JPH10139535A - Production of barium titanate semiconductor porcelain - Google Patents

Production of barium titanate semiconductor porcelain

Info

Publication number
JPH10139535A
JPH10139535A JP8299921A JP29992196A JPH10139535A JP H10139535 A JPH10139535 A JP H10139535A JP 8299921 A JP8299921 A JP 8299921A JP 29992196 A JP29992196 A JP 29992196A JP H10139535 A JPH10139535 A JP H10139535A
Authority
JP
Japan
Prior art keywords
barium titanate
porcelain
experimental example
fine powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8299921A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Kawamoto
光俊 川本
Hideaki Niimi
秀明 新見
Ryoichi Urahara
良一 浦原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP8299921A priority Critical patent/JPH10139535A/en
Publication of JPH10139535A publication Critical patent/JPH10139535A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing barium titanate semiconductor porcelain by which porcelain grains can finely be divided to <=1μm so that they contribute toward increasing dielectric strength and reducing the voltage dependency of specific resistance-temp. characteristics. SOLUTION: A mixture of fine barium titanate powder having a cubic crystal structure and >=4.020Å lattice constant with a very small amt. of a semiconductor forming agent is used as powdery starting material for obtaining barium titanate semiconductor porcelain by firing. The ratio of Ba to Ti in the barium titanate powder is preferably regulated to 0.990-1.000 so as to reduce specific resistance at room temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正の抵抗温度係
数を有するチタン酸バリウム系半導体磁器の製造方法に
関するもので、特に、チタン酸バリウム系半導体磁器を
得るために焼成される原料粉の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a barium titanate-based semiconductor porcelain having a positive temperature coefficient of resistance, and more particularly to an improvement in raw material powder fired to obtain a barium titanate-based semiconductor porcelain. It is about.

【0002】[0002]

【従来の技術】チタン酸バリウム系半導体磁器の高耐電
圧化、比抵抗温度特性の電圧依存性の低減化等を目的と
して、当該チタン酸バリウム系半導体磁器を微粒子化す
るための研究が鋭意行なわれている。たとえば、特開平
5−301766号公報では、微粒子からなるチタン酸
バリウム系半導体磁器の製造方法が記載されている。し
かしながら、この公報に記載される実施例における磁器
粒径は、最小のものでも5μmである。
2. Description of the Related Art For the purpose of increasing the withstand voltage of a barium titanate-based semiconductor porcelain and reducing the voltage dependence of specific resistance temperature characteristics, research has been earnestly carried out into fine particles of the barium titanate-based semiconductor porcelain. Have been. For example, Japanese Patent Application Laid-Open No. Hei 5-301766 describes a method for manufacturing a barium titanate-based semiconductor porcelain made of fine particles. However, the porcelain particle size in the embodiment described in this publication is at least 5 μm.

【0003】[0003]

【発明が解決しようとする課題】ところで、磁器の微粒
子化に伴い、室温比抵抗が上昇することが知られてお
り、この室温比抵抗を下げるためには、1300℃以上
の温度での焼成が必要であるとされている。しかしなが
ら、このような1300℃以上の温度で焼成した場合、
今度は、磁器粒子が10μm以上に粒成長するという問
題を引き起こし、高耐電圧化、比抵抗温度特性の電圧依
存性の低減化等の目的と相反する結果を招いてしまう。
By the way, it is known that the specific resistance at room temperature increases as the porcelain becomes finer. In order to reduce the specific resistance at room temperature, firing at a temperature of 1300 ° C. or more is required. It is said that it is necessary. However, when firing at such a temperature of 1300 ° C. or more,
This causes a problem that the porcelain particles grow to a particle size of 10 μm or more, and contradicts the objectives of increasing the withstand voltage and reducing the voltage dependency of the resistivity temperature characteristic.

【0004】そこで、この発明の目的は、1μm以下の
微粒子からなるチタン酸バリウム系半導体磁器を得るた
めの方法を提供しようとすることである。
An object of the present invention is to provide a method for obtaining a barium titanate-based semiconductor porcelain comprising fine particles of 1 μm or less.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は、鋭意研究を重ねた結果、極めて限定さ
れた物性を有するチタン酸バリウム微粉末を用いること
が有効であることを見出した。すなわち、この発明は、
原料粉を焼成することによって得られるチタン酸バリウ
ム系半導体磁器の製造方法に向けられるものであって、
上述した技術的課題を解決するため、粒子径が0.1μ
m以下であり、結晶構造が立方晶であり、格子定数が
4.020Å以上である、チタン酸バリウム微粉末に対
して、微量の半導体化剤を添加・混合して仮焼したもの
を、前述の原料粉として用いることを特徴としている。
Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies and found that it is effective to use barium titanate fine powder having extremely limited physical properties. Was. That is, the present invention
It is directed to a method for producing a barium titanate-based semiconductor porcelain obtained by firing the raw material powder,
In order to solve the above-mentioned technical problem, the particle diameter is 0.1 μm.
m, a crystal structure is cubic, and a lattice constant is 4.020 ° or more. It is characterized in that it is used as a raw material powder.

【0006】この発明において、好ましくは、チタン酸
バリウム微粉末としては、Ba/Ti比が0.990以
上1.000以下であるものが用いられる。
In the present invention, barium titanate fine powder having a Ba / Ti ratio of 0.990 or more and 1.000 or less is preferably used.

【0007】[0007]

【実施例】【Example】

(実験例1)予め別々の槽に、0.2モル/リットルの
水酸化バリウム水溶液15.44リットル(Baとして
3.088モル含有)と、0.35モル/リットルのT
iアルコキシド溶液7.606リットル(Tiとして
2.662モル含有)とを調製した。なお、Tiアルコ
キシド溶液は、Ti(O−iPr)4 〔チタンテトライ
ソプロポキシド〕をIPA〔イソプロピルアルコール〕
に溶解したものである。
(Experimental Example 1) 15.44 liters of a 0.2 mol / l aqueous barium hydroxide solution (containing 3.088 mol as Ba) and 0.35 mol / l of T
7.606 liters of i alkoxide solution (containing 2.662 mol as Ti) was prepared. The Ti alkoxide solution is obtained by converting Ti (O-iPr) 4 [titanium tetraisopropoxide] to IPA [isopropyl alcohol].
Is dissolved in

【0008】次いで、それぞれの槽より、送液ギヤポン
プを用いて溶液を汲み出し、スタティックミキサー(静
止型攪拌装置)にて混合・反応させ、得られたスラリー
を熟成槽に投入した。その後、熟成槽内のスラリーをス
タティックミキサーに通して循環させ、3時間熟成を行
なった。次に、熟成後のスラリーを遠心分離機を用いて
脱水し、得られたケーキをさらにエタノール溶液中で3
0分間、ホモミキサーを用いて攪拌・洗浄した。洗浄後
のスラリーを再び遠心分離機にて脱水し、得られたケー
キをオーブンにて110℃、3時間乾燥させた。
Next, the solution was pumped out from each tank using a liquid sending gear pump, mixed and reacted by a static mixer (static stirrer), and the obtained slurry was put into an aging tank. Thereafter, the slurry in the aging tank was circulated through a static mixer, and aging was performed for 3 hours. Next, the aged slurry was dehydrated using a centrifugal separator, and the obtained cake was further dehydrated in an ethanol solution for 3 hours.
The mixture was stirred and washed with a homomixer for 0 minutes. The washed slurry was again dehydrated by a centrifuge, and the obtained cake was dried in an oven at 110 ° C. for 3 hours.

【0009】乾燥後、解砕を施して、チタン酸バリウム
微粉末を得た。この粉末は、SEM(走査型電子顕微
鏡)により粒子径が0.05μm、粉末X線回折により
立方晶で格子定数が4.028Åであることが確認され
た。また、蛍光X線分析により、Ba/Ti比が0.9
98であった。このチタン酸バリウム微粉末に対して、
Laを硝酸ランタン溶液の形で0.1〜0.2モル%添
加・混合し、次いで900℃〜1100℃で2時間仮焼
した。
After drying, the powder was crushed to obtain barium titanate fine powder. This powder was confirmed to have a particle size of 0.05 μm by SEM (scanning electron microscope) and a cubic system with a lattice constant of 4.028 ° by powder X-ray diffraction. The Ba / Ti ratio was found to be 0.9 by fluorescent X-ray analysis.
98. For this barium titanate fine powder,
La was added and mixed in the form of a lanthanum nitrate solution in an amount of 0.1 to 0.2 mol%, and then calcined at 900 ° C to 1100 ° C for 2 hours.

【0010】この仮焼によって得られた仮焼粉を原料粉
として、これに酢酸ビニル等のバインダを添加して造粒
粉を作製し、得られた造粒粉に一軸プレス成形を施すこ
とによって直径10mm、厚さ1mmの円板状の成形体を得
た。この成形体を、1200℃〜1300℃で2時間、
大気中にて焼成することによって、チタン酸バリウム系
半導体磁器を得た。
The calcined powder obtained by this calcining is used as a raw material powder, a binder such as vinyl acetate is added thereto to produce a granulated powder, and the obtained granulated powder is subjected to uniaxial press molding. A disk-shaped compact having a diameter of 10 mm and a thickness of 1 mm was obtained. This molded body is heated at 1200 ° C. to 1300 ° C. for 2 hours,
By firing in air, barium titanate-based semiconductor porcelain was obtained.

【0011】このようにして得られたチタン酸バリウム
系半導体磁器の磁器粒径および室温比抵抗を求めた。磁
器粒径は、磁器表面のSEM観察により求め、また、室
温比抵抗は、磁器表面上にIn−Ga電極を形成した
後、デジタルボルトメーターを用いて4端子法で測定し
た。その結果、磁器粒径は0.9μmであり、室温比抵
抗は8Ωcmであった。
The barium titanate-based semiconductor porcelain thus obtained was measured for its porcelain particle size and room temperature resistivity. The particle size of the porcelain was determined by SEM observation of the porcelain surface, and the room temperature resistivity was measured by a four-terminal method using a digital voltmeter after forming an In-Ga electrode on the porcelain surface. As a result, the porcelain particle size was 0.9 μm, and the room temperature resistivity was 8 Ωcm.

【0012】(実験例2)チタン酸バリウム微粉末の合
成方法において、Tiアルコキシド溶液の濃度を0.3
69モル/リットル(Tiとして2.807モル含有)
とした以外は、実験例1と同様の方法により、チタン酸
バリウム微粉末を作製し、次いで磁器試料を得た。
(Experimental Example 2) In the method for synthesizing barium titanate fine powder, the concentration of the Ti alkoxide solution was set to 0.3.
69 mol / liter (containing 2.807 mol as Ti)
Barium titanate fine powder was produced in the same manner as in Experimental Example 1 except that the above method was used, and then a porcelain sample was obtained.

【0013】この実験例2で得られたチタン酸バリウム
微粉末の粒子径は0.05μm、結晶構造は立方晶で、
格子定数は4.029Å、Ba/Ti比は0.990で
あった。また、この実験例2で得られた磁器試料の磁器
粒径は0.8μmであり、室温比抵抗は6Ωcmであっ
た。
The barium titanate fine powder obtained in Experimental Example 2 has a particle size of 0.05 μm and a cubic crystal structure.
The lattice constant was 4.029 ° and the Ba / Ti ratio was 0.990. The porcelain sample obtained in Experimental Example 2 had a porcelain particle size of 0.8 μm and a room temperature resistivity of 6 Ωcm.

【0014】(実験例3)チタン酸バリウム微粉末の合
成方法において、Tiアルコキシド溶液の濃度を0.3
38モル/リットル(Tiとして2.571モル含有)
とした以外は、実験例1と同様の方法により、チタン酸
バリウム微粉末を作製し、次いで磁器試料を得た。
(Experimental Example 3) In the method of synthesizing barium titanate fine powder, the concentration of the Ti alkoxide solution was set to 0.3.
38 mol / l (containing 2.571 mol as Ti)
Barium titanate fine powder was produced in the same manner as in Experimental Example 1 except that the above method was used, and then a porcelain sample was obtained.

【0015】この実験例3で得られたチタン酸バリウム
微粉末の粒子径は0.08μm、結晶構造は立方晶で、
格子定数は4.027Å、Ba/Ti比は1.000で
あった。また、この実験例3で得られた磁器試料の磁器
粒径は1μmであり、室温比抵抗は9Ωcmであった。
The barium titanate fine powder obtained in Experimental Example 3 has a particle size of 0.08 μm and a cubic crystal structure.
The lattice constant was 4.027 ° and the Ba / Ti ratio was 1.000. The porcelain sample obtained in Experimental Example 3 had a porcelain particle size of 1 μm and a room temperature resistivity of 9 Ωcm.

【0016】(実験例4)実験例1で得られたチタン酸
バリウム微粉末を、粒子径および格子定数を変化させる
目的で、500℃で2時間熱処理した。この熱処理粉の
粒子径は0.1μm、結晶構造は立方晶で、格子定数は
4.020Å、Ba/Ti比は0.998であった。
Experimental Example 4 The barium titanate fine powder obtained in Experimental Example 1 was heat-treated at 500 ° C. for 2 hours in order to change the particle diameter and the lattice constant. This heat-treated powder had a particle size of 0.1 μm, a cubic crystal structure, a lattice constant of 4.020 °, and a Ba / Ti ratio of 0.998.

【0017】以下、実験例1と同様の方法で、磁器試料
を作製した。この実験例4で得られた磁器試料の磁器粒
径は1μmであり、室温比抵抗は10Ωcmであった。 (実験例5)チタン酸バリウム微粉末の合成方法におい
て、Tiアルコキシド溶液の濃度を0.387モル/リ
ットル(Tiとして2.944モル含有)とした以外
は、実験例1と同様の方法により、チタン酸バリウム微
粉末を作製し、次いで磁器試料を得た。
Hereinafter, a porcelain sample was prepared in the same manner as in Experimental Example 1. The porcelain sample particle obtained in Experimental Example 4 had a porcelain particle size of 1 μm and a room temperature specific resistance of 10 Ωcm. (Experimental example 5) In the method of synthesizing barium titanate fine powder, except that the concentration of the Ti alkoxide solution was changed to 0.387 mol / liter (containing 2.944 mol as Ti), the same method as in Experimental example 1 was used. A barium titanate fine powder was prepared, and then a porcelain sample was obtained.

【0018】この実験例5で得られたチタン酸バリウム
微粉末の粒子径は0.03μm、結晶構造は立方晶で、
格子定数は4.035Å、Ba/Ti比は0.985で
あった。また、この実験例5で得られた磁器試料の磁器
粒径は0.9μmであり、室温比抵抗は100Ωcmであ
った。
The barium titanate fine powder obtained in Experimental Example 5 has a particle size of 0.03 μm and a cubic crystal structure.
The lattice constant was 4.035 ° and the Ba / Ti ratio was 0.985. Further, the porcelain sample obtained in Experimental Example 5 had a porcelain particle size of 0.9 μm and a room temperature resistivity of 100 Ωcm.

【0019】(実験例6)チタン酸バリウム微粉末の合
成方法において、Tiアルコキシド溶液の濃度を0.3
25モル/リットル(Tiとして2.472モル含有)
とした以外は、実験例1と同様の方法により、チタン酸
バリウム微粉末を作製し、次いで磁器試料を得た。
(Experimental Example 6) In the method for synthesizing barium titanate fine powder, the concentration of the Ti alkoxide solution was set to 0.3.
25 mol / l (containing 2.472 mol as Ti)
Barium titanate fine powder was produced in the same manner as in Experimental Example 1 except that the above method was used, and then a porcelain sample was obtained.

【0020】この実験例6で得られたチタン酸バリウム
微粉末の粒子径は0.1μm、結晶構造は立方晶で、格
子定数は4.027Å、Ba/Ti比は1.008であ
った。また、この実験例6で得られた磁器試料の磁器粒
径は0.7μmであり、室温比抵抗は200Ωcmであっ
た。
The barium titanate fine powder obtained in Experimental Example 6 had a particle size of 0.1 μm, a cubic crystal structure, a lattice constant of 4.027 °, and a Ba / Ti ratio of 1.008. The porcelain sample obtained in Experimental Example 6 had a porcelain particle diameter of 0.7 μm and a room temperature resistivity of 200 Ωcm.

【0021】(実験例7)チタン酸バリウム微粉末とし
て、堺化学製の水熱合成粉BT−01を用いた。BT−
01の粒子径は0.1μm、結晶構造は立方晶で、格子
定数は4.010Å、Ba/Ti比は1.000であっ
た。以下、実験例1と同様の方法で、磁器試料を作製し
た。この実験例7で得られた磁器試料は、数10μmサ
イズの粗粒と1μmサイズの微粒とが混在した磁器組織
となっており、室温比抵抗は、103 〜104 Ωcmであ
った。
(Experimental example 7) Hydrothermal synthetic powder BT-01 manufactured by Sakai Chemical was used as barium titanate fine powder. BT-
01 had a particle size of 0.1 μm, a cubic crystal structure, a lattice constant of 4.010 °, and a Ba / Ti ratio of 1.000. Hereinafter, a porcelain sample was produced in the same manner as in Experimental Example 1. The porcelain sample obtained in Experimental Example 7 had a porcelain structure in which coarse particles having a size of several tens of μm and fine particles having a size of 1 μm were mixed, and the specific resistance at room temperature was 10 3 to 10 4 Ωcm.

【0022】(実験例8)チタン酸バリウム微粉末とし
て、堺化学製の水熱合成粉BT−02を用いた。BT−
02の粒子径は0.2μm、結晶構造は正方晶で、格子
定数はa軸:3.997Å:c軸:4.019Å、Ba
/Ti比は1.000であった。以下、実験例1と同様
の方法で、磁器試料を作製した。この実験例8で得られ
た磁器試料は、数10μmサイズの粗粒と1μmサイズ
の微粒とが混在した磁器組織となっており、室温比抵抗
は、103 〜104 Ωcmであった。
(Experimental Example 8) As barium titanate fine powder, hydrothermal synthetic powder BT-02 manufactured by Sakai Chemical was used. BT-
02 has a particle diameter of 0.2 μm, a crystal structure of tetragonal, and a lattice constant of a-axis: 3.997 °: c-axis: 4.019 °, Ba
The / Ti ratio was 1.000. Hereinafter, a porcelain sample was produced in the same manner as in Experimental Example 1. The porcelain sample obtained in Experimental Example 8 had a porcelain structure in which coarse particles having a size of several tens of μm and fine particles having a size of 1 μm were mixed, and the specific resistance at room temperature was 10 3 to 10 4 Ωcm.

【0023】以上の実験例1〜8の結果を表1にまとめ
て示す。
The results of Experimental Examples 1 to 8 are summarized in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1において、実験例1〜6は、この発明
の範囲内に属し、実験例7および8は、この発明の範囲
外にあるものである。また、実験例1〜4は、この発明
の範囲内であって、より好ましい実施例に相当する。実
験例4と実験例7との比較から、原料粉としてのチタン
酸バリウム微粉末の格子定数が4.020Åより小さく
なると、室温比抵抗が増大するとともに、磁器組織が、
均一な微粒組織から、粗粒と微粒とが混在した不均一な
組織へと変化することがわかる。
In Table 1, Experimental Examples 1 to 6 belong to the scope of the present invention, and Experimental Examples 7 and 8 are out of the scope of the present invention. Experimental examples 1 to 4 are within the scope of the present invention and correspond to more preferred examples. From the comparison between Experimental Example 4 and Experimental Example 7, when the lattice constant of the barium titanate fine powder as the raw material powder is smaller than 4.020 °, the specific resistance at room temperature increases and the porcelain structure becomes
It can be seen that the structure changes from a uniform fine-grained structure to a non-uniform structure in which coarse particles and fine particles are mixed.

【0026】また、実験例2と実験例5との比較、およ
び実験例3と実験例6との比較から、チタン酸バリウム
微粉末のBa/Ti比が0.990〜1.000の範囲
にある方が、室温比抵抗がより小さく、この範囲外にあ
るとき、室温比抵抗が増大する傾向があることがわか
る。このように、この発明に従って得られたチタン酸バ
リウム系半導体磁器は、実験例1〜6からわかるよう
に、磁器粒径1μm以下となる。また、この発明によれ
ば、磁器粒径が1μm以下でありながら、室温比抵抗が
200Ωcm以下という優れた特性を示し、特に、実験例
1〜4において現れているように、チタン酸バリウム微
粉末のBa/Ti比が0.990〜1.000の範囲に
あるときには、さらに好ましく、室温比抵抗が10Ωcm
以下という極めて優れた特性を示している。
From a comparison between Experimental Examples 2 and 5, and a comparison between Experimental Examples 3 and 6, the Ba / Ti ratio of the barium titanate fine powder was in the range of 0.990 to 1.000. One shows that the room temperature resistivity is smaller, and when it is out of this range, the room temperature resistivity tends to increase. Thus, the barium titanate-based semiconductor porcelain obtained according to the present invention has a porcelain particle size of 1 μm or less, as can be seen from Experimental Examples 1 to 6. Further, according to the present invention, while having a porcelain particle size of 1 μm or less, it exhibits excellent characteristics of a room temperature specific resistance of 200 Ωcm or less. In particular, as shown in Experimental Examples 1 to 4, barium titanate fine powder Is more preferable when the Ba / Ti ratio is in the range of 0.990 to 1.000, and the room temperature resistivity is 10 Ωcm
The following excellent characteristics are shown.

【0027】この理由の詳細は、明らかではないが、チ
タン酸バリウム微粉末の物性を前記特許請求の範囲に記
載のとおりに設定することにより、添加した微量の半導
体化剤が仮焼を施した際に均一にチタン酸バリウムの結
晶格子内に固溶したためであると考えられる。なお、上
述した実験例では、半導体化剤としてLaを用いたが、
他の半導体化剤、たとえば、Y、Sm、Ce、Dy、G
a等の希土類元素や、Nb、Ta、Bi、Sb、W等の
遷移元素を用いてもよい。
Although the details of this reason are not clear, by setting the physical properties of the barium titanate fine powder as described in the claims, a small amount of the added semiconducting agent is calcined. It is considered that this was because the solid solution was uniformly dissolved in the crystal lattice of barium titanate. In the above-described experimental example, La was used as the semiconductor agent.
Other semiconducting agents, for example, Y, Sm, Ce, Dy, G
A rare earth element such as a or a transition element such as Nb, Ta, Bi, Sb, or W may be used.

【0028】また、チタン酸バリウム微粉末の合成方法
として、上述した実験例では、加水分解法を用いたが、
他の合成法、たとえば、ゾルゲル法、水熱法、共沈法、
固相法等を用いてもよい。
As a method of synthesizing the barium titanate fine powder, the hydrolysis method was used in the above-mentioned experimental example.
Other synthetic methods such as sol-gel method, hydrothermal method, coprecipitation method,
A solid phase method or the like may be used.

【0029】[0029]

【発明の効果】このように、この発明によれば、原料粉
として、粒子径が0.1μm以下であり、結晶構造が立
方晶であり、格子定数が4.020Å以上である、チタ
ン酸バリウム微粉末に対して、微量の半導体化剤を添加
・混合して仮焼したものを用いることにより、この原料
粉を焼成して得られたチタン酸バリウム系半導体磁器に
おける磁器粒径を1μm以下とすることができる。した
がって、このようなチタン酸バリウム系半導体磁器によ
れば、高耐電圧化および比抵抗温度特性の電圧依存性の
低減化に寄与することができる。
As described above, according to the present invention, barium titanate having a particle size of 0.1 μm or less, a cubic crystal structure and a lattice constant of 4.020 ° or more is used as a raw material powder. By adding and mixing a small amount of a semiconducting agent to the fine powder and calcining it, the particle size of the barium titanate-based semiconductor porcelain obtained by firing this raw material powder is reduced to 1 μm or less. can do. Therefore, according to such a barium titanate-based semiconductor porcelain, it is possible to contribute to a higher withstand voltage and a reduction in voltage dependency of specific resistance temperature characteristics.

【0030】また、この発明によって得られたチタン酸
バリウム系半導体磁器によれば、室温比抵抗を低いもの
とすることができ、特に、原料粉におけるチタン酸バリ
ウム微粉末のBa/Ti比が0.990以上1.000
以下となるように選ぶことにより、10Ωcm以下といっ
た極めて低い室温比抵抗を実現することもできる。
Further, according to the barium titanate-based semiconductor porcelain obtained according to the present invention, the room temperature specific resistance can be reduced, and particularly, the barium titanate fine powder in the raw material powder has a Ba / Ti ratio of 0. 0.990 or more and 1.000
An extremely low room temperature specific resistance of 10 Ωcm or less can be realized by selecting the following.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料粉を焼成することによって得られる
チタン酸バリウム系半導体磁器の製造方法であって、 粒子径が0.1μm以下であり、結晶構造が立方晶であ
り、格子定数が4.020Å以上である、チタン酸バリ
ウム微粉末に対して、微量の半導体化剤を添加・混合し
て仮焼したものを、前記原料粉として用いることを特徴
とする、チタン酸バリウム系半導体磁器の製造方法。
1. A method for producing a barium titanate-based semiconductor porcelain obtained by firing a raw material powder, wherein the particle diameter is 0.1 μm or less, the crystal structure is cubic, and the lattice constant is 4. A barium titanate-based semiconductor porcelain manufactured by adding and mixing a small amount of a semiconducting agent to a barium titanate fine powder having a temperature of 020 ° or more and calcining the mixture as the raw material powder. Method.
【請求項2】 前記チタン酸バリウム微粉末は、Ba/
Ti比が0.990以上1.000以下であることを特
徴とする、請求項1に記載のチタン酸バリウム系半導体
磁器の製造方法。
2. The method according to claim 1, wherein the barium titanate fine powder is Ba /
The method for producing a barium titanate-based semiconductor ceramic according to claim 1, wherein the Ti ratio is 0.990 or more and 1.000 or less.
JP8299921A 1996-11-12 1996-11-12 Production of barium titanate semiconductor porcelain Pending JPH10139535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8299921A JPH10139535A (en) 1996-11-12 1996-11-12 Production of barium titanate semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8299921A JPH10139535A (en) 1996-11-12 1996-11-12 Production of barium titanate semiconductor porcelain

Publications (1)

Publication Number Publication Date
JPH10139535A true JPH10139535A (en) 1998-05-26

Family

ID=17878543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8299921A Pending JPH10139535A (en) 1996-11-12 1996-11-12 Production of barium titanate semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPH10139535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680527B1 (en) 1998-11-11 2004-01-20 Murata Manufacturing Co. Ltd. Monolithic semiconducting ceramic electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680527B1 (en) 1998-11-11 2004-01-20 Murata Manufacturing Co. Ltd. Monolithic semiconducting ceramic electronic component

Similar Documents

Publication Publication Date Title
US6162752A (en) Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element
US6472339B2 (en) Barium titanate semiconductive ceramic
JPH05330824A (en) Barium titanate and its production
JP2003002739A (en) Method for manufacturing barium titanate powder, barium titanate powder and its evaluation method, dielectric ceramic and laminated ceramic capacitor
KR100360118B1 (en) A Method for Preparing Barium Titanate Powder by Oxalate Synthesis
Jovalekic et al. A study of ferroelectric properties of Bi4Ti3O12 ceramics prepared from chemically derived powders
JP2006306632A (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact
JPH075363B2 (en) PTC porcelain composition and method for producing the same
JPH10139535A (en) Production of barium titanate semiconductor porcelain
JP3154513B2 (en) Spherical barium titanate-based semiconductor ceramic material powder and method for producing the same
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP4038618B2 (en) Manufacturing method of barium titanate semiconductor porcelain
JPH02289426A (en) Powder for barium titanate-based semiconductor ceramics and its production
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
CN116789450B (en) Non-full tungsten bronze structure high-entropy ferroelectric ceramic material and preparation method and application thereof
JP2682824B2 (en) Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor
JPH10152372A (en) Barium titanate-based semiconductor porcelain and its production
JPS63236760A (en) Titanate sintered body
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JP2641864B2 (en) Manufacturing method of semiconductor capacitor material
JPH07142207A (en) Barium titanate semiconductor ceramic and its manufacture
JPH08191002A (en) Barium titanate system semiconductor ceramics and its manufacturing method
JPH05294625A (en) Production of barium titanate based semiconductor ceramic having positive characteristic
JPH11139870A (en) Barium titanate-base semiconductor porcelain