JPH10144969A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element

Info

Publication number
JPH10144969A
JPH10144969A JP8313148A JP31314896A JPH10144969A JP H10144969 A JPH10144969 A JP H10144969A JP 8313148 A JP8313148 A JP 8313148A JP 31314896 A JP31314896 A JP 31314896A JP H10144969 A JPH10144969 A JP H10144969A
Authority
JP
Japan
Prior art keywords
type semiconductor
thermoelectric conversion
conversion element
crystal
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8313148A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Masami Ueda
雅巳 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8313148A priority Critical patent/JPH10144969A/en
Publication of JPH10144969A publication Critical patent/JPH10144969A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a thermoelectric conversion element for especially generating a high thermoelectromotive force in a thermoelectric conversion element, in which a single-crystal P-type semiconductor and an N-type semiconductor are subjected to PN-junction. SOLUTION: Thermoelectromotive force characteristic greatly changes due to the orientation of a single crystal of a single-crystal P-type semiconductor 1 and an N-type semiconductor 3, thermoelectromotive characteristics in the direction of <111> become extremely high, and thermoelectromotive force changes greatly also due to a metal pieces for the PN-junction of the single- crystal P-type semiconductor 1 and the N-type semiconductor 3. Also, thermoelectromotive characteristics can be improved by including at the PN- junction part, a metal film that is made of precious metals (Au and Ag) that are chemically stable and cannot be oxidized easily even by heating in the air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ダイヤモンド型
結晶構造を有するSi、Geあるいはその合金系に添加
元素を添加した単結晶P型半導体とN型半導体をPN接
合した熱電変換素子の改良に係り、単結晶P型半導体と
N型半導体の各々の結晶の<111>方向の結晶方位に
温度勾配を与えるような構造にして、発電能力(変換効
率)を向上させた熱電変換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a thermoelectric conversion element in which a single crystal P-type semiconductor and an N-type semiconductor in which an additive element is added to Si, Ge or an alloy thereof having a diamond-type crystal structure are PN-joined. The present invention relates to a thermoelectric conversion element having a structure that gives a temperature gradient to the crystal orientation in the <111> direction of each of a single crystal P-type semiconductor and an N-type semiconductor to improve power generation capacity (conversion efficiency).

【0002】[0002]

【従来の技術】熱電変換素子は、最近の産業界において
要求の高い熱エネルギーの有効活用の観点から実用化が
期待されているデバイスであり、例えば、排熱を利用し
電気エネルギーに変換するシステムや、屋外で簡単に電
気を得るための小型携帯用発電装置、ガス機器の炎セン
サー等、非常に広範囲の用途が検討されている。
2. Description of the Related Art Thermoelectric conversion elements are devices that are expected to be put to practical use from the viewpoint of effective use of thermal energy, which is required in recent industries, and for example, a system that converts waste heat into electric energy. Also, a very wide range of applications such as a small portable power generator for easily obtaining electricity outdoors and a flame sensor for gas appliances are being studied.

【0003】しかし、いままでに知られている熱電変換
素子は、一般に熱電変換素子の変換効率が低く、かつ使
用温度範囲が非常に狭いことや製造方法が煩雑でありコ
ストが高い等の理由から汎用されるには至っていない。
However, the thermoelectric conversion elements known so far generally have a low conversion efficiency of the thermoelectric conversion element, a very narrow operating temperature range, a complicated manufacturing method and a high cost. It has not been widely used.

【0004】現在変換効率を出来る限り上げるために、
半金属(As,Sb,Bi,C)やカルコゲン元素
(S,Se,Te)をSi、Geの半導体あるいは遷移
金属(Fe,Co,Mn等)に添加した化合物を中心に
研究されているが、これらの化合物は電気的に半導体的
性質を示すために結晶方位によってゼーベック効果が一
般に大きく変化する。
At present, in order to increase the conversion efficiency as much as possible,
Research has been focused on compounds in which semimetals (As, Sb, Bi, C) and chalcogen elements (S, Se, Te) are added to semiconductors of Si and Ge or transition metals (Fe, Co, Mn, etc.). Since these compounds show electrical semiconducting properties, the Seebeck effect generally largely varies depending on the crystal orientation.

