JPH10146332A - X-ray ct device - Google Patents

X-ray ct device

Info

Publication number
JPH10146332A
JPH10146332A JP8318525A JP31852596A JPH10146332A JP H10146332 A JPH10146332 A JP H10146332A JP 8318525 A JP8318525 A JP 8318525A JP 31852596 A JP31852596 A JP 31852596A JP H10146332 A JPH10146332 A JP H10146332A
Authority
JP
Japan
Prior art keywords
ray
heat
detector
heat pump
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8318525A
Other languages
Japanese (ja)
Inventor
Minoru Yoshida
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP8318525A priority Critical patent/JPH10146332A/en
Publication of JPH10146332A publication Critical patent/JPH10146332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling efficiency of an X-ray detector by arranging a contact point of a member having excellent heat conductivity between the X-ray detector and a scanner part. SOLUTION: In an X-ray detector applied to an X ray CT device, circuit boards 13 mounted with a detecting element array 12 of X-rays are arranged in a plurality in a detector casing 8, and a heating heater 9, a cooling semiconductor thermoelectric heat pump 10 and a temperature control temperature sensor 18 are arranged in the detector casing 8 as a part of a constant temperature mechanism. The detector casing 8 is covered with a heat insulating material 16, and its outside is also covered with a heat insulating cover 17. In this case, a heat exchanger plate 11 is arranged to introduce heat from the detector casing 8 taken by the heat pump 10, and a contact point is arranged between the detector casing 8 and a scanner part 1 through this heat exchanger plate 11, and is thermally joined. Therefore, heat from an X-ray detector taken by the heat pump 10 is introduced to the scanner part 1, and heat is radiated to outside air from this scanner part 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療診断に使用さ
れる多素子放射線検出器を搭載したX線CT装置に係
り、特に安定した物理特性でかつ、検出データの再現性
に優れた多素子放射線検出器を具備したX線CT装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray CT apparatus equipped with a multi-element radiation detector used for medical diagnosis, and more particularly to a multi-element CT having stable physical characteristics and excellent reproducibility of detection data. The present invention relates to an X-ray CT apparatus provided with a radiation detector.

【0002】[0002]

【従来の技術】X線CT装置は、医療診断用のほか、工
業用にも広く使用されているが、その画質向上、信頼性
向上のためにX線CT装置の性能向上が要求されてい
る。X線CT装置における断層画像(以下「X線CT画
像」という)の画質向上、信頼性向上にはキーコンポー
ネントであるX線検出器の性能向上が不可欠となる。こ
のX線検出器には、従来Xe電離箱型検出器が使用され
てきたが次第に、よりS/Nの高い多素子固体検出器
(以下「固体検出器」という)が代わって使用されてき
ている。
2. Description of the Related Art X-ray CT apparatuses are widely used not only for medical diagnosis but also for industrial use. However, in order to improve image quality and reliability, it is required to improve the performance of X-ray CT apparatuses. . To improve the image quality and reliability of a tomographic image (hereinafter referred to as “X-ray CT image”) in an X-ray CT apparatus, it is essential to improve the performance of an X-ray detector, which is a key component. Conventionally, a Xe ionization chamber type detector has been used as the X-ray detector, but a multi-element solid state detector having a higher S / N (hereinafter referred to as “solid state detector”) has been gradually used instead. I have.

【0003】図3は従来の固体検出器の基本的な構造を
示す斜視図である。前記固体検出器はシンチレ−タ12
aと隔離板12bとSiフォトダイオード12cを有し
ている。シンチレ−タ12aは入射X線3を光に変換す
る。隔離板12bは隣接するX線検出素子間を隔離す
る。Siフォトダイオ−ド12cはシンチレ−タ12b
により変換された光を電気信号に変換する。Siフォト
ダイオ−ド12c上面にはシンチレ−タ12aを接着
し、さらに隔離板12bを所定のピッチのチャンネルと
なるように平行に配列してX線検出素子アレイを形成し
ている。
FIG. 3 is a perspective view showing a basic structure of a conventional solid state detector. The solid state detector is a scintillator 12
a, a separator 12b, and a Si photodiode 12c. The scintillator 12a converts the incident X-ray 3 into light. The separator 12b separates adjacent X-ray detection elements. The Si photodiode 12c is a scintillator 12b.
Converts the converted light into an electric signal. The scintillator 12a is adhered to the upper surface of the Si photodiode 12c, and the separators 12b are arranged in parallel so as to form channels of a predetermined pitch to form an X-ray detecting element array.

