金属マトリックス 1,11 core 2,12 metal sheath material (metal matrix) 3,13 oxide superconducting element wire 4,14 metal sheath material (metal matrix) 6 metal matrix

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属マトリックス中に酸化物超電導体か
らなるコアを多数本、六角形状または同心円状に配置し
てなる酸化物超電導線材において、中心または内周側に
おける上記酸化物超電導素線の上記コアの断面積を外側
部における上記酸化物超電導素線の上記コアの断面積よ
りも大きくしたことを特徴とする酸化物超電導線材。
1. An oxide superconducting wire in which a number of cores made of an oxide superconductor are arranged in a metal matrix in a hexagonal or concentric manner, wherein said oxide superconducting element wire on the center or inner peripheral side is provided. An oxide superconducting wire, wherein a cross-sectional area of a core is larger than a cross-sectional area of the core of the oxide superconducting element wire in an outer portion.
【請求項2】 中心または最内周の上記酸化物超電導素
線のコアの断面積を100とした時、最外周の上記酸化
物超電導素線のコアの断面積が50〜85となるように
径方向で差を持たせた請求項1記載の酸化物超電導線
材。
2. When the sectional area of the core of the oxide superconducting element wire at the center or the innermost periphery is set to 100, the sectional area of the core of the oxide superconducting element wire at the outermost periphery is 50 to 85. 2. The oxide superconducting wire according to claim 1, wherein a difference is provided in a radial direction.
【請求項3】 上記酸化物超電導線材の横断面形状が、
丸状である請求項1および請求項2記載の酸化物超電導
線材。
3. The cross-sectional shape of the oxide superconducting wire is:
3. The oxide superconducting wire according to claim 1, which has a round shape.
【請求項4】 上記酸化物超電導線材に圧延加工を施
し、その横断面形状をテープ状または平角状とする請求
項3記載の酸化物超電導線材。
4. The oxide superconducting wire according to claim 3, wherein the oxide superconducting wire is subjected to a rolling process to have a tape-like or rectangular shape in cross section.
【請求項5】 コアが酸化物超電導体からなる酸化物超
電導素線を多数本、パイプ状の金属シース材内に六角形
状または同心円状に挿入して多芯ビレットとし、その多
芯ビレットに機械的加工を施して所定の線材形状とした
後、その線材に熱処理を施す酸化物超電導線材の製造方
法において、中心または内周側における上記酸化物超電
導素線の上記コアの断面積が外周部における上記酸化物
超電導素線の上記コアの断面積よりも大きくなるように
多数本の上記酸化物超電導素線を配置して多芯ビレット
とすることを特徴とする酸化物超電導線材の製造方法。
5. A multi-core billet formed by inserting a large number of oxide superconducting wires whose cores are made of an oxide superconductor into a pipe-shaped metal sheath material in a hexagonal or concentric manner. In the method for producing an oxide superconducting wire after subjecting the wire to a predetermined wire shape and subjecting the wire to heat treatment, the cross-sectional area of the core of the oxide superconducting element wire at the center or the inner peripheral side is the outer peripheral portion. A method for producing an oxide superconducting wire, comprising arranging a large number of the oxide superconducting wires so as to be larger than the cross-sectional area of the core of the oxide superconducting wires to form a multifilament billet.
JP30770996A 1996-11-19 1996-11-19 Oxide superconducting wire and manufacturing method thereof Expired - Fee Related JP3520699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30770996A JP3520699B2 (en) 1996-11-19 1996-11-19 Oxide superconducting wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30770996A JP3520699B2 (en) 1996-11-19 1996-11-19 Oxide superconducting wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10149729A true JPH10149729A (en) 1998-06-02
JP3520699B2 JP3520699B2 (en) 2004-04-19

Family

ID=17972301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30770996A Expired - Fee Related JP3520699B2 (en) 1996-11-19 1996-11-19 Oxide superconducting wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3520699B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353440A (en) * 1999-05-06 2000-12-19 Alcatel Superconductive strand with high critical temperature and its manufacture
JP2010135173A (en) * 2008-12-04 2010-06-17 Sumitomo Electric Ind Ltd Manufacturing method for superconductive wire rod, and superconductive wire rod
WO2020196035A1 (en) * 2019-03-28 2020-10-01 株式会社フジクラ Oxide superconducting wire
CN116786622A (en) * 2023-08-28 2023-09-22 西安聚能超导线材科技有限公司 Improve Nb 3 Method for preparing Sn core wire uniformity wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353440A (en) * 1999-05-06 2000-12-19 Alcatel Superconductive strand with high critical temperature and its manufacture
JP2010135173A (en) * 2008-12-04 2010-06-17 Sumitomo Electric Ind Ltd Manufacturing method for superconductive wire rod, and superconductive wire rod
WO2020196035A1 (en) * 2019-03-28 2020-10-01 株式会社フジクラ Oxide superconducting wire
US11756708B2 (en) 2019-03-28 2023-09-12 Fujikura Ltd. Oxide superconducting wire
CN116786622A (en) * 2023-08-28 2023-09-22 西安聚能超导线材科技有限公司 Improve Nb 3 Method for preparing Sn core wire uniformity wire

Also Published As

Publication number Publication date
JP3520699B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
US20030032560A1 (en) Superconducting article having low AC loss
EP0358779A1 (en) High-strength superconductive wire and cable having high current density, and method of producing them
EP0638942B1 (en) Oxide superconducting wire, manufacturing method thereof, oxide superconducting coil and cable conductor
JP2897776B2 (en) Electrical conductor in wire or cable form
EP2099080A1 (en) Nb3Sn superconducting wire manufactured by internal Sn process and precursor for manufacturing the same
US6357105B1 (en) Oxide superconducting wire
JPH10512387A (en) Formation of torsional texture of superconducting oxide composite article
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
US6311385B1 (en) High temperature oxide superconducting wire and method of manufacturing thereof
JP3813260B2 (en) Oxide multi-core superconducting conductor and method for producing the same
JP3534428B2 (en) Manufacturing method of oxide high temperature superconducting wire
JP3778971B2 (en) Oxide superconducting wire and method for producing the same
JP4045082B2 (en) Superconducting wire
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP2910586B2 (en) Nb (3) Sn superconducting wire
JPH11111081A (en) Oxide superconducting wire
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JPH1097815A (en) Bismuth oxide multicore superconducting wire and its manufacture
EP0774789A1 (en) Nb3Al Multi-filamentary superconducting wire
JP3505894B2 (en) Compound superconducting wire
JP4203313B2 (en) Bi-based rectangular oxide superconductor
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP2001351444A (en) Oxide superconductor and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees