JPH10140281A - Steel for machine structural use, excellent in strength recoverability - Google Patents

Steel for machine structural use, excellent in strength recoverability

Info

Publication number
JPH10140281A
JPH10140281A JP29629896A JP29629896A JPH10140281A JP H10140281 A JPH10140281 A JP H10140281A JP 29629896 A JP29629896 A JP 29629896A JP 29629896 A JP29629896 A JP 29629896A JP H10140281 A JPH10140281 A JP H10140281A
Authority
JP
Japan
Prior art keywords
steel
strength
graphitization
treatment
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29629896A
Other languages
Japanese (ja)
Inventor
Goro Anami
吾郎 阿南
Toyofumi Hasegawa
豊文 長谷川
Hiroshi Kakou
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29629896A priority Critical patent/JPH10140281A/en
Publication of JPH10140281A publication Critical patent/JPH10140281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel for machine structural use, having short graphitization time, capable of securing cold workability such as cold forgeability, and also capable of satisfactorily securing strength after refining treatment even in the case of successive short solution heat treatment time, by specifying the chemical composition of a steel. SOLUTION: This steel for machine structural use has a composition consisting of, by mass, 0.1-1.1% C, 0.5-2.0% Si, 0.10-0.9% Mn, <=0.030% P, 0.001-0.03% S, 0.0003-0.015% B, 0.01-0.5% Al, 0.0003-0.015% Ca, 0.01-0.20% Zr, 0.0015-0.010% N, and the balance Fe. In this steel, the steel structure after graphitization treatment is composed essentially of graphite and ferrite and the strength of the steel which is refined after graphitization treatment is >=90% as compared with the strength in the case where refining is performed without graphitization treatment. Moreover, one or more kinds among 0.1-2.0% Cu, 0.1-2.0% Ni, 0.1-2.0% Co, and 0.005-0.30% V or further <=0.020% Ti, <=0.020% Nb, <=0.10% Mo, <=0.10% Cr, and <=0.10% W can further be incorporated into the above composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業機械および自
動車部品等の素材として用いられる機械構造用鋼に関
し、特に連続鋳造法により製造される、冷間鍛造性と調
質処理による強度回復性に優れた機械構造用鋼に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for machine structure used as a material for industrial machines and automobile parts, and more particularly to a cold forging property and a strength recovery property by a tempering treatment, which are manufactured by a continuous casting method. It relates to excellent mechanical structural steel.

【0002】[0002]

【従来の技術】一般に、冷間鍛造法などの冷間加工は、
熱間鍛造などの熱間加工に比して、生産効率や材料歩留
りが高く、仕上げ寸法精度に優れることから、ボルトや
ナットを始めとして、各種機械部品の製造に広く用いら
れている加工方法である。
2. Description of the Related Art Generally, cold working such as cold forging is performed by:
Compared to hot working such as hot forging, production efficiency and material yield are high, and finish dimensional accuracy is excellent, so it is a processing method widely used in the manufacture of various machine parts such as bolts and nuts. is there.

【0003】この冷間鍛造法による機械部品の製造に適
用される鋼材としては、一般的に、Cが0.45%以下
のJIS、S45C鋼に球状化焼きなましを施し、鋼を
軟質化させて用いていた。この軟質化により、冷間鍛造
時の加工性や被削性を確保された鋼材は、冷間鍛造後
に、機械部品としての要求強度を確保(回復)するた
め、容体化−焼入れ−焼戻し処理(以後調質処理と称
す)を行う。
[0003] As a steel material applied to the production of machine parts by the cold forging method, generally, JIS, S45C steel having a C of 0.45% or less is subjected to spheroidizing annealing to soften the steel. Was used. The steel material, whose workability and machinability at the time of cold forging are ensured by this softening, is subjected to a soaking, quenching, and tempering treatment (to recover (recover)) the required strength as a mechanical part after the cold forging. Hereinafter, referred to as a refining process).

【0004】これに対して、近年、機械部品としての高
機能、高性能化の要求から、冷間鍛造用鋼の高強度化の
要求が大きく、この高強度化の要求に応えるためには、
前記強度回復のための調質処理時の焼入れ性を確保する
ため、0.45%以上の高炭素化が必要となっている。
しかし、鋼を高炭素化すると、逆に、前記球状化焼きな
ましだけでは充分な加工性が得られまで軟化させること
ができず、鋼の変形抵抗を増加させ、冷間鍛造用金型の
寿命が低下したり、鍛造荷重の増加を招いたりする、冷
間鍛造性(加工性)の問題が新たに生じることになる。
On the other hand, in recent years, there has been a great demand for high strength of cold forging steel due to demands for high performance and high performance as mechanical parts. In order to meet this demand for high strength,
In order to secure the hardenability during the tempering treatment for the strength recovery, it is necessary to increase the carbon content by 0.45% or more.
However, when the steel is made high carbon, conversely, the spheroidizing annealing alone cannot soften until sufficient workability is obtained, increasing the deformation resistance of the steel and increasing the life of the cold forging die. A new problem of cold forgeability (workability), which lowers or causes an increase in forging load, arises.

【0005】そこで、前記球状化焼きなまし方法に替え
て、機械構造用鋼を黒鉛化処理し、鋼中のセメンタイト
を一旦黒鉛化して、鋼を主として黒鉛およびフェライト
からなる組織とし、冷間加工性を確保する試みがなされ
ている。この黒鉛化処理鋼は、セメンタイトと異なり、
黒鉛が鋼に比べて極めて軟質で潤滑性も有するので、鋼
の強度を上げずに、冷間鍛造性や切削性を改善すること
が可能である。また、冷間鍛造後の調質処理により、黒
鉛を再固溶させ、焼入れることで、強度回復も、前記球
状化焼きなまし鋼と同様に可能である。
Therefore, instead of the spheroidizing annealing method, the steel for machine structural use is graphitized, and the cementite in the steel is graphitized once so that the steel has a structure mainly composed of graphite and ferrite. Attempts have been made to secure. This graphitized steel, unlike cementite,
Since graphite is extremely soft and has lubricity as compared with steel, it is possible to improve cold forgeability and machinability without increasing the strength of steel. In addition, graphite can be solid-dissolved again by tempering after cold forging and then quenched, whereby the strength can be recovered as in the case of the spheroidized annealed steel.

【0006】ただ、鋼中のセメンタイトの黒鉛化処理に
は長時間の熱処理を要すため、従来から、この処理時間
を短縮する試みが種々提案されている。例えば、特開平
6−57369号、特開平6−116678号公報で
は、鋼組成を1.5〜2.0の高Siとし、特にB、A
lを添加すると同時に、Cu、Ni、Nb、Tiなども
添加して、冷間加工時の変形抵抗と変形能を改善し、合
わせてBNとAlNを核に黒鉛を生成させることで、鋼
中セメンタイト(C)の黒鉛化を容易にし、黒鉛化時間
を短縮する方法が開示されている。
However, graphitization treatment of cementite in steel requires a long heat treatment, and various attempts to shorten the treatment time have been conventionally proposed. For example, in JP-A-6-57369 and JP-A-6-116678, the steel composition is set to a high Si of 1.5 to 2.0, and particularly, B, A
At the same time as adding l, Cu, Ni, Nb, Ti, etc. are also added to improve the deformation resistance and deformability during cold working, and together with BN and AlN as nuclei to generate graphite, steel A method for facilitating graphitization of cementite (C) and shortening the graphitization time is disclosed.

【0007】因みに、この種の黒鉛化処理鋼では、調質
処理における鋼の焼入れ性を確保するため、通常添加さ
れる、Mn、Cr、Ti、Nb等の焼入れ性向上元素
は、セメンタイトを安定化させ黒鉛化を阻害するため、
多量には使えない。これに対し、前記Bは、これら元素
と異なり、黒鉛生成の核となるBNを形成して黒鉛化を
促進するとともに、焼入れ性にも寄与する。
[0007] Incidentally, in this type of graphitized steel, in order to secure the hardenability of the steel in the tempering treatment, the quenchability improving elements such as Mn, Cr, Ti, Nb, etc., which are usually added, stabilize cementite. To inhibit graphitization,
Not usable in large quantities. On the other hand, B, unlike these elements, forms BN which is a nucleus for graphite generation to promote graphitization and also contributes to hardenability.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記従来の黒
鉛化処理鋼では、黒鉛化処理の時間短縮はそれなりに図
れるものの、冷間鍛造後の調質処理、特に溶体化処理に
おいて、鋼中に黒鉛を再溶解させるために時間を要する
とともに、焼入れ性にも寄与するBを含んでなお、調質
後の各種機械部品としての強度を確保できない問題を残
していた。
However, in the conventional graphitized steel, although the time required for the graphitizing process can be shortened, the tempering process after cold forging, particularly in the solution treatment, causes the steel to be in the steel. It takes a long time to re-dissolve graphite and contains B, which also contributes to hardenability, and still leaves the problem that the strength of various mechanical parts after tempering cannot be ensured.

【0009】例えば、通常この種の調質処理は、870
℃×30分の加熱、焼入れ、550℃×1hrの焼戻し
の条件で行われる。しかし、この調質処理を、前記従来
のB入り黒鉛化処理鋼に施しても、調質処理後の強度
が、黒鉛化処理せずに調質処理した鋼の強度に比して9
0%未満程度しか回復せず、前記機械部品としての高機
能、高性能化の要求に対応する強度を確保できない。
[0009] For example, this kind of tempering process is usually 870
The heating and quenching are performed at 550 ° C. for 1 hour. However, even if this tempering treatment is performed on the conventional graphitized steel containing B, the strength after the tempering treatment is 9 times higher than the strength of the steel tempered without the graphitization treatment.
It recovers only less than about 0%, and cannot secure the strength corresponding to the demand for high performance and high performance as the mechanical parts.

【0010】黒鉛化処理した鋼の調質後の強度が、黒鉛
化処理せずに調質処理した鋼の強度に比して90%未満
に低下する(強度回復性が悪い)のは、黒鉛が鋼中に再
溶解しにくく、鋼中に再溶解させるために時間を要する
ためである。前記従来のB入り黒鉛化処理鋼でも、Bの
添加により、BNなどの析出物を利用して、黒鉛を微細
に析出させるから、B無添加鋼よりは、黒鉛の鋼中への
再溶解が促進しているはずである。しかしながら、前記
のように短い容体化処理時間では、従来のB入り黒鉛化
処理鋼でも、充分に黒鉛が溶解するほど黒鉛を微細化で
きないため、依然として充分な強度が確保できないのが
実情である。
[0010] The reason why the tempered strength of the graphitized steel decreases to less than 90% (poor strength recovery) compared to the strength of the tempered steel without the graphitization treatment is that of graphite. Is difficult to re-dissolve in steel and it takes time to re-dissolve in steel. Even in the conventional graphitized steel containing B, graphite is finely precipitated using BN or the like by the addition of B, so that the graphite is re-dissolved in the steel more than the steel without B added. It should be promoting. However, with the short encapsulation treatment time as described above, even in the conventional graphitized steel containing B, graphite cannot be refined enough to sufficiently dissolve graphite, so that sufficient strength cannot be ensured yet.

【0011】これに対し、容体化処理時間を延ばして黒
鉛の鋼中への再溶解時間を確保する手法も考えられる
が、機械構造部品製造工程の効率や製造コストの面か
ら、実用的な方法とは言いがたい。
[0011] On the other hand, a method of increasing the time for the soaking process and securing the time for re-dissolving graphite in steel is also conceivable. It is hard to say.

【0012】従って、本発明は、前記従来技術の問題点
に鑑み、黒鉛化時間を短縮する、言い換えると、短時間
の黒鉛化処理であっても黒鉛化が完了し、冷間鍛造など
の冷間加工性を確保することは勿論、その後の短い容体
化処理時間であっても、調質処理後の強度を充分確保で
きる機械構造用鋼を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-mentioned problems of the prior art, and therefore, the graphitization time is shortened. In other words, the graphitization is completed even in a short time graphitization process, and the cold graphing process such as cold forging is performed. It is an object of the present invention to provide a steel for machine structural use capable of ensuring sufficient strength after tempering, not to mention ensuring inter-workability, but even after a short encapsulation time.

【0013】[0013]

【課題を解決するための手段】この目的のために、本発
明では、機械構造用鋼の化学成分組成を、質量%にて、
C;0.1〜1.1%、Si;0.5〜2.0%、M
n;0.10〜0.9%、P;≦0.030%、S;
0.001〜0.03%、B;0.0003〜0.01
5%、Al;0.01〜0.5%、Ca;0.0003
〜0.015%、Zr;0.01〜0.20%、N;
0.0015〜0.010%を含有し、残部がFeおよ
び不可避的不純物からなるものとする。
For this purpose, according to the present invention, the chemical composition of the steel for machine structural use is expressed as
C: 0.1 to 1.1%, Si: 0.5 to 2.0%, M
n; 0.10 to 0.9%, P; ≤ 0.030%, S;
0.001-0.03%, B; 0.0003-0.01
5%, Al; 0.01 to 0.5%, Ca; 0.0003
0.01 to 0.20%, N;
0.0015 to 0.010%, with the balance being Fe and unavoidable impurities.

【0014】そして、この化学成分組成とすることによ
り、鋼の特性として、短時間の黒鉛化処理であっても黒
鉛化が完了し、鋼組織が主として黒鉛およびフェライト
からなり、冷間鍛造性を確保する。また、その後の調質
処理における、短い溶体化処理時間であっても、鋼中へ
の黒鉛の再溶解が完了し、調質処理された鋼の強度が、
黒鉛化処理せずに調質処理のみを施した鋼の強度に比し
て90%以上に回復するものとできる。これらの特性
は、実施例にて後述する通り、同じ黒鉛の微細化鋼であ
っても、Bのみを添加、あるいは、CaやZrのみを添
加した鋼の場合よりも高い。
[0014] By adopting this chemical composition, as a characteristic of the steel, the graphitization is completed even with a short time graphitization treatment, the steel structure is mainly composed of graphite and ferrite, and the cold forgeability is improved. Secure. Further, in the subsequent tempering treatment, even if the solution treatment time is short, the re-dissolution of graphite in the steel is completed, and the strength of the tempered steel is
The strength can be recovered to 90% or more compared to the strength of the steel subjected to the tempering treatment without the graphitization treatment. As described later in the examples, these characteristics are higher than the case of the same graphite refined steel in which only B is added, or only Ca or Zr is added.

【0015】また、本発明鋼では、冷間加工後の調質処
理における焼入れ性向上のために、Cu、Ni、Co、
Vの内から一種または二種以上を添加することを含み、
また、Nb、Ti、Mo、Cr、Wの内から一種または
二種以上を、黒鉛化を阻害しない範囲で含有することを
許容する。
In the steel of the present invention, Cu, Ni, Co,
Including the addition of one or more of V
Further, one or more of Nb, Ti, Mo, Cr, and W are allowed to be contained in a range that does not inhibit graphitization.

【0016】[0016]

【発明の実施の形態】まず、CaとZrとを複合添加す
ることによる、黒鉛化時間の短縮効果について説明す
る。図1は、0.45%C−0.20%Mn−1.55
%Si−0.01%Si−0.01%S−0.002%
B−0.02%Alからなる、Bを添加した低Mn高S
i鋼1(○印)と、このベース鋼にCaとZrとを各々
単独および複合添加した鋼〔Ca添加鋼2(△印)、Z
r添加鋼3(□印)、CaとZrとを複合添加した本発
明鋼4(◇印)〕(各々後述する表1の番号に対応)に
ついて、黒鉛化率と黒鉛化処理時間(但し、700℃で
の保持時間)との関係を示している。
First, the effect of shortening the graphitization time by adding Ca and Zr in combination will be described. FIG. 1 shows 0.45% C-0.20% Mn-1.55.
% Si-0.01% Si-0.01% S-0.002%
B-added low Mn high S made of 0.02% Al
i steel 1 (marked with ○) and a steel obtained by adding Ca and Zr individually and in combination to the base steel [Ca-added steel 2 (marked with △), Z
r-added steel 3 (indicated by □), inventive steel 4 in which Ca and Zr are combined and added (indicated by ◇)] (corresponding to the numbers in Table 1 described below), respectively, for the graphitization rate and graphitization treatment time (however, (Retention time at 700 ° C.).

【0017】同図から、B添加低Mn高Si鋼1や、こ
れにCaとZrとを各々単独添加した鋼2、3に比し
て、B添加低Mn高Si鋼にCaとZrとを複合添加し
た本発明鋼4の黒鉛化が速まっていることが分かる。C
aとZrとを複合添加することにより黒鉛化処理時間を
短縮できる理由は、CaとZrとを複合添加することに
より、CaとZrとの複合硫化物が析出し、この硫化物
を核に析出するBNの数が増加し、更にこのBNを核に
して黒鉛化が加速されるものと推定される。
[0017] From the figure, it can be seen that Ca and Zr are added to the B-added low Mn high Si steel in comparison with the B-added low Mn high Si steel 1 and the steels 2 and 3 to which Ca and Zr are individually added. It can be seen that the graphitization of the steel 4 of the present invention to which composite addition has been accelerated. C
The reason why the graphitization treatment time can be shortened by the complex addition of a and Zr is that the complex sulfide of Ca and Zr precipitates by the complex addition of Ca and Zr, and this sulfide precipitates on the nucleus. It is presumed that the number of BNs to be increased increases, and further the graphitization is accelerated using the BNs as nuclei.

【0018】そして、CaとZrとの複合硫化物自体が
微細に析出しやすい性質を持っているのか、ある環境下
で微細に析出しやすいのかは、未だ不明であるが、Ca
とZrとの複合硫化物が微細に析出することにより、析
出するBNも微細となり、更にこのBNを核にした黒鉛
も微細に析出する。そしてこのことによって、黒鉛化処
理における、セメンタイトの黒鉛化に必要な時間も短縮
されると考えられる。
It is not yet known whether the complex sulfide itself of Ca and Zr has a property of easily precipitating finely, or whether it is likely to precipitate finely under a certain environment.
By finely precipitating the composite sulfide of Zr and Zr, the BN to be precipitated becomes fine, and graphite having BN as a nucleus also finely precipitates. It is considered that this also shortens the time required for graphitizing cementite in the graphitization treatment.

【0019】一方、CaとZrとを複合添加しない鋼
2、3では、硫化物として鋼中に存在するのはMnSの
み乃至CaとZrと各々の硫化物しかなく、しかも黒鉛
化処理用のベース鋼は、一般的に黒鉛化促進のために、
黒鉛化を阻害するMn量を減じており、MnS自体の量
も少ない。したがって、結果BNの数が少なく、黒鉛化
も遅くなるものと推定される。
On the other hand, in steels 2 and 3 in which Ca and Zr are not combined, only MnS or only Ca and Zr and each sulfide are present as sulfides in the steel. Steel is generally used to promote graphitization,
The amount of Mn that inhibits graphitization is reduced, and the amount of MnS itself is also small. Therefore, it is estimated that the number of resulting BNs is small and the graphitization is also slow.

【0020】図2は、図1の場合と同じ鋼を用いて、黒
鉛化処理後に、調質処理(容体化処理は高周波で100
0℃、60秒間加熱)した場合の引っ張り強さを示した
ものである。同図から、B添加鋼1や、B添加鋼にCa
とZrとを各々単独添加した鋼2、3の強度に比して、
B添加鋼にCaとZrとを複合添加した鋼4の、調質処
理後の強度が最も高いことが分かる。この理由も、前記
黒鉛化の場合と同様、CaとZrとにより、析出黒鉛が
微細となるため、容体化処理において、黒鉛が再溶解し
やすいものと考えられる。
FIG. 2 shows that the same steel as in FIG. 1 is used, and after the graphitizing treatment, the refining treatment (the materializing treatment is performed at a high frequency of 100%).
It shows the tensile strength when heated at 0 ° C. for 60 seconds. From the figure, B-added steel 1 and B-added steel
And Zr, respectively, compared to the strength of steels 2 and 3 to which each was independently added,
It is understood that the strength of the steel 4 in which Ca and Zr are added to the B-added steel in a complex manner is the highest after the tempering treatment. This is also because, as in the case of graphitization, the precipitated graphite becomes finer due to Ca and Zr, and it is considered that the graphite is easily redissolved in the embedding treatment.

【0021】以下に、本発明における化学成分の限定理
由について説明する。Cは、切削部品として本発明鋼の
最低要求強度60kgf/mm2 (590N/mm2
以上を確保するための必須の元素であり、その効果を発
揮するためには、0.1%以上の含有が必要である。し
かし、1.1%を超えて過多に含有すると、鋼がロック
ウエル硬度でHRC32(Cスケール)以上に硬くなり
すぎ、冷間鍛造性を劣化させる。したがって、Cの含有
量は0.1〜1.1%の範囲とする。
The reasons for limiting the chemical components in the present invention will be described below. C is the minimum required strength of the steel of the present invention of 60 kgf / mm 2 (590 N / mm 2 ) as a cutting part.
It is an indispensable element for securing the above, and in order to exhibit its effect, the content of 0.1% or more is necessary. However, if the content exceeds 1.1%, the steel becomes too hard with a Rockwell hardness of HRC32 (C scale) or more, deteriorating the cold forgeability. Therefore, the content of C is set in the range of 0.1 to 1.1%.

【0022】Siは、鋼溶製時に脱酸剤として作用し、
また、黒鉛化促進と高強度化のために必須の元素であ
る。その効果を発揮するためには、0.5%以上の含有
を必要とする。しかしながら、2.0%を超えて過多に
含有すると、鋼がロックウエル硬度でHRC32以上に
硬くなりすぎ、冷間鍛造性を劣化させる。したがって、
Siの含有量は0.5〜2.0%の範囲とする。
Si acts as a deoxidizing agent at the time of smelting steel,
Further, it is an essential element for promoting graphitization and increasing strength. In order to exhibit the effect, the content needs to be 0.5% or more. However, if the content exceeds 2.0%, the steel becomes too hard in Rockwell hardness of HRC32 or more, and deteriorates cold forgeability. Therefore,
The content of Si is in the range of 0.5 to 2.0%.

【0023】Mnは、Sと結合して鋼の被削性の保持に
最低必要なMnSを生成させるとともに、鋼の強度を確
保する上で有用な元素である。これらの効果を発揮する
ためには、0.10%以上の含有が必要であるが、0.
9%を超えて含有すると、鋼の靱性の劣化を生じる。し
たがって、Mnの含有量は0.10〜0.9%の範囲と
する。
Mn is an element that combines with S to generate MnS, which is the minimum necessary for maintaining the machinability of steel, and is useful in ensuring the strength of steel. In order to exhibit these effects, the content of 0.10% or more is necessary.
If the content exceeds 9%, the toughness of the steel deteriorates. Therefore, the Mn content is in the range of 0.10 to 0.9%.

【0024】Pは、黒鉛化を阻害する不純物であり、極
力少ない方が好ましいので、許容量の上限を0.030
%とする。
P is an impurity that inhibits graphitization, and it is preferable that P be as small as possible.
%.

【0025】Sは、Mnと結合して鋼の被削性の保持に
最低必要なMnSを生成させるとともに、CaとZrと
の複合硫化物を形成するために重要な元素である。0.
001%未満では硫化物の絶対量が不足し、被削性向上
や黒鉛化促進および調質処理後の強度回復効果が無くな
り、逆に0.03%を超えて含有すると、鋼の靱性が低
下し、鋼材の熱間圧延で脆化を起こし加工困難となる。
したがって、Sの含有量は0.001〜0.03%とす
る。
S is an important element for combining with Mn to form MnS, which is the minimum necessary for maintaining the machinability of steel, and to form a composite sulfide of Ca and Zr. 0.
If the content is less than 001%, the absolute amount of sulfide is insufficient, the machinability is not improved, the graphitization is promoted, and the strength recovery effect after the tempering treatment is lost. Conversely, if the content exceeds 0.03%, the toughness of the steel decreases. However, the hot rolling of the steel material causes embrittlement and makes working difficult.
Therefore, the content of S is set to 0.001 to 0.03%.

【0026】Bは、微量の添加により鋼の焼入れ性を向
上させるとともに、BNを形成し、黒鉛生成の核となる
元素である。その効果を得るためには、0.0003%
以上の含有が必要であり、0.015%を超えて添加し
ても効果が飽和する。したがって、Bの含有量は0.0
003〜0.015%とする。
B is an element that improves the hardenability of steel by adding a trace amount thereof, forms BN, and becomes a nucleus for graphite formation. To obtain the effect, 0.0003%
The above content is necessary, and the effect is saturated even if it exceeds 0.015%. Therefore, the content of B is 0.0
003 to 0.015%.

【0027】Alは、鋼溶製時に脱酸剤として作用する
ととともに、黒鉛化を促進する効果もある。この効果を
発揮するためには、0.01%以上の含有を必要とする
が、一方で0.5%を超えて含有すると、鋼中にAl2
3 が多量に生成して、却って加工性や被削性に悪影響
を与える。したがって、Alの含有量は0.01〜0.
5%の範囲とする。
[0027] Al acts as a deoxidizing agent at the time of smelting steel and has an effect of promoting graphitization. In order to exhibit this effect, the content of 0.01% or more is required. On the other hand, if the content exceeds 0.5%, Al 2
O 3 is generated in large amounts, which adversely affects workability and machinability. Therefore, the content of Al is 0.01 to 0.1.
The range is 5%.

【0028】CaとZrとは、前記した通り本発明鋼の
重要な元素であり、複合添加することによりCaとZr
との複合硫化物が析出し、この硫化物を核に析出するB
Nの数が増加し、更にこのBNを核にして微細な黒鉛化
が進む。この結果、黒鉛化処理時間を短縮するととも
に、容体化処理において黒鉛が再溶解しやすく、調質処
理後の強度が高く、黒鉛化処理前の90%以上の強度を
有するようになる。この効果を発揮させるためには、C
aで0.0003%以上、Zrで0.01%以上の含有
を必要とする。一方でこの効果は、Caで0.015
%、Zrで0.20%を超えると飽和する。したがっ
て、含有量は各々、Caは0.0003〜0.015
%、Zrは0.01〜0.20%の範囲とする。
As described above, Ca and Zr are important elements of the steel of the present invention.
B, which precipitates complex sulfide with
The number of N increases, and further graphitization proceeds with this BN as a nucleus. As a result, the graphitization treatment time is shortened, the graphite is easily redissolved in the embedding treatment, the strength after the tempering treatment is high, and the strength becomes 90% or more of that before the graphitization treatment. To achieve this effect, C
The content of a is required to be 0.0003% or more, and the content of Zr is required to be 0.01% or more. On the other hand, this effect is 0.015 in Ca.
% And Zr, the content is saturated when it exceeds 0.20%. Therefore, the content of Ca is 0.0003 to 0.015, respectively.
% And Zr are in the range of 0.01 to 0.20%.

【0029】Nは、BNを形成し、黒鉛生成の核となり
黒鉛化を促進する元素である。0.0015%未満で
は、BN析出量が少なすぎて黒鉛化に時間がかかり、
0.010%を超えると、固溶N低減のためのBやT
i、Zrを多量に添加する必要が生じ、コスト的にも不
利である。したがって、Nの含有量は0.0015〜
0.010%とする。しかし一方で、固溶Nは、逆に黒
鉛化を阻害するので、NはBと当量以下を含有するのが
望ましい。
N is an element that forms BN, becomes a nucleus for graphite production, and promotes graphitization. If it is less than 0.0015%, the amount of BN deposited is too small, and it takes time to graphitize,
If it exceeds 0.010%, B or T for reducing solid solution N
It is necessary to add a large amount of i and Zr, which is disadvantageous in cost. Therefore, the content of N is 0.0015 to
0.010%. On the other hand, on the other hand, solid solution N inhibits graphitization, and therefore, it is desirable that N contains an equivalent amount of B or less.

【0030】以上の成分の他に、本発明では、強度向上
の目的で、更に、Cu、Ni、Co、V、Ti、Nb、
Mo、Cr、Wの内から、一種または二種以上を含有す
ることができる。但し、これらの元素は、本発明で重要
な黒鉛化にたいする影響が異なるので、以下述べるよう
に含有量には注意することが必要である。
In addition to the above components, the present invention further comprises Cu, Ni, Co, V, Ti, Nb,
One, two or more of Mo, Cr and W can be contained. However, since these elements have different effects on graphitization, which is important in the present invention, it is necessary to pay attention to the contents thereof as described below.

【0031】Cu、Ni、Co、Vは、MnやTi、N
b、Mo、Cr、Wと異なり、黒鉛化を抑制せず、逆に
黒鉛化を促進する効果も有し、しかも微量の添加で焼入
れ性を向上させ、母材強度を上昇させることができる。
したがって、鋼の更なる高強度化を図る場合には、これ
らの元素を含有させるが、含有量が多すぎても効果は飽
和し、製造コストの上昇を招き経済的でもないので、C
uで0.1〜2.0%、Niで0.1〜2.0%、Co
で0.1〜2.0%、Vで0.005〜0.30%の含
有量とする。
Cu, Ni, Co, V are Mn, Ti, N
Unlike b, Mo, Cr, and W, it does not suppress graphitization, but also has the effect of promoting graphitization, and can improve hardenability and increase base material strength with a small amount of addition.
Therefore, in order to further increase the strength of steel, these elements are contained. However, if the content is too large, the effect is saturated and the production cost is increased, which is not economical.
0.1 to 2.0% for u, 0.1 to 2.0% for Ni, Co
At 0.1 to 2.0% and V at 0.005 to 0.30%.

【0032】Ti、Nb、Mo、Cr、Wも、微量の添
加で焼入れ性を向上させ、母材強度を上昇させることが
できる。また、Tiには、単窒化物を形成し、オーステ
ナイト粒の粗大化を抑制し、BNを微細に析出させる効
果もある。しかし、これらの元素には、鋼中のセメンタ
イトを安定化し、セメンタイトの黒鉛化を抑制する作用
があるので、添加は避けるべきである。しかし、どうし
ても添加する必要がある場合あるいは不純物として含ま
れてくる場合には、各々黒鉛化を抑制しない含有量以下
にすべきである。その含有量の上限は各々、Tiで0.
020%、Nbで0.020%、Moで0.10%、C
rで0.10%、Wで0.10%である。言い換える
と、鋼の黒鉛化を抑制しないために、Ti、Nb、M
o、Cr、Wは、前記上限値までの含有は許容されると
いうことである。
Ti, Nb, Mo, Cr and W can also improve the hardenability and increase the strength of the base material by adding a small amount. Further, Ti has an effect of forming mononitride, suppressing coarsening of austenite grains, and precipitating BN finely. However, these elements have an effect of stabilizing cementite in steel and suppressing graphitization of cementite, and therefore, their addition should be avoided. However, when it is absolutely necessary to add it or when it is included as an impurity, the content should be not more than the content that does not suppress graphitization. The upper limits of the contents are each set to 0.1 in Ti.
020%, 0.020% for Nb, 0.10% for Mo, C
r is 0.10% and W is 0.10%. In other words, in order not to suppress the graphitization of steel, Ti, Nb, M
It means that the contents of o, Cr and W are allowed up to the upper limit.

【0033】なお、本発明鋼では、Pb、Bi、Te等
の鋼の被削性をより向上させる元素は添加しない。言い
換えると、これらの人体に有害な又は高価な元素を添加
せずとも、加工性なり、被削性を向上できる点が本発明
鋼の利点でもある。
In the steel of the present invention, no element such as Pb, Bi, Te or the like for further improving the machinability of the steel is added. In other words, the advantage of the steel of the present invention is that the workability and machinability can be improved without adding any harmful or expensive element to the human body.

【0034】本発明鋼は、通常のC、Mn鋼と同じよう
な製造方法で作ることができる。即ち、従来公知の転
炉、電気炉などで溶製したのち、連続鋳造法または造塊
・分塊法によってスラブやビレットとし、ついで熱間圧
延により所定の形状の条鋼や鋼板などにする。この際、
熱間圧延における圧延終了温度は、Ar3 点以上、例え
ば800℃以上とすることが好ましい。前記被削性向上
元素や焼入れ性向上元素を含む場合には、鋼の熱間加工
性が低下しがちで、加熱温度や熱間圧延温度を高めとす
る必要があるが、本発明にはその必要が無いことも利点
の一つである。
The steel of the present invention can be manufactured by the same manufacturing method as that of ordinary C and Mn steels. That is, after smelting in a conventionally known converter, electric furnace, or the like, a slab or a billet is formed by a continuous casting method or an ingot-bulking method, and then a strip or a steel sheet of a predetermined shape is formed by hot rolling. On this occasion,
The rolling end temperature in the hot rolling is preferably set to 3 points or more of Ar, for example, 800 ° C. or more. When containing the machinability improving element or the quenchability improving element, the hot workability of the steel tends to decrease, it is necessary to increase the heating temperature or hot rolling temperature, but the present invention does not One of the advantages is that there is no need.

【0035】次に、前記所定形状の鋼を、冷間鍛造など
の冷間加工する前に、焼きなまし処理などにより黒鉛化
処理し、鋼中のセメンタイトを一旦黒鉛化して、鋼を主
として黒鉛およびフェライトからなる組織とし、冷間加
工性を確保する。焼きなまし処理(黒鉛化処理)条件
は、黒鉛化の程度により異なるため一概に言えないが、
一般的には600〜750℃の温度範囲で5〜20時間
保持される。しかし、本発明の目的の一つである黒鉛化
処理時間の短縮からは、10時間以内の保持が好まし
い。
Next, prior to cold working such as cold forging, the steel having the predetermined shape is graphitized by annealing or the like, and the cementite in the steel is graphitized once. And ensure cold workability. Annealing treatment (graphitization treatment) conditions vary depending on the degree of graphitization, but cannot be said unconditionally.
Generally, it is kept at a temperature in the range of 600 to 750 ° C. for 5 to 20 hours. However, from the viewpoint of shortening the graphitization treatment time, which is one of the objects of the present invention, it is preferable to keep the time within 10 hours.

【0036】黒鉛化処理された鋼は、冷間鍛造や切削加
工などの冷間加工により機械(構造用)部品とされる。
そして、冷間加工された機械部品は、容体化−焼入れ−
焼戻し処理の調質処理を施され、黒鉛化処理により一旦
低下した強度の回復を行い、要求強度を確保される。前
記した通り、通常この種の調質処理は、まず溶体化処理
のために、A3 点以上、例えば870℃×30分間加熱
してしたのち、水焼入れし、その後低温での脆化域を避
けて、目的強度に応じて、例えば550℃×1時間で焼
戻しされるなどの条件で行われる。この通常の調質処理
により目標の強度が得られる(強度回復性が優れる)点
が、本発明の大きな利点である。
The graphitized steel is turned into a machine (structural) part by cold working such as cold forging or cutting.
Then, the cold-worked machine parts are condensed-quenched-
Tempering treatment of tempering treatment is performed, and strength temporarily reduced by the graphitization treatment is recovered, thereby securing required strength. As described above, the normal refining process of this type, first for the solution treatment, A 3 or more points, after heated for example 870 ° C. × 30 minutes, then water quenched, followed embrittlement zone at a low temperature Avoiding is performed under conditions such as tempering at 550 ° C. × 1 hour, for example, according to the target strength. It is a great advantage of the present invention that a target strength can be obtained by this normal refining treatment (excellent strength recovery).

【0037】[0037]

【実施例】以下、具体的な実施例を用いて、本発明を更
に説明する。表1〜3に示した化学成分を有する鋼を8
0t転炉により溶製し、脱ガス処理を施した後に、連続
鋳造して鋳片を得、これを、加熱温度1150℃、で熱
間圧延し、50mmφの棒鋼とした。棒鋼の組織は、い
ずれも、セメンタイトとフェライトとが混在した組織で
あった。
The present invention will be further described below with reference to specific examples. Steels having the chemical components shown in Tables 1 to 3
After being melted by a 0t converter and subjected to a degassing treatment, it was continuously cast to obtain a slab, which was hot-rolled at a heating temperature of 1150 ° C. to obtain a 50 mmφ steel bar. Each of the steel bars had a structure in which cementite and ferrite were mixed.

【0038】この棒鋼を適当な長さに切断し、黒鉛化処
理を700℃で実施し、自己潤滑作用による冷間加工性
確保の目安である、セメンタイトの70%が黒鉛化する
までの時間を測定した。黒鉛化するセメンタイトの率を
100%とせず、70%としたのは、あとの溶体化処理
における黒鉛溶解の難易を考慮したためである。因み
に、黒鉛化させるセメンタイトの率は、確保する冷間加
工性の程度により異なるため一概には規定しにくい。本
発明において、黒鉛化処理後の鋼組織を、主として黒鉛
およびフェライトからなる組織と規定し、黒鉛化するセ
メンタイトの率が100%未満のものも含むようにした
のは、このためである。
This steel bar is cut into an appropriate length, graphitization treatment is performed at 700 ° C., and the time until 70% of cementite is graphitized, which is a measure for securing cold workability by self-lubricating action, is set. It was measured. The reason why the ratio of cementite to be graphitized is not set to 100% but set to 70% is in consideration of the difficulty of graphite dissolution in the subsequent solution treatment. Incidentally, the ratio of the cementite to be graphitized varies depending on the degree of the cold workability to be secured, so that it is generally difficult to specify the ratio. In the present invention, it is for this reason that the steel structure after the graphitization treatment is defined as a structure mainly composed of graphite and ferrite, and the ratio of the cementite to be graphitized is less than 100%.

【0039】前記セメンタイトの70%が黒鉛化した棒
鋼を、高周波加熱により、870℃で30分間加熱して
溶体化処理したのち、水焼入れし、550℃で1時間焼
戻し後放冷する調質処理を施し、鋼の引っ張り強さ(T
S2)を測定した。比較のために、圧延後の同じ棒鋼
を、黒鉛化処理せずに前記調質処理のみを施したものの
引っ張り強さ(TS1)も測定した。その結果を、表4
〜6に示す。表1〜3の鋼番号は、表4〜6の鋼番号
に、各々対応している。本実施例では、黒鉛化処理後の
冷間加工の、鋼強度に対する影響は、調質処理により無
くなるため、冷間加工工程を省略している。
The steel bar in which 70% of the cementite is graphitized is subjected to solution treatment by heating at 870 ° C. for 30 minutes by high frequency heating, then water quenched, tempered at 550 ° C. for 1 hour, and then cooled down. And the tensile strength of the steel (T
S2) was measured. For comparison, the tensile strength (TS1) of the same steel bar after rolling, which had been subjected to only the tempering treatment without graphitization treatment, was also measured. Table 4 shows the results.
To # 6. The steel numbers in Tables 1 to 3 correspond to the steel numbers in Tables 4 to 6, respectively. In the present embodiment, the effect of the cold working after the graphitization treatment on the steel strength is eliminated by the tempering treatment, and thus the cold working step is omitted.

【0040】表4〜6から分かる通り、CaとZrとを
複合添加している本発明鋼4、6、7、10、11、1
3、15、16、19、20、23、24、27〜2
9、32〜34、37、38、41、42、44〜4
7、49、51、53、55、57は、黒鉛化処理時間
が10時間以内と短縮されるとともに、調質処理後の強
度が高く、黒鉛化処理せずに前記調質処理のみを施した
鋼に対し、90%以上の強度を有する。
As can be seen from Tables 4 to 6, the steels 4, 6, 7, 10, 11, 1 and 1 according to the present invention in which Ca and Zr are added in combination.
3, 15, 16, 19, 20, 23, 24, 27-2
9, 32 to 34, 37, 38, 41, 42, 44 to 4
7, 49, 51, 53, 55, and 57 have the graphitization time reduced to 10 hours or less, have high strength after tempering, and have been subjected to only the tempering without graphitization. It has a strength of 90% or more with respect to steel.

【0041】これに対し、比較鋼は、本発明鋼に比し
て、黒鉛化処理時間が比較的長くなるとともに、調質処
理後の強度も低く、黒鉛化処理せずに前記調質処理のみ
を施した鋼に対し、90%以上の強度を確保できていな
い。因みに、比較鋼1〜3はCaとZrとが複合添加さ
れておらず、比較鋼5はC量が少なく、強度回復率が低
い。比較鋼8はC量が多すぎ、また、比較鋼21はS量
が多すぎるため、熱間圧延自体が困難である。比較鋼9
はSi量が少なく黒鉛化が遅く、逆に比較鋼12はSi
量が多すぎるため冷間鍛造性が劣化する。
On the other hand, the comparative steel has a relatively longer graphitization time than the steel of the present invention, has a lower strength after the temper treatment, and has only the temper treatment without the graphitization treatment. 90% or more of the strength of the steel subjected to the above. Incidentally, in Comparative Steels 1 to 3, Ca and Zr were not added in a complex manner, and Comparative Steel 5 had a small C content and a low strength recovery rate. Since the comparative steel 8 has too much C content, and the comparative steel 21 has too much S content, the hot rolling itself is difficult. Comparative steel 9
Is low in Si content and graphitization is slow.
Since the amount is too large, the cold forgeability deteriorates.

【0042】比較鋼14はMn量、比較鋼17はP量
が、各々多すぎ、比較鋼18はS量、比較鋼22はB
量、比較鋼26はAl量、比較鋼31はCa量、比較鋼
36はZr量、比較鋼40はN量が、各々少なすぎ、反
対に比較鋼48はNb量、比較鋼50はTi量、比較鋼
52はV量、比較鋼54はMo量、比較鋼56はCr
量、比較鋼58はW量が、各々多すぎるため、全て黒鉛
化が遅く、黒鉛化処理時間が長くなっている。
The comparative steel 14 has too much Mn content, the comparative steel 17 has too much P content, the comparative steel 18 has an S content, and the comparative steel 22 has a B content.
Comparative steel 26 has an Al amount, comparative steel 31 has a Ca amount, comparative steel 36 has a Zr amount, comparative steel 40 has an N amount, and comparative steel 40 has an excessively small N amount. Conversely, comparative steel 48 has an Nb amount and comparative steel 50 has a Ti amount. , Comparative steel 52 is V amount, Comparative steel 54 is Mo amount, Comparative steel 56 is Cr amount.
Since the W amount and the comparative steel 58 each have an excessively large W amount, graphitization is slow in all cases, and the graphitization treatment time is long.

【0043】比較鋼25はB量が多いにも関わらず、B
量が比較的少ない本明鋼24と材質的に大差なくコスト
アップになる。比較鋼30はAl量が多すぎ、被削性が
悪くなる。比較鋼35はCa量が多いにも関わらず、C
a量が比較的少ない発明鋼34と材質的に大差なくコス
トアップになる。比較鋼39はZr量が多いにも関わら
ず、Zr量が比較的少ない発明鋼38と材質的に大差な
くコストアップになる。比較鋼43はN量が多いにも関
わらず、N量が比較的少ない発明鋼42と材質的に大差
ないし、また、鋼材が硬くなりすぎ、熱間や冷間での加
工性を阻害する問題がある。
Although the comparative steel 25 has a large amount of B,
The cost is substantially the same as that of the present steel 24 with a relatively small amount, and the cost is increased without much difference. The comparative steel 30 has too much Al content, resulting in poor machinability. Although the comparative steel 35 has a large amount of Ca,
The cost is increased without much difference in material from the invention steel 34 having a relatively small amount of a. Although the comparative steel 39 has a large amount of Zr, the cost is substantially the same as that of the inventive steel 38 having a relatively small amount of Zr. Although the comparative steel 43 has a large N content, the material is not much different from the inventive steel 42 having a relatively small N content, and the steel material is too hard, which impairs hot or cold workability. There is.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【発明の効果】本発明によれば、短時間の黒鉛化処理で
あっても黒鉛化が完了し、冷間鍛造などの冷間加工性を
確保することは勿論、その後短い容体化処理時間であっ
ても調質処理後の強度を充分確保できる機械構造用鋼を
提供することができる。
According to the present invention, graphitization is completed even in a short time graphitization treatment, and it is possible to ensure cold workability such as cold forging, etc. Even if there is, it is possible to provide a steel for machine structural use that can sufficiently secure the strength after the tempering treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、Bを添加した従来の低Mn高Si鋼
と、この従来鋼にCaとZrとを各々単独および複合添
加した発明鋼について、黒鉛化率と黒鉛化処理時間との
関係を示す、説明図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the graphitization ratio and graphitization time of a conventional low Mn high Si steel to which B is added and an inventive steel in which Ca and Zr are individually and compositely added to this conventional steel. It is explanatory drawing which shows a relationship.

【図2】図2は、図1同じ鋼を用いて、黒鉛化処理後
に、調質処理した場合の強度を示す、説明図である。
FIG. 2 is an explanatory diagram showing strength when tempering treatment is performed after graphitization treatment using the same steel as in FIG. 1;

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%にて、C;0.1〜1.1%、S
i;0.5〜2.0%、Mn;0.10〜0.9%、
P;≦0.030%、S;0.001〜0.03%、
B;0.0003〜0.015%、Al;0.01〜
0.5%、Ca;0.0003〜0.015%、Zr;
0.01〜0.20%、N;0.0015〜0.010
%を含有し、残部がFeおよび不可避的不純物からな
り、黒鉛化処理後の鋼組織が主として黒鉛およびフェラ
イトからなるとともに、黒鉛化処理後に調質処理された
鋼の強度が、黒鉛化処理せずに調質処理を施した場合の
強度に比して、90%以上であることを特徴とする強度
回復性に優れた機械構造用鋼。
C. 0.1 to 1.1% by mass%, S
i: 0.5 to 2.0%, Mn: 0.10 to 0.9%,
P: ≦ 0.030%, S: 0.001 to 0.03%,
B: 0.0003 to 0.015%, Al: 0.01 to
0.5%, Ca; 0.0003 to 0.015%, Zr;
0.01 to 0.20%, N; 0.0015 to 0.010
%, The balance being Fe and unavoidable impurities, the steel structure after the graphitization treatment is mainly composed of graphite and ferrite, and the strength of the temper-treated steel after the graphitization treatment is not graphitized. A steel for machine structural use excellent in strength recovery, characterized in that it has a strength of 90% or more as compared with the strength when subjected to a tempering treatment.
【請求項2】 質量%にて、C;0.1〜1.1%、S
i;0.5〜2.0%、Mn;0.10〜0.9%、
P;≦0.030%、S;0.001〜0.03%、
B;0.0003〜0.015%、Al;0.01〜
0.5%、Ca;0.0003〜0.015%、Zr;
0.01〜0.20%、N;0.0015〜0.010
%を含有するとともに、Cu;0.1〜2.0%、N
i;0.1〜2.0%、Co;0.1〜2.0%、V;
0.005〜0.30%の内から一種または二種以上を
含有し、残部がFeおよび不可避的不純物からなり、黒
鉛化処理後の鋼組織が主として黒鉛およびフェライトか
らなるとともに、黒鉛化処理後に調質処理された鋼の強
度が、黒鉛化処理せずに調質処理を施した場合の強度に
比して、90%以上であることを特徴とする強度回復性
に優れた機械構造用鋼。
2. In mass%, C: 0.1 to 1.1%, S
i: 0.5 to 2.0%, Mn: 0.10 to 0.9%,
P: ≦ 0.030%, S: 0.001 to 0.03%,
B: 0.0003 to 0.015%, Al: 0.01 to
0.5%, Ca; 0.0003 to 0.015%, Zr;
0.01 to 0.20%, N; 0.0015 to 0.010
%; Cu; 0.1-2.0%, N
i; 0.1 to 2.0%, Co; 0.1 to 2.0%, V;
One or more of 0.005 to 0.30%, the balance being Fe and unavoidable impurities, the steel structure after the graphitization treatment is mainly composed of graphite and ferrite, and after the graphitization treatment, A steel for machine structural use excellent in strength recovery, characterized in that the tempered steel has a strength of 90% or more as compared with the strength when tempered without graphitization. .
【請求項3】 前記化学成分の他、Ti;0.020%
以下、Nb;0.020%以下、Mo;0.10%以
下、Cr;0.10%以下、W;0.10%以下まで含
むことを許容した請求項1または2に記載の強度回復性
に優れた機械構造用鋼。
3. In addition to the chemical components, Ti: 0.020%
The strength recovery property according to claim 1 or 2, wherein Nb: 0.020% or less, Mo: 0.10% or less, Cr: 0.10% or less, W: 0.10% or less. Excellent machine structural steel.
JP29629896A 1996-11-08 1996-11-08 Steel for machine structural use, excellent in strength recoverability Pending JPH10140281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29629896A JPH10140281A (en) 1996-11-08 1996-11-08 Steel for machine structural use, excellent in strength recoverability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29629896A JPH10140281A (en) 1996-11-08 1996-11-08 Steel for machine structural use, excellent in strength recoverability

Publications (1)

Publication Number Publication Date
JPH10140281A true JPH10140281A (en) 1998-05-26

Family

ID=17831749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29629896A Pending JPH10140281A (en) 1996-11-08 1996-11-08 Steel for machine structural use, excellent in strength recoverability

Country Status (1)

Country Link
JP (1) JPH10140281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174384B1 (en) 1998-10-15 2001-01-16 Agency Of Industrial Science And Technology Medium-carbon steel having dispersed fine graphite structure and method for the manufacture thereof
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174384B1 (en) 1998-10-15 2001-01-16 Agency Of Industrial Science And Technology Medium-carbon steel having dispersed fine graphite structure and method for the manufacture thereof
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
EP1069198A4 (en) * 1999-01-28 2002-02-06 Sumitomo Metal Ind Machine structural steel product
US6475305B1 (en) 1999-01-28 2002-11-05 Sumitomo Metal Industries, Ltd. Machine structural steel product

Similar Documents

Publication Publication Date Title
JP5385554B2 (en) Steel for heat treatment
US5648044A (en) Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP4316361B2 (en) Cooled and annealed bainite steel parts and method for manufacturing the same
JPH10152746A (en) Boron steel gear excellent in fatigue resistance and its production
CN113366136B (en) High-carbon hot-rolled steel sheet and method for producing same
JP5206056B2 (en) Manufacturing method of non-tempered steel
JPH11131187A (en) Rapidly graphitizable steel and its production
JP7333729B2 (en) Ferritic stainless steel bars, automotive fuel system parts and automotive fuel system parts
JPH10140281A (en) Steel for machine structural use, excellent in strength recoverability
JP2003064416A (en) Method for producing precipitation hardening type martensitic stainless steel having excellent cold forgeability and warm forgeability
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2004332020A (en) Precipitation-hardening stainless steel excellent in machinability
JPH09104945A (en) Steel for high strength bolt excellent in cold workability and delayed fracture resistance, production of high strength bolt, and high strength bolt
JPH0637685B2 (en) Hot-rolled steel with excellent machinability and hardenability
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JP3492550B2 (en) Corrosion resistant steel for induction hardening
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
US20240052467A1 (en) High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same
KR20100127548A (en) V-free microalloyed steel having equality quality of quenching and tempered alloy steel, and method for producing the same
JPH09310152A (en) Non-heat treated steel for hot forging
JP2563164B2 (en) High strength non-tempered tough steel
JP2728355B2 (en) Manufacturing method of machine structural steel with excellent machinability, cold forgeability and fatigue strength