【0004】前記X線検出器素子アレイにおいて、入射
X線3はシンチレ−タ12aによりX線の強度に比例し
た強度の可視光に変換され、変換された光は隔離板12
bの表面や、シンチレ−タ12aの界面若しくは表面等
で反射が繰り返されながらSiフォトダイオ−ド12c
の表面に設けられた受光部に導かれ、光電変換され、光
の強度(即ちX線の強度)に比例した強度の電気信号
(光電流)として検出されるようになっている。
In the X-ray detector element array, the incident X-rays 3 are converted by a scintillator 12a into visible light having an intensity proportional to the intensity of the X-rays.
b, the interface between the scintillator 12a and the surface, etc., the Si photodiode 12c is repeatedly reflected.
The light is guided to a light receiving unit provided on the surface of the device, is photoelectrically converted, and is detected as an electric signal (photocurrent) having an intensity proportional to the intensity of light (that is, the intensity of X-rays).

【0005】ところで、X線CT画像の画質性能の良否
は、X線検出器の温度特性により大きく左右されること
がよく知られている。前記温度特性が安定しないで経時
的に変動する場合、前記チャンネル間に該特性の差が生
じ、該特性の差が所定値を越えると、現在のX線CT装
置の主流の計測方式である第3世代方式ではX線CT画
像上に環状の偽画像(以下「リングア−チファクト」と
いう)が発生することが検証されている。このリングア
ーチファクトはX線CT画像の画質劣化を招くことはい
うまでもなく、X線CT画像の画質の向上にはX線検出
器の温度特性の安定化が必要となる。また、この温度特
性はX線検出器の材料のそれぞれに固有のものであっ
て、シンチレ−タ12aはその材質により温度依存性の
大小があるが一般に周囲温度が上昇するほど発光効率が
低下するものが多く、Siフォトダイオ−ド12cは周
囲温度が上昇するほどノイズおよび暗電流が増加しS/
N低下を招くことが知られている。即ちX線検出器の温
度特性の安定化には、Siフォトダイオ−ド12cおよ
びシンチレ−タ12aを安定して作動させるような環境
整備が必要となる。このような環境整備の技術は、本願
と同一の特許出願人がした特開平3−95479号公報
に開示されたように検出器全体を恒温化することが多
い。そしてX線検出器の周囲温度の設定は、通常50℃
以下とすることが多い。前記周囲温度の恒温化の手段
は、その設定温度により異なる。常温よりも高めの温度
30℃〜50℃あるいはそれ以上の温度領域の場合は、
ヒータだけで温度制御が可能である。常温を含む30℃
以下の場合にはヒータに加えて冷却装置が必要となる。
X線検出器を設置するX線CT装置のスキャナ内はスペ
ースが限られており、このスキャナ内に設置する冷却装
置は省スペースに設置できるヒートポンプが用いられ
る。しかし該ヒートポンプにより奪った熱の処理、即ち
放熱が問題となる。従来の往復回転式のスキャナの場合
には液体を用いたヒートポンプに接続されたパイプによ
りスキャナ外に引き出して冷却することが可能であった
が、最近のスリップリングを用いた連続回転式のスキャ
ナ(以下「スリップリング式スキャナ」という)では、
前記パイプをスキャナ外に引き出して冷却することが困
難である。そこで、スリップリング式スキャナでは、ヒ
ートシンク(放熱フィン)とファンとを組合せたものが
用いられている。
It is well known that the quality of an X-ray CT image depends greatly on the temperature characteristics of the X-ray detector. If the temperature characteristic is not stable and fluctuates with time, a difference in the characteristic occurs between the channels, and when the difference in the characteristic exceeds a predetermined value, a second method, which is a mainstream measurement method of the current X-ray CT apparatus, is used. It has been verified that a ring-shaped false image (hereinafter, referred to as “ring artifact”) is generated on an X-ray CT image in the three-generation system. Needless to say, this ring artifact causes deterioration in the image quality of the X-ray CT image, and it is necessary to stabilize the temperature characteristics of the X-ray detector in order to improve the image quality of the X-ray CT image. This temperature characteristic is unique to each material of the X-ray detector, and the scintillator 12a has a large or small temperature dependency depending on the material, but the luminous efficiency generally decreases as the ambient temperature increases. In the Si photodiode 12c, noise and dark current increase as the ambient temperature increases, and the S / D
It is known to cause a decrease in N. That is, in order to stabilize the temperature characteristics of the X-ray detector, it is necessary to provide an environment for stably operating the Si photodiode 12c and the scintillator 12a. Such an environment maintenance technique often keeps the entire detector at a constant temperature as disclosed in Japanese Patent Application Laid-Open No. 3-95479 filed by the same applicant as the present application. The setting of the ambient temperature of the X-ray detector is usually 50 ° C.
It is often the following. The means for keeping the ambient temperature constant depends on the set temperature. In the case of a temperature range of 30 ° C. to 50 ° C. or higher than normal temperature,
Temperature control is possible only with a heater. 30 ℃ including normal temperature
In the following cases, a cooling device is required in addition to the heater.
The space inside the scanner of the X-ray CT device in which the X-ray detector is installed is limited, and a heat pump that can be installed in a small space is used as a cooling device installed in the scanner. However, the treatment of the heat taken by the heat pump, that is, the heat radiation becomes a problem. In the case of a conventional reciprocating rotary scanner, a pipe connected to a heat pump using a liquid was able to be drawn out of the scanner and cooled, but a recent continuous rotary scanner using a slip ring ( Hereafter, "slip ring scanner")
It is difficult to pull the pipe out of the scanner and cool it. Therefore, a combination of a heat sink (radiation fin) and a fan is used in the slip ring type scanner.

【0006】図4は、従来のスリップリング式スキャナ
内に配置されたX線検出器の周辺温度を冷却する冷却装
置の構成を示す断面図である。本図で表す符号で、1は
検出器を搭載し回転するスキャナのスキャナ部、3は入
射X線、8は検出器筐体、9は加熱用のヒータ、10は
冷却用の半導体熱電気ヒートポンプ(ペルチェ素子式サ
ーモモジュール)、11は半導体熱電気ヒートポンプ1
0の熱を導くための伝熱プレート、12はX線の検出素
子アレイ、13は検出素子アレイ12を搭載する回路基
板、14は信号引き出し用コネクタ、15は電気信号ケ
ーブル、16は検出器を保温するための断熱材、17は
断熱材16を保護、補強する断熱カバー、18は温度コ
ントロール用の温度センサー、19は外光を遮蔽しX線
を取り込むX線入射窓、20は半導体熱電気ヒートポン
プ10の熱を放熱するためのヒートシンク、21はヒー
トシンク20からの熱を強制的に放熱する放熱ファンを
示す。このうち冷却装置は、伝熱プレート11とヒート
シンク20と放熱ファン21である。伝熱プレート11
は、銀、銅、アルミや鉄族金属等の熱伝導性の良い金属
(以下「良伝導性金属」という)または良伝導性金属の
化合物であって、ヒートシンク20に半導体熱電気ヒー
トポンプ10によりX線検出器から奪った熱を伝達す
る。ヒートシンク20は伝熱プレート11からの熱を空
気中に放熱するもので、熱伝導率の高い物質、例えば前
記良伝導性金属板などを空気に触れる表面積を多くする
ため複数枚配列した構造となっている。このヒートシン
ク20は放熱装置としては比較的構造が簡単で、かつ放
熱効率も良いため広く用いられている。放熱ファン21
はヒートシンク20から放熱されて、ヒートシンク20
付近に漂う熱を強制的に送風する。
FIG. 4 is a sectional view showing the structure of a cooling device for cooling the temperature around an X-ray detector disposed in a conventional slip ring type scanner. 1, reference numeral 1 denotes a scanner unit of a rotating scanner having a detector mounted thereon, 3 denotes an incident X-ray, 8 denotes a detector housing, 9 denotes a heater for heating, and 10 denotes a semiconductor thermoelectric heat pump for cooling. (Peltier element type thermo module), 11 is a semiconductor thermoelectric heat pump 1
A heat transfer plate for guiding heat of 0, 12 is an X-ray detection element array, 13 is a circuit board on which the detection element array 12 is mounted, 14 is a signal extraction connector, 15 is an electric signal cable, and 16 is a detector. A heat insulating material for keeping heat, 17 is a heat insulating cover for protecting and reinforcing the heat insulating material 16, 18 is a temperature sensor for controlling temperature, 19 is an X-ray entrance window for shielding external light and taking in X-rays, and 20 is semiconductor thermoelectric. A heat sink for radiating the heat of the heat pump 10 and a radiating fan 21 for forcibly radiating the heat from the heat sink 20 are shown. The cooling device includes the heat transfer plate 11, the heat sink 20, and the heat dissipation fan 21. Heat transfer plate 11
Is a metal having good thermal conductivity (hereinafter referred to as “good conductive metal”) such as silver, copper, aluminum or iron group metal or a compound of good conductive metal. Transfers heat taken from line detectors. The heat sink 20 radiates heat from the heat transfer plate 11 into the air, and has a structure in which a plurality of materials having high thermal conductivity, for example, the above-described highly conductive metal plate are arranged in order to increase the surface area in contact with the air. ing. This heat sink 20 is widely used as a heat radiator because of its relatively simple structure and good heat radiation efficiency. Heat dissipation fan 21
Is dissipated from the heat sink 20, and the heat sink 20
Forcibly blows the heat floating around.