【0005】しかしながら今まで研究されてきた熱電変
換素子用の材料はほとんど多結晶体であり、特にゼーベ
ック係数の高い特定の結晶方位を選択することができな
いために、その変換効率にも自ずと限界があり、特に高
い熱電変換効率を実現するのは困難な状況である。
However, most of the materials for thermoelectric conversion elements which have been studied so far are polycrystals. In particular, since a specific crystal orientation having a high Seebeck coefficient cannot be selected, the conversion efficiency is naturally limited. In particular, it is difficult to achieve particularly high thermoelectric conversion efficiency.

【0006】また、一般にSiやGeの単結晶をP型半
導体あるいはN型半導体にするために、遷移金属元素、
アルカリ元素、第3族あるいは第5族元素等の添加元素
を添加して単結晶を育成することも可能であり、現在で
は添加元素によっては2原子%位まで添加が可能であ
る。さらに添加元素と添加量によって不純物エネルギー
準位を変えることができるために、熱電変換素子の使用
温度帯域を変化させることも可能である。
In general, in order to convert a single crystal of Si or Ge into a P-type semiconductor or an N-type semiconductor, a transition metal element,
It is also possible to grow a single crystal by adding an additional element such as an alkali element, a Group 3 or Group 5 element, and at present it is possible to add up to about 2 atomic% depending on the additive element. Further, since the impurity energy level can be changed depending on the added element and the added amount, it is also possible to change the operating temperature band of the thermoelectric conversion element.

【0007】[0007]

【発明が解決しようとする課題】熱電変換素子の熱起電
力は、原理的には熱電材料の一端を高温に熱し、他端を
低温にした時の温度差によって決まる。このような熱電
変換素子材料の研究は、主に半導体及び半導体特性を示
す金属間化合物を中心に行われてきた。その理由は、金
属や半金属に比べて熱伝導率が低く加えられることと、
各種添加物を添加することによりドナーレベルあるいは
アクセプターレベルで比較的高いエネルギー状態密度が
得られやすいので高いゼーベック効果が得られる利点が
あるためである。
The thermoelectromotive force of a thermoelectric conversion element is determined in principle by a temperature difference when one end of a thermoelectric material is heated to a high temperature and the other end is cooled to a low temperature. Research on such thermoelectric conversion element materials has been mainly performed on semiconductors and intermetallic compounds exhibiting semiconductor characteristics. The reason is that the thermal conductivity is lower than that of metals and metalloids,
This is because a relatively high energy state density can be easily obtained at the donor level or the acceptor level by adding various additives, so that there is an advantage that a high Seebeck effect can be obtained.

【0008】しかしながら前述したように、半導体のゼ
ーベック係数は一般に結晶方位によって大きく変化し、
特に結合力の弱い方位ではゼーベック係数は大きくな
り、また逆に強い結合力を示す結晶方位ではゼーベック
係数は小さくなる傾向を示す。これは結合力の弱い方位
では不純物エネルギー準位でのエネルギー状態密度が高
いことによる。
However, as described above, the Seebeck coefficient of a semiconductor generally varies greatly depending on the crystal orientation.
In particular, the Seebeck coefficient tends to increase in an orientation having a weak binding force, and conversely tends to decrease in a crystal orientation exhibiting a strong binding force. This is because the energy state density at the impurity energy level is high in the direction where the bonding force is weak.

【0009】言い換えれば、結晶のヘキカイ面(最密原
子面)に垂直方向(結合力の弱い方向)でゼーベック係
数が大きくなるということである。これはSi単結晶で
は<111>方向の結晶方位でゼーベック係数が高くな
るということである。しかしながら半導体的特性を示す
金属間化合物の従来研究は殆ど多結晶体であるために、
ゼーベック係数の高い結晶方位の選択は困難であった。
In other words, the Seebeck coefficient increases in the direction perpendicular to the cleavage plane (closest atomic plane) of the crystal (in the direction in which the bonding force is weak). This means that the Seebeck coefficient increases in the crystal orientation in the <111> direction in the Si single crystal. However, conventional research on intermetallic compounds exhibiting semiconducting properties is mostly polycrystalline,
It was difficult to select a crystal orientation having a high Seebeck coefficient.

【0010】この発明は、従来の多結晶半導体とは異な
って、単結晶P型半導体とN型半導体とをPN接合した
熱電変換素子において、特に高い熱起電力を発生させる
ことが可能な構成からなる熱電変換素子の提供を目的と
している。
According to the present invention, unlike a conventional polycrystalline semiconductor, a thermoelectric conversion element having a PN junction of a single crystal P-type semiconductor and an N-type semiconductor can generate a particularly high thermoelectromotive force. The purpose of the present invention is to provide a thermoelectric conversion element.

【0011】[0011]

【課題を解決するための手段】発明者らは、ダイヤモン
ド型結晶構造を有するP型半導体とN型半導体のPN接
合による熱起電力特性をできるかぎり向上させるため
に、ダイヤモンド型結晶構造を有するSi、Geあるい
はその合金系を中心に、その単結晶P型半導体とN型半
導体の結晶方位別に熱起電力特性を種々検討した結果、
単結晶の方位によって熱起電力特性が大きく変化するこ
と、またその時、単結晶P型半導体とN型半導体をPN
接合する金属種によっても熱起電力特性が大きく変化す
ることを知見した。
SUMMARY OF THE INVENTION The inventors of the present invention have proposed a Si-type crystal having a diamond-type crystal structure in order to improve as much as possible the thermoelectromotive force characteristics of a PN junction between a P-type semiconductor having a diamond-type crystal structure and an N-type semiconductor. As a result of various examinations of the thermoelectromotive force characteristics according to the crystal orientation of the single crystal P-type semiconductor and the N-type semiconductor, focusing on, Ge or its alloy system,
The thermo-electromotive force characteristic greatly changes depending on the orientation of the single crystal. At this time, the single crystal P-type semiconductor and the N-type semiconductor
It was found that the thermoelectromotive force characteristics also changed significantly depending on the type of metal to be joined.

【0012】すなわち、発明者らは、ダイヤモンド型結
晶構造を有するSi、Geの炭素族の外穀電子はS電子
2個とP電子2個からなり、ダイヤモンド型結晶構造の
四面体配位ではその結合はSP3混成軌道のσ結合を形
成し、その波動関数は結晶の<111>方向に大きく伸
びており、大きな異方性を有するので、結晶の<111
>方向での結合に関与する電子のエネルギー状態密度は
非常に高くなっていることから、<111>方向での熱
起電力特性は非常に高くなることを知見した。さらに発
明者らは、単結晶P型半導体とN型半導体のPN接合に
使用する金属を種々検討した結果、金や銀の貴金属が高
い熱起電力特性を示すことを知見し、この発明を完成し
た。
In other words, the inventors have found that the outer electrons of the carbon group of Si and Ge having a diamond-type crystal structure consist of two S electrons and two P electrons. The bond forms a σ bond of SP 3 hybrid orbitals, and its wave function extends greatly in the <111> direction of the crystal and has a large anisotropy.
Since the energy state density of electrons involved in the binding in the> direction is very high, it has been found that the thermoelectromotive force characteristics in the <111> direction are very high. Furthermore, the present inventors have studied various metals used for the PN junction of a single-crystal P-type semiconductor and an N-type semiconductor, and have found that gold and silver noble metals exhibit high thermoelectric properties, and completed the present invention. did.

【0013】この発明は、ダイヤモンド型結晶構造を有
するSi、Geの炭素族のP型半導体とN型半導体をP
N接合した熱電変換素子において、各半導体の<111
>方向に温度勾配がかかるように組み上げ、さらに該一
対の半導体間を貴金属(Au,Ag)のいずれか1種の
金属で接合させた熱電変換素子である。
According to the present invention, a P-type semiconductor and an N-type semiconductor of a carbon group of Si and Ge having a diamond type crystal structure are
In the N-junction thermoelectric conversion element, <111
The thermoelectric conversion element is assembled in such a manner that a temperature gradient is applied in the direction, and the pair of semiconductors is joined with any one of noble metals (Au, Ag).

【0014】[0014]

【発明の実施の形態】図1、図2はこの発明の熱電変換
素子の一実施例を示す斜視説明図である。まず、Siあ
るいはGeを主体とするP型半導体1、N型半導体3を
略L字型に加工して形成したPN接合部を構成するため
の突起部端面2に、貴金属(Au,Ag)のいずれか1
種の金属膜を形成する。金属膜の形成方法は当該端面に
蒸着やスパッタリング法で形成する他、後述の素子の圧
着組立時にP型半導体1とN型半導体3の突起部端面
2、4間に金属箔を介在させることもできる。この金属
膜あるいは金属箔の厚みは、1〜20μmが好ましい。
1 and 2 are perspective explanatory views showing one embodiment of a thermoelectric conversion element of the present invention. First, a noble metal (Au, Ag) is formed on a projection end face 2 for forming a PN junction formed by processing a P-type semiconductor 1 and an N-type semiconductor 3 mainly composed of Si or Ge into a substantially L-shape. Any one
A seed metal film is formed. The metal film may be formed by vapor deposition or sputtering on the end face, or a metal foil may be interposed between the protruding end faces 2 and 4 of the P-type semiconductor 1 and the N-type semiconductor 3 at the time of crimping and assembling the element described below. it can. The thickness of the metal film or the metal foil is preferably 1 to 20 μm.

【0015】この発明の熱電変換素子に用いる材料は、
Si、SiGe合金、FeSi2、Gd2Se3等の単結
晶体やFe,Co,Mn等の遷移金属が主体として用い
られる。熱電変換効率を上げるために、半金属(As,
Sb,Bi,C)やカルコゲン元素(S,Se,Te)
をドーブすることが望ましい。また、SiやGeの単結
晶をP型半導体あるいはN型半導体にするために遷移金
属元素、アルカリ元素、第3族あるいは第4族元素等の
添加元素を添加して単結晶を育成してもよい。
Materials used for the thermoelectric conversion element of the present invention are as follows:
Single crystals such as Si, SiGe alloys, FeSi 2 and Gd 2 Se 3 and transition metals such as Fe, Co and Mn are mainly used. In order to increase thermoelectric conversion efficiency, semimetals (As,
Sb, Bi, C) and chalcogen elements (S, Se, Te)
It is desirable to do. Further, in order to convert a single crystal of Si or Ge into a P-type semiconductor or an N-type semiconductor, a single crystal may be grown by adding an additional element such as a transition metal element, an alkali element, or a Group 3 or Group 4 element. Good.

【0016】PN接合部を構成するための金属膜とし
て、貴金属(Au,Ag)を選定する理由としては、貴
金属は伝導電子としてそれぞれ5S、6S状態のS電子
のみを有するために高い電気伝導度を示し、半導体との
接合性に優れ、かつ酸化されにくいために接合部材とし
て使用すると、従来の銀ろうや遷移金属をベースにした
金属の接合に比べて高い熱電力が発生すること、また、
貴金属は化学的に安定であり大気中での加熱でも酸化さ
れにくいことから、貴金属と半導体との間の界面構造も
安定化して熱起電力と電流値が安定するためである。
The reason for selecting a noble metal (Au, Ag) as a metal film for forming a PN junction is that noble metal has only 5S and 6S S electrons as conduction electrons, respectively, and thus has a high electric conductivity. Shows that, when used as a bonding member because it has excellent bondability with a semiconductor and is not easily oxidized, a higher thermal power is generated as compared with the conventional bonding of a metal based on silver solder or a transition metal, and
This is because the noble metal is chemically stable and hardly oxidized even when heated in the air, so that the interface structure between the noble metal and the semiconductor is also stabilized, so that the thermoelectromotive force and the current value are stabilized.

【0017】PN接合する方法としては、P型半導体1
とN型半導体3の突起部端面2、4間に貴金属の金属膜
5または金属箔を介在させて、真空中もしくは不活性ガ
ス雰囲気中で、両半導体1,3をセラミックス製の挟持
治具で挟持し、圧力100〜400kg/cm2、温度
800〜1200℃、5〜20分間の条件で圧着する方
法が採用できる。
As a method of PN junction, a P-type semiconductor 1
A noble metal film 5 or a metal foil is interposed between the protruding end surfaces 2 and 4 of the N-type semiconductor 3 and the semiconductors 1 and 3 are held in a vacuum or an inert gas atmosphere by a holding jig made of ceramics. A method of clamping and pressing under a condition of pressure of 100 to 400 kg / cm 2 , temperature of 800 to 1200 ° C. for 5 to 20 minutes can be adopted.

【0018】かかる圧着組立後に、この接合部を高温部
にするとともに、P型半導体、N型半導体1、3の他端
部を低温側端子として構成したU字型の熱電変換素子を
得ることができる。なお、P型半導体1とN型半導体3
の上端部には電気的接続を形成するリード6、7を設け
てある。また、ここで温度勾配の方向とは、P型半導体
1とN型半導体3の長手方向のことである。
After this crimping assembly, it is possible to obtain a U-shaped thermoelectric conversion element in which this junction is made a high-temperature portion and the other ends of the P-type semiconductors and the N-type semiconductors 1, 3 are used as low-temperature terminals. it can. The P-type semiconductor 1 and the N-type semiconductor 3
Are provided with leads 6, 7 for forming electrical connection. Here, the direction of the temperature gradient is the longitudinal direction of the P-type semiconductor 1 and the N-type semiconductor 3.

【0019】[0019]

【実施例】【Example】

実施例1 図2に示す熱電変換素子を作製するため、珪素(Si)
にAlを0.003wt%ドープしたP型半導体の単結
晶と珪素(Si)にPを0.003wt%ドープしたN
型半導体の単結晶を購入し、温度勾配が<111>にか
かるように切断加工した。この時のPN接合を形成する
突起部端面の結晶方位は表1に示すとおりである。
Example 1 In order to produce the thermoelectric conversion element shown in FIG. 2, silicon (Si) was used.
P-type semiconductor single crystal doped with 0.003 wt% of Al and N doped with 0.003 wt% of P in silicon (Si)
A single crystal of the type semiconductor was purchased and cut so that the temperature gradient was <111>. At this time, the crystal orientation of the end face of the projection forming the PN junction is as shown in Table 1.

【0020】これら単結晶の突起部端面に真空蒸着でA
u金属膜、Ag金属膜を各10μmの厚みに成膜し、挟
持部材を用いて前記両半導体を挟持治具で挟持し、表1
に示す圧着条件にて接合した。得られた熱電変換素子の
高温部と低温部の温度差400℃での熱電素子の熱起電
力を測定した。その結果を表1に示す。
The end faces of the protruding portions of these single crystals are formed by vacuum evaporation.
u metal film and Ag metal film were formed to a thickness of 10 μm each, and the two semiconductors were sandwiched by a clamping jig using a clamping member.
The bonding was performed under the crimping conditions shown in FIG. The thermoelectromotive force of the thermoelectric element at a temperature difference of 400 ° C. between the high temperature part and the low temperature part of the obtained thermoelectric conversion element was measured. Table 1 shows the results.