【0007】また、従来の冷却装置は、放熱量が比較的
少なければヒートシンクだけで形成されることもあっ
た。
[0007] In addition, the conventional cooling device is sometimes formed only with a heat sink if the heat radiation amount is relatively small.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
冷却装置はヒートシンクだけであっても、ヒートシンク
と放熱ファンを組み合わせたものであっても、その設置
空間は大きな体積を占めていたので、スキャナ内に設置
するには制約があり、スキャナを所定時間以上連続使用
したりすれば十分に放熱できないおそれがあるという問
題があった。
However, even if the conventional cooling device is only a heat sink or a combination of a heat sink and a heat radiating fan, the installation space occupies a large volume, so that the space inside the scanner is large. However, if the scanner is used continuously for a predetermined period of time or more, there is a problem that heat may not be sufficiently released.

【0009】本発明は、上記問題点に鑑みてなされたも
のであり、その目的は、スキャナ内に設置可能で、冷却
効率を向上したX線検出器の冷却装置を備えたX線CT
装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to provide an X-ray CT having a cooling device for an X-ray detector which can be installed in a scanner and has improved cooling efficiency.
It is to provide a device.

【0010】[0010]

【課題を解決するための手段】上記目的は、被検体にX
線を照射するX線管装置と、このX線管装置と対向して
配置され前記被検体の透過X線を検出するX線検出器
と、これらのX線管装置とX線検出器をそれぞれ固定
し、これらをそれぞれの位置関係を維持しながら回転さ
せる回転部と、前記X線管装置と前記X線検出器と前記
回転部を収容するスキャナ部を具備したX線CT装置に
おいて、前記X線検出器と前記スキャナ部との間に熱伝
導性の良い部材の接点を設けたことで達成される。
An object of the present invention is to provide a method for measuring a subject
An X-ray tube device for irradiating X-rays, an X-ray detector arranged to face the X-ray tube device and detecting transmitted X-rays of the subject, and an X-ray tube device and an X-ray detector, respectively. An X-ray CT apparatus comprising: a rotating unit that fixes and rotates them while maintaining their respective positional relationships; and an X-ray CT apparatus including the X-ray tube device, the X-ray detector, and a scanner unit that accommodates the rotating unit. This is achieved by providing a contact of a member having good thermal conductivity between the line detector and the scanner unit.

【0011】[0011]

【発明の実施の形態】本発明のX線CT装置で適用する
X線検出器の恒温機構の実施の形態について図面を参照
して説明する。図1は本発明のX線CT装置で適用する
X線検出器の恒温機構の実施の形態を示す断面図、図2
はX線CT装置のスキャナの構成例を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a constant temperature mechanism of an X-ray detector applied to an X-ray CT apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a constant temperature mechanism of an X-ray detector applied to an X-ray CT apparatus of the present invention, and FIG.
FIG. 1 is a diagram illustrating a configuration example of a scanner of an X-ray CT apparatus.

【0012】図1において、検出器筐体8にはX線の検
出素子アレイ12を搭載した回路基板13が複数個設置
され一台の多素子固体検出器が形成されている。検出素
子アレイ12は図3の固体検出器の基本的な構造に示し
たように入射X線3を光に変換するシンチレ−タ12
a、隣接するX線検出素子間を隔離する隔離板12b、
シンチレ−タ12aにより変換された光を電気信号に変
換するSiフォトダイオ−ド12cで構成されている。
この回路基板13にはSiフォトダイオ−ド12cから
の電気信号を取り出すためのコネクタ14が設置され、
信号ケーブル15により信号処理部に導かれる。
In FIG. 1, a plurality of circuit boards 13 on which an X-ray detecting element array 12 is mounted are provided in a detector housing 8 to form one multi-element solid state detector. The detection element array 12 is a scintillator 12 for converting incident X-rays 3 into light as shown in the basic structure of the solid state detector in FIG.
a, an isolation plate 12b for isolating adjacent X-ray detection elements;
It is composed of a Si photodiode 12c for converting the light converted by the scintillator 12a into an electric signal.
The circuit board 13 is provided with a connector 14 for taking out an electric signal from the Si photodiode 12c.
The signal is guided to the signal processing unit by the signal cable 15.

【0013】また、X線検出器筐体8には、恒温機構の
一部として、加熱用のヒーター9と、冷却用の半導体熱
電気ヒートポンプ(ペルチェ素子式サーモモジュール)
10と、温度コントロール用の温度センサー18を設置
し、検出器筐体8はX線検出器を外気から遮断し保温す
るための断熱材16で覆い、さらに断熱材16の外側は
断熱材16を保護、補強する断熱カバー17で覆ってい
る。
The X-ray detector housing 8 includes a heater 9 for heating and a semiconductor thermoelectric heat pump for cooling (Peltier element type thermo module) as a part of a constant temperature mechanism.
10 and a temperature sensor 18 for controlling temperature, the detector housing 8 is covered with a heat insulating material 16 for isolating the X-ray detector from the outside air and keeping it warm. It is covered with a heat insulating cover 17 for protection and reinforcement.

【0014】X線検出器筐体8は温度コントロール用の
温度センサー18により常に温度計測が行われ、X線検
出器筐体8の温度が設定温度よりも低い場合には加熱用
のヒーター9を作動し、X線検出器筐体8を加熱し、逆
に検出器筐体8の温度が設定温度よりも高くなり冷却が
必要となった場合には半導体熱電気ヒートポンプ10を
作動させ冷却させる機構とする。なお、温度センサー1
8にはヒーター制御用、ヒートポンプ制御用をそれぞれ
別個に設置する。ヒートポンプ10が奪ったX線検出器
筐体8からの熱を導くための伝熱プレート11を設置
し、伝熱プレート11を介してX線検出器筐体8とスキ
ャナ部1との間に接点を設け熱的に結合させる。これに
よりヒートポンプで奪ったX線検出器からの熱をスキャ
ナ部1に導き、スキャナ部1から外気へ放熱させる構造
にする。この場合、検出器筐体8と半導体熱電気ヒート
ポンプ10の接触面、半導体熱電気ヒートポンプ10と
伝熱プレート11の接触面、および伝熱プレート11と
スキャナ部1の接触面には熱伝導率の高いシリコーング
リースなどを塗布し、熱の伝達効率の向上を図り、放熱
効果を高めることができる。
The temperature of the X-ray detector housing 8 is constantly measured by a temperature sensor 18 for temperature control. When the temperature of the X-ray detector housing 8 is lower than a set temperature, a heater 9 for heating is turned on. A mechanism that operates to heat the X-ray detector housing 8 and conversely activates the semiconductor thermoelectric heat pump 10 to cool when the temperature of the detector housing 8 becomes higher than the set temperature and requires cooling. And The temperature sensor 1
8 is provided with heater control and heat pump control separately. A heat transfer plate 11 for guiding heat from the X-ray detector housing 8 taken by the heat pump 10 is installed, and a contact is made between the X-ray detector housing 8 and the scanner unit 1 via the heat transfer plate 11. And thermally coupled. Thereby, the heat from the X-ray detector taken by the heat pump is guided to the scanner unit 1, and the scanner unit 1 is configured to radiate the heat to the outside air. In this case, the contact surface between the detector housing 8 and the semiconductor thermoelectric heat pump 10, the contact surface between the semiconductor thermoelectric heat pump 10 and the heat transfer plate 11, and the contact surface between the heat transfer plate 11 and the scanner unit 1 have thermal conductivity. By applying high silicone grease or the like, heat transfer efficiency can be improved, and the heat radiation effect can be enhanced.

【0015】図2には本発明によるX線CT装置のX線
検出器に対する恒温機構の実施の形態の構成図を示し
た。図2において、1は検出器を搭載し回転するスキャ
ナ部、2aはX線管球、3はX線(ビーム)、2bはX
線3の広がりを制御するX線コリメータ、4a、4bは
それぞれヒーター制御用、ヒートポンプ制御用の温度制
御装置、5はヒートポンプの印加電圧極性切り替え制御
装置、6は被検体、7は多素子X線検出器を示す。
FIG. 2 is a block diagram showing an embodiment of a constant temperature mechanism for the X-ray detector of the X-ray CT apparatus according to the present invention. In FIG. 2, reference numeral 1 denotes a rotating scanner unit having a detector mounted thereon, 2a an X-ray tube, 3 an X-ray (beam), and 2b an X-ray.
X-ray collimators for controlling the spread of the line 3, 4 a and 4 b are temperature control devices for heater control and heat pump control, 5 is a control device for switching the applied voltage polarity of a heat pump, 6 is a subject, and 7 is a multi-element X-ray. 2 shows a detector.

【0016】上記構造において、ヒートポンプの印加電
圧極性切り替え制御装置5は図1に示した半導体熱電気
ヒートポンプ10に印加する直流電圧の極性を切り替
え、放熱によって暖められた接点であるホットジャンク
ションとまだ暖められていない接点であるコールドジャ
ンクションを切り替えるために用いる。
In the above structure, the applied voltage polarity switching control device 5 of the heat pump switches the polarity of the DC voltage applied to the semiconductor thermoelectric heat pump 10 shown in FIG. It is used to switch the cold junction, which is an uncontacted point.

【0017】すなわち、例えばビスマス・テルル化物に
よるNタイプ半導体とPタイプ半導体とをタブにより結
合して成る半導体熱電気ヒートポンプ(ペルチェ素子式
サーモモジュール)では、直流電流がNタイプ半導体か
らPタイプ半導体に流れる場合にはタブの部分の温度が
減少し、周囲から熱が吸収され、冷却効果が起こる。逆
に直流電流がPタイプ半導体からNタイプ半導体に流れ
る場合にはタブの部分は周囲から熱を吸収してタブの温
度が増大し、加熱効果が起こる。これらの効果を利用し
て半導体熱電気ヒートポンプを冷却装置、加熱装置の双
方に用い、検出器を温度制御するために設置する。半導
体熱電気ヒートポンプをこのような使い方をする場合、
熱容量の大きなヒートシンクを必要に応じてスキャナ部
に取付けて代用又は併用すると吸放熱効果はより向上す
る。
That is, for example, in a semiconductor thermoelectric heat pump (Peltier element type thermo module) in which an N-type semiconductor and a P-type semiconductor made of bismuth telluride are connected by a tab, a direct current is changed from an N-type semiconductor to a P-type semiconductor. When flowing, the temperature of the tub portion decreases, heat is absorbed from the surroundings, and a cooling effect occurs. Conversely, when a DC current flows from the P-type semiconductor to the N-type semiconductor, the tub portion absorbs heat from the surroundings and the temperature of the tub increases, resulting in a heating effect. Utilizing these effects, a semiconductor thermoelectric heat pump is used for both the cooling device and the heating device, and the detector is installed to control the temperature. When using a semiconductor thermoelectric heat pump in this way,
If a heat sink having a large heat capacity is attached to the scanner unit as necessary and used instead or in combination, the heat absorbing and dissipating effect is further improved.

【0018】以上説明したように本発明のX線CT装置
は検出器に半導体熱電気ヒートポンプと補助加熱用の電
熱ヒーターとを備え、、既半導体熱電気ヒートポンプを
X線CT装置の検出器を搭載して回転するスキャナ部へ
直接、熱的に結合させ、既半導体熱電気ヒートポンプの
熱の吸収、放散をスキャナ部で行い、かつ既半導体熱電
気ヒートポンプに印加する直流電圧の極性を切り替え、
ホットジャンクションとコールドジャンクションを切り
替える印加電圧極性切り替え制御装置を設けた。これに
よりヒートシンク、放熱ファンが不要となり、X線CT
装置内の限られたスペースの有効活用が図れ、かつ生産
コストの低減化が可能となる。また、スキャナ部へ直
接、熱的に結合させ、既半導体熱電気ヒートポンプの熱
の吸収、放散をスキャナ部で行うため半導体熱電気ヒー
トポンプの効率が向上する。また、半導体熱電気ヒート
ポンプを用いることにより検出器の恒温設定温度を低温
とすることが可能となるため、検出器内のSiフォトダ
イオードのノイズが低減される。さらにSiフォトダイ
オードのを含めたX線検出素子の温度が一定に保たれる
ため、X線CT装置の経時変動によるX線CT画像の画
質劣化を防止できる。
As described above, the X-ray CT apparatus according to the present invention has a semiconductor thermoelectric heat pump and an electric heater for auxiliary heating in a detector, and has a semiconductor thermoelectric heat pump equipped with a detector of the X-ray CT apparatus. Directly and thermally coupled to the rotating scanner unit, absorbs and dissipates heat of the existing semiconductor thermoelectric heat pump in the scanner unit, and switches the polarity of the DC voltage applied to the existing semiconductor thermoelectric heat pump,
An applied voltage polarity switching control device for switching between hot junction and cold junction is provided. This eliminates the need for a heat sink and a heat dissipation fan, and allows the X-ray CT
The limited space in the apparatus can be effectively used, and the production cost can be reduced. Further, the efficiency of the semiconductor thermoelectric heat pump is improved because the semiconductor thermoelectric heat pump is directly and thermally coupled to the scanner and absorbs and dissipates heat of the semiconductor thermoelectric heat pump. Further, since the constant temperature setting temperature of the detector can be lowered by using the semiconductor thermoelectric heat pump, noise of the Si photodiode in the detector is reduced. Further, since the temperature of the X-ray detection element including the Si photodiode is kept constant, it is possible to prevent the image quality of the X-ray CT image from deteriorating due to the aging of the X-ray CT apparatus.