【0021】なお、熱電変換素子の低温側端子は、測定
用リード線とハンダ接合した。また熱電変換素子の熱起
電力の特性は、熱電素子のPN接合部をヒーターで加熱
し、U字状の素子の両端部を水で冷却して、高温部と低
温部の温度差ΔTによって生成される熱起電力をデジタ
ルマルチメーターで測定した。
The low-temperature side terminal of the thermoelectric conversion element was soldered to a lead wire for measurement. The thermo-electromotive force characteristics of the thermoelectric conversion element are generated by heating the PN junction of the thermoelectric element with a heater, cooling both ends of the U-shaped element with water, and calculating the temperature difference ΔT between the high temperature part and the low temperature part. The measured thermoelectromotive force was measured with a digital multimeter.

【0022】実施例2 図2に示す熱電変換素子を作製するため、ゲルマニウム
(Ge)にGaを0.003wt%ドープしたP型半導
体の単結晶とゲルマニウム(Ge)にAsを0.003
wt%ドープしたN型半導体の単結晶を購入し、温度勾
配が<111>にかかるように切断加工した。この時の
PN接合を形成する突起部端面の結晶方位は表1に示す
通りである。前記両半導体のPN接合方法及び条件を表
1に示す。特に接合温度はGeの溶点959℃より低い
850℃に設定した。熱電素子の熱起電力の測定方法は
実施例1と同一条件であり、その測定結果を表1に示
す。
Example 2 In order to fabricate the thermoelectric conversion element shown in FIG. 2, a P-type semiconductor single crystal in which germanium (Ge) is doped with 0.003 wt% of Ga and As is added in germanium (Ge) in an amount of 0.003%.
A single crystal of an N-type semiconductor doped with wt% was purchased and cut so as to have a temperature gradient of <111>. At this time, the crystal orientation of the end face of the projection forming the PN junction is as shown in Table 1. Table 1 shows PN junction methods and conditions of the two semiconductors. In particular, the joining temperature was set to 850 ° C., which is lower than the melting point of Ge, 959 ° C. The method of measuring the thermoelectromotive force of the thermoelectric element was the same as in Example 1, and the measurement results are shown in Table 1.

【0023】実施例3 図2に示す熱電変換素子を作製するため、Si−l0G
eの合金にAlを0.003wt%ドープしたP型半導
体の単結晶と該合金にPを0.003wt%ドープした
N型半導体の単結晶を購入し、温度勾配が<111>に
かかるように切断加工した。切断加工後の両半導体のP
N接合方法及び条件は表1に示す。熱電素子の熱起電力
の測定方法は実施例1と同一条件であり、その測定結果
を表1に示す。
Example 3 In order to produce the thermoelectric conversion element shown in FIG.
A single crystal of a P-type semiconductor doped with 0.003 wt% of Al in the alloy e and a single crystal of an N-type semiconductor doped with 0.003 wt% of P in the alloy are purchased so that the temperature gradient is <111>. It was cut. P of both semiconductors after cutting
Table 1 shows N bonding methods and conditions. The method of measuring the thermoelectromotive force of the thermoelectric element was the same as in Example 1, and the measurement results are shown in Table 1.

【0024】比較例1〜3 実施例1〜3と同一方法で熱電変換素子を作製する際、
従来の金属膜を真空蒸着で成膜して種々の比較例の熱電
変換素子を作製し、実施例と同様に測定した熱起電力を
表2に示す。また実施例1〜3の単結晶を真空アーク溶
解して多結晶体にした試料を切断加工し、実施例と同一
条件でPN接合して熱電変換素子を作製し、実施例と同
様に測定した熱起電力を表2に示す。なお、表2の中で
適合、不適合の判定は温度差ΔT=400℃での熱起電
力値が600mV以上かあるいは600mV未満かで評
価した。
Comparative Examples 1 to 3 When producing a thermoelectric conversion element in the same manner as in Examples 1 to 3,
Conventional metal films were formed by vacuum evaporation to produce thermoelectric conversion elements of various comparative examples, and the thermoelectromotive force measured in the same manner as in the examples is shown in Table 2. In addition, the single crystal of each of Examples 1 to 3 was cut into a polycrystal by vacuum arc melting to obtain a polycrystalline body, and a PN junction was formed under the same conditions as in the example to produce a thermoelectric conversion element, which was measured in the same manner as in the example. Table 2 shows the thermoelectromotive force. In Table 2, the determination of conformity or non-compliance was made based on whether the thermoelectromotive force at the temperature difference ΔT = 400 ° C. was 600 mV or more or less than 600 mV.

【0025】さらに、さらに、実施例1〜3と同様の熱
電変換素子をPN接合する際、従来から使用されている
材料を用いて実施例と同様に接合し、測定した熱起電力
を表3に示す。なお、表1〜表3の中の適合、不適合の
判定は温度差ΔT=400℃での熱起電力値が600m
V以上かあるいは600mV未満かで評価した。
Furthermore, when the PN junction of the same thermoelectric conversion element as in Examples 1 to 3 was performed, the thermoelectric power was measured using the conventionally used materials in the same manner as in Example. Shown in The determination of conformity or non-conformity in Tables 1 to 3 is based on the determination that the thermoelectromotive force at the temperature difference ΔT = 400 ° C. is 600 m.
The evaluation was made at V or higher or below 600 mV.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】表1、表2から明らかなように、従来のS
i、Geあるいはその合金の多結晶体の熱電変換素子の
代わりに、各種添加元素を添加した単結晶P型半導体と
N型半導体の<111>方向の結晶方位に温度勾配を与
えるような構造にして、且つPN接合金属として貴金属
(Au,Ag)を使用することにより、発電能力(変換
効率)の高い熱電変換素子が得られることがわかった。
また、PN接合する単結晶の方位は、温度勾配の方向で
ある<111>方向に幾何学的に垂直な方向になるが、
特に方位によって大きな変化がないことがわかった。
As is clear from Tables 1 and 2, the conventional S
Instead of a polycrystalline thermoelectric conversion element of i, Ge or an alloy thereof, a structure in which a temperature gradient is given to the crystal orientation in the <111> direction of a single crystal P-type semiconductor and an N-type semiconductor to which various additional elements are added. Further, it was found that a thermoelectric conversion element having high power generation capacity (conversion efficiency) can be obtained by using a noble metal (Au, Ag) as the PN junction metal.
Also, the orientation of the single crystal that forms the PN junction is a direction geometrically perpendicular to the <111> direction, which is the direction of the temperature gradient.
In particular, it was found that there was no significant change depending on the direction.

【0030】[0030]

【発明の効果】この発明による熱電変換素子は、ダイヤ
モンド型結晶構造を有する単結晶P型半導体とN型半導
体の各々の結晶の<111>方向の結晶方位に温度勾配
を与えるように、その一端側でPN接合し、該PN接合
部を化学的に安定であり大気中での加熱でも酸化され難
い貴金属(Au,Ag)からなる金属膜を介在させるこ
とにより、熱起電力特性を向上させることが可能であ
る。
According to the thermoelectric conversion element of the present invention, one end of a single crystal P-type semiconductor and a N-type semiconductor having a diamond-type crystal structure is provided so as to give a temperature gradient to the crystal orientation in the <111> direction of each crystal. PN junction on the side and improving the thermoelectromotive force characteristics by interposing a metal film made of a noble metal (Au, Ag) that is chemically stable and hardly oxidized even when heated in the air. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による熱電変換素子の半導体を示す傾
視説明図である。
FIG. 1 is a perspective explanatory view showing a semiconductor of a thermoelectric conversion element according to the present invention.

【図2】この発明による熱電変換素子を示す傾視説明図
である。
FIG. 2 is a perspective explanatory view showing a thermoelectric conversion element according to the present invention.