【0019】[0019]

【発明の効果】本発明のX線CT装置は、以上のような
構成を有しているので、スキャナ内に設置可能で、冷却
効率を向上したX線検出器の冷却装置を備えたX線CT
装置を提供するという効果を奏する。
Since the X-ray CT apparatus of the present invention has the above-described configuration, it can be installed in a scanner and has an X-ray detector cooling device with improved cooling efficiency. CT
An effect of providing the device is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のヒートポンプ、ヒートシンク
と放熱ファンとを組合せた冷却装置を備えたX線検出器
の構造を示す断面図。
FIG. 1 is a cross-sectional view showing a structure of an X-ray detector provided with a heat pump, a heat sink, and a cooling device in which a heat radiating fan is combined according to an embodiment of the present invention.

【図2】本発明の恒温機構の実施の形態の構成図。FIG. 2 is a configuration diagram of an embodiment of a constant temperature mechanism according to the present invention.

【図3】従来の固体検出器の基本的な構造を示す斜視
図。
FIG. 3 is a perspective view showing a basic structure of a conventional solid-state detector.

【図4】従来のヒートポンプ、ヒートシンクと放熱ファ
ンとを組合せた冷却装置を備えたX線検出器の構造を示
す断面図。
FIG. 4 is a cross-sectional view showing the structure of a conventional heat pump, an X-ray detector provided with a cooling device combining a heat sink and a radiating fan.

【符号の説明】[Explanation of symbols]

1 スキャナ部 8 検出器筐体 11 伝熱プレート DESCRIPTION OF SYMBOLS 1 Scanner part 8 Detector housing 11 Heat transfer plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体にX線を照射するX線管装置と、
このX線管装置と対向して配置され前記被検体の透過X
線を検出するX線検出器と、これらのX線管装置とX線
検出器をそれぞれ固定し、これらをそれぞれの位置関係
を維持しながら回転させる回転部と、前記X線管装置と
前記X線検出器と前記回転部を収容するスキャナ部を具
備したX線CT装置において、前記X線検出器と前記ス
キャナ部との間に熱伝導性の良い部材の接点を設けたこ
とを特徴とするX線CT装置。
An X-ray tube apparatus for irradiating a subject with X-rays,
The transmitted X-ray of the subject is arranged opposite to the X-ray tube device.
An X-ray detector for detecting X-rays, a rotating unit for fixing the X-ray tube device and the X-ray detector respectively, and rotating them while maintaining their respective positional relationships; the X-ray tube device and the X-ray detector; An X-ray CT apparatus including a line detector and a scanner unit that accommodates the rotating unit, wherein a contact of a member having good thermal conductivity is provided between the X-ray detector and the scanner unit. X-ray CT device.
JP8318525A 1996-11-15 1996-11-15 X-ray ct device Pending JPH10146332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8318525A JPH10146332A (en) 1996-11-15 1996-11-15 X-ray ct device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8318525A JPH10146332A (en) 1996-11-15 1996-11-15 X-ray ct device

Publications (1)

Publication Number Publication Date
JPH10146332A true JPH10146332A (en) 1998-06-02

Family

ID=18100094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8318525A Pending JPH10146332A (en) 1996-11-15 1996-11-15 X-ray ct device

Country Status (1)

Country Link
JP (1) JPH10146332A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215741A (en) * 2003-01-10 2004-08-05 Toshiba Medical System Co Ltd X-ray ct equippment and heat dissipation system thereof
JP2005161059A (en) * 2003-12-02 2005-06-23 Ge Medical Systems Global Technology Co Llc Method and apparatus for temperature management of ct electronic device
US7135687B2 (en) * 2002-07-30 2006-11-14 Ge Medical Systems Global Technology Company, Llc Thermoelectrically controlled X-ray detector array statement regarding federally sponsored research
JPWO2007060740A1 (en) * 2005-11-28 2009-05-07 株式会社島津製作所 Radiation imaging device
KR100939414B1 (en) 2007-10-23 2010-01-28 이주상 X-ray detector
JP2010088949A (en) * 2010-01-26 2010-04-22 Toshiba Medical System Co Ltd X-ray ct apparatus and heat dissipation system of x-ray ct apparatus
JP2014210047A (en) * 2013-04-18 2014-11-13 株式会社東芝 X-ray ct apparatus
CN105982688A (en) * 2015-02-15 2016-10-05 通用电气公司 Thermal control device of detector for CT machine and detector
US10823684B2 (en) 2018-07-09 2020-11-03 Canon Medical Systems Corporation X-ray detector and X-ray CT apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135687B2 (en) * 2002-07-30 2006-11-14 Ge Medical Systems Global Technology Company, Llc Thermoelectrically controlled X-ray detector array statement regarding federally sponsored research
JP2004215741A (en) * 2003-01-10 2004-08-05 Toshiba Medical System Co Ltd X-ray ct equippment and heat dissipation system thereof
JP4551621B2 (en) * 2003-01-10 2010-09-29 株式会社東芝 X-ray CT system heat release system
JP2005161059A (en) * 2003-12-02 2005-06-23 Ge Medical Systems Global Technology Co Llc Method and apparatus for temperature management of ct electronic device
JP4590252B2 (en) * 2003-12-02 2010-12-01 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Method and apparatus for temperature management of CT electronic device
JPWO2007060740A1 (en) * 2005-11-28 2009-05-07 株式会社島津製作所 Radiation imaging device
KR100939414B1 (en) 2007-10-23 2010-01-28 이주상 X-ray detector
JP2010088949A (en) * 2010-01-26 2010-04-22 Toshiba Medical System Co Ltd X-ray ct apparatus and heat dissipation system of x-ray ct apparatus
JP2014210047A (en) * 2013-04-18 2014-11-13 株式会社東芝 X-ray ct apparatus
CN105982688A (en) * 2015-02-15 2016-10-05 通用电气公司 Thermal control device of detector for CT machine and detector
US10823684B2 (en) 2018-07-09 2020-11-03 Canon Medical Systems Corporation X-ray detector and X-ray CT apparatus

Similar Documents

Publication Publication Date Title
US6323891B1 (en) Imaging apparatus with thermal discharger for transferring heat to cool photoelectric transfer elements
US6411672B1 (en) Radiation detector and X-ray CT apparatus
US8106359B2 (en) Radiation imaging apparatus
EP2205992B1 (en) Scintillation detector with heatable entrance window
JP4131883B2 (en) Flat detector
CN107981881B (en) CT system and detection device thereof
JPH10146332A (en) X-ray ct device
JP2003194951A (en) X-ray equipment
US7732780B2 (en) Combined cold plate and radiation shield
JP4564141B2 (en) X-ray CT system
JP2011043390A (en) Radiation detection device
JP5646289B2 (en) Radiation detector
US20060226366A1 (en) Infrared detector
JPH01295449A (en) Cooling type solid-state image sensing device
JP2000116633A (en) Radiography apparatus
US7633054B2 (en) Radiation detecting system using solid-state sensors with electronic cooling and method of preventing condensation using the same
JP5499851B2 (en) 2D image detector
US5485005A (en) Cooled x-ray sensitive photoconductor
EP1523044B1 (en) Imaging apparatus
KR102230492B1 (en) Imaging device
US6002132A (en) Thermionic thermal detector and detector array
JPH0432590B2 (en)
EP0595468B1 (en) Image device
JPH0688747A (en) Cooling type photodetector
KR100902031B1 (en) Radiation detecting system using solid-state sensors with electronic cooling and method of preventing condensation using the same