【符号の説明】[Explanation of symbols]

1 P型半導体 2,4 突起部端面 3 N型半導体 5 金属膜 6,7 リード DESCRIPTION OF SYMBOLS 1 P-type semiconductor 2, 4 Protrusion end surface 3 N-type semiconductor 5 Metal film 6, 7 Lead

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンド型結晶構造を有する単結晶
P型半導体とN型半導体の各々の結晶の<111>方向
の結晶方位に温度勾配を与えるように、その一端側でP
N接合して該接合部を高温側として熱起電力を発生させ
る熱電変換素子。
1. One end of a single-crystal P-type semiconductor and a N-type semiconductor having a diamond-type crystal structure at one end thereof so as to give a temperature gradient to the crystal orientation in the <111> direction.
A thermoelectric conversion element in which N junction is performed to generate a thermoelectromotive force with the junction being on the high temperature side.
【請求項2】 請求項1において、熱電変換素子の一対
の半導体間のPN接合を貴金属(Ag,Au)のいずれ
か1種の金属で接合させたことを特徴とする熱電変換素
子。
2. The thermoelectric conversion element according to claim 1, wherein the PN junction between the pair of semiconductors of the thermoelectric conversion element is joined with any one of noble metals (Ag, Au).
JP8313148A 1996-11-08 1996-11-08 Thermoelectric conversion element Pending JPH10144969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8313148A JPH10144969A (en) 1996-11-08 1996-11-08 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8313148A JPH10144969A (en) 1996-11-08 1996-11-08 Thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH10144969A true JPH10144969A (en) 1998-05-29

Family

ID=18037691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8313148A Pending JPH10144969A (en) 1996-11-08 1996-11-08 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH10144969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021608A1 (en) * 2000-09-04 2002-03-14 Shin-Etsu Handotai Co., Ltd. Thermoelement
AT410492B (en) * 2000-05-02 2003-05-26 Span Gerhard Dipl Ing Dr THERMOELECTRIC ELEMENT WITH AT LEAST ONE N LAYER AND AT LEAST ONE P LAYER

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410492B (en) * 2000-05-02 2003-05-26 Span Gerhard Dipl Ing Dr THERMOELECTRIC ELEMENT WITH AT LEAST ONE N LAYER AND AT LEAST ONE P LAYER
US6762484B2 (en) 2000-05-02 2004-07-13 Gerhard Span Thermoelectric element
WO2002021608A1 (en) * 2000-09-04 2002-03-14 Shin-Etsu Handotai Co., Ltd. Thermoelement

Similar Documents

Publication Publication Date Title
US6458319B1 (en) High performance P-type thermoelectric materials and methods of preparation
JP4896336B2 (en) Thermal diode for energy conversion
JP2002094131A (en) Thermoelectric conversion element
JP4285665B2 (en) Thermoelectric conversion element
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP2002084005A (en) Thermoelectric module
JP2007165463A (en) Thermoelectric converting element and power generating module
JP2007013000A (en) Thermoelectric conversion material
JPH10144969A (en) Thermoelectric conversion element
JP2020194926A (en) Thermoelectric conversion material, thermoelectric conversion element using the same, thermoelectric power generation module, and peltier cooler
CN207529976U (en) Thermo-electric device and its electrode
CN105633264A (en) Thermoelectric battery with series-wound electric leg structure
JPH1022530A (en) Thermoplastic conversion element
JPH11195817A (en) Thermoelectric conversion element
US3342646A (en) Thermoelectric generator including silicon germanium alloy thermoelements
US3853632A (en) Thermoelectric composition
JP3203383B2 (en) Thermoelectric material and thermoelectric conversion element
JPH0856020A (en) Thermoelectric material and thermionic element
WO2008020480A1 (en) High-performance thermoelectric conversion material and thermoelectric conversion module for power generation
JPH1022531A (en) Thermoelectric converter element
JP2009038323A (en) Manufacturing method of thermoelectric conversion element
US3442718A (en) Thermoelectric device having a graphite member between thermoelement and refractory hot strap
US3444005A (en) Thermoelectric hot shoe contacts
Henkels The fused silicon rectifier
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof