JPH10134648A - Plastic-insulated dc power cable - Google Patents

Plastic-insulated dc power cable

Info

Publication number
JPH10134648A
JPH10134648A JP28526096A JP28526096A JPH10134648A JP H10134648 A JPH10134648 A JP H10134648A JP 28526096 A JP28526096 A JP 28526096A JP 28526096 A JP28526096 A JP 28526096A JP H10134648 A JPH10134648 A JP H10134648A
Authority
JP
Japan
Prior art keywords
cross
resin composition
material layer
insulating material
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28526096A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yoshizawa
敏之 吉沢
Hiroyuki Nomura
浩幸 野村
Toshiya Tanaka
俊哉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28526096A priority Critical patent/JPH10134648A/en
Publication of JPH10134648A publication Critical patent/JPH10134648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the DC braking strength and impulse braking strength of a DC power cable by cross-linking a resin composition containing an ethylene polymer, a cross linking agent, an oxidation inhibitor, and zinc caprylic acid on an insulating material layer on the outer periphery of a conductor. SOLUTION: A resin composition containing a desired cross linking agent and zinc caprylic acid of 0.0001-0.01 pts.wt. is cross-linked on an ethylene polymer of 100 pts.wt. such as polyethylene or an ethylene-vinyl acetate copolymer to form an insulating material layer. The formation and accumulation of space charges by cross-linking decomposition residues due to volume resistivity can be suppressed. The volume resistivity can be lowered when a filler such as carbon or magnesium oxide is blended with the resin composition of the insulating material layer, however the bladed quantity must be increased. When the blended quantity is increased, it acts as a foreign matter in the insulating material layer, and the impulse braking strength is reduced. Zinc capryliate has an effect to lower the volume resistivity when an extremely small quantity of it is added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧直流送電に
適したプラスチック絶縁直流電力ケーブルに関する。
[0001] The present invention relates to a plastic insulated DC power cable suitable for high-voltage DC transmission.

【0002】[0002]

【従来の技術】プラスチック絶縁電力ケーブルの中でも
絶縁体層が架橋ポリエチレンからなる架橋ポリエチレン
絶縁電力ケーブルは、電気的特性、耐熱性に優れてい
る、軽くて取扱いやすい、メンテナンスが容易であると
いう種々の利点から、送電用ケーブルの主流を占めてい
る。この架橋ポリエチレン絶縁電力ケーブルの絶縁体層
は、一般に低密度ポリエチレンに架橋剤、酸化防止剤等
を添加した架橋性樹脂組成物を導体上に押出被覆した
後、加圧下で加熱することによって、架橋剤を熱分解さ
せて樹脂を架橋して形成される。
2. Description of the Related Art Among plastic insulated power cables, crosslinked polyethylene insulated power cables in which an insulator layer is made of crosslinked polyethylene are excellent in electrical characteristics and heat resistance, light and easy to handle, and easy to maintain. Due to its advantages, it is dominant in transmission cables. The insulator layer of this cross-linked polyethylene insulated power cable is generally formed by extrusion coating a cross-linkable resin composition obtained by adding a cross-linking agent, an antioxidant and the like to low-density polyethylene onto a conductor, and then heating under pressure to cross-link It is formed by thermally decomposing the agent and crosslinking the resin.

【0003】近年、この架橋ポリエチレン絶縁電力ケー
ブルを高電圧直流ケーブルに適用することが試みられて
いるが、架橋ポリエチレン絶縁電力ケーブルに直流を課
電すると、絶縁体層中に空間電荷が形成されて、局所的
に高電界領域が形成されるために破壊電圧が著しく低下
するなどの問題がある。この空間電荷形成の要因のひと
つとして、架橋処理時に絶縁体層内に発生する架橋分解
残渣の存在がある。架橋分解残渣はポリエチレンに比べ
て体積固有抵抗が低いので、架橋分解残渣が絶縁体層中
に存在することによって絶縁体層内の体積抵抗が場所に
よって異なってくる。体積抵抗が高い部分では電荷移動
度が小さくなるので電荷が蓄積しやすくなり、その結果
空間電荷が発生すると考えられている。
In recent years, attempts have been made to apply this cross-linked polyethylene insulated power cable to a high-voltage DC cable. However, when DC is applied to the cross-linked polyethylene insulated power cable, space charges are formed in the insulator layer. In addition, since a high electric field region is locally formed, there is a problem that a breakdown voltage is significantly reduced. One of the factors of this space charge formation is the presence of cross-linking decomposition residues generated in the insulator layer during the cross-linking treatment. Since the crosslinked decomposition residue has a lower volume resistivity than polyethylene, the presence of the crosslinked decomposition residue in the insulator layer causes the volume resistance in the insulator layer to differ depending on the location. It is considered that the charge mobility is reduced in a portion having a high volume resistance, so that the charge is easily accumulated, and as a result, a space charge is generated.

【0004】空間電荷の蓄積を低減し、直流破壊強度を
向上させた架橋ポリエチレン絶縁電力ケーブルとして、
絶縁体層の樹脂組成物にカーボンブラックや酸化マグネ
シウムなどの充填剤を配合したケーブルがある(特開昭
61−253705号、特開平4−368717号)。
[0004] As a crosslinked polyethylene insulated power cable with reduced space charge accumulation and improved DC breakdown strength,
There is a cable in which a filler such as carbon black or magnesium oxide is blended in the resin composition of the insulator layer (JP-A-61-253705, JP-A-4-368717).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、カーボ
ンブラックや酸化マグネシウムのような充填剤を配合す
ると、直流破壊強度は向上するが、インパルス破壊強度
が低下するという問題があった。本発明は、このような
問題を解決するためになされたもので、直流破壊強度お
よびインパルス破壊強度がともに優れたプラスチック絶
縁直流電力ケーブルを提供することを目的とする。
However, when a filler such as carbon black or magnesium oxide is blended, the DC breaking strength is improved, but the impulse breaking strength is reduced. The present invention has been made to solve such a problem, and an object of the present invention is to provide a plastic insulated DC power cable having both excellent DC breaking strength and impulse breaking strength.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明におい
ては、導体の外周に、エチレン系重合体100重量部に
対して、所望量の架橋剤、酸化防止剤およびカプリル酸
亜鉛0.0001〜0.01重量部を含有する樹脂組成
物を架橋してなる絶縁体層を有することを特徴とするプ
ラスチック絶縁直流電力ケーブルを提供する。
That is, in the present invention, a desired amount of a crosslinking agent, an antioxidant and zinc caprylate in an amount of 0.0001 to 0 parts per 100 parts by weight of an ethylene-based polymer is provided around the conductor. Disclosed is a plastic insulated DC power cable having an insulator layer formed by crosslinking a resin composition containing 0.011 parts by weight.

【0007】また、酸化防止剤が液状であることを特徴
とする前記プラスチック絶縁直流電力ケーブルを提供す
る。
[0007] The present invention also provides the plastic insulated DC power cable, wherein the antioxidant is in a liquid state.

【0008】[0008]

【発明の実施の形態】本発明において、絶縁体層を構成
する樹脂組成物に添加されているカプリル酸亜鉛((C
7 15COO)2 Zn)は、体積固有抵抗が小さく、絶
縁体層の体積抵抗を全体に低下させることができるの
で、架橋分解残渣の存在等に起因する空間電荷の形成蓄
積を抑制することができる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, zinc caprylate ((C) is added to a resin composition constituting an insulator layer.
Since 7 H 15 COO) 2 Zn) has a low volume resistivity and can reduce the volume resistance of the insulator layer as a whole, the formation and accumulation of space charges due to the presence of cross-linking decomposition residues and the like are suppressed. Can be.

【0009】カプリル酸亜鉛の添加量は、樹脂成分10
0重量部に対して0.0001〜0.01重量部、好ま
しくは0.0003〜0.003重量部である。0.0
001重量部未満では、直流破壊強度の向上が認められ
ず、0.01重量部を越えるとインパルス特性が低下し
てしまう。
[0009] The amount of zinc caprylate added depends on the resin component 10
The amount is 0.0001 to 0.01 part by weight, preferably 0.0003 to 0.003 part by weight, based on 0 part by weight. 0.0
If the amount is less than 001 parts by weight, no improvement in DC breaking strength is observed, and if it exceeds 0.01 parts by weight, the impulse characteristics deteriorate.

【0010】カーボンブラックや酸化マグネシウムなど
の充填剤は、カプリル酸亜鉛と同様に絶縁体層の樹脂組
成物に配合して絶縁体層の体積抵抗を低下させる作用を
有しているが、その作用を発揮させるためには樹脂成分
100重量部に対して0.2〜5重量部程度まで配合し
なければならない。充填剤の配合量が多くなると、充填
剤が絶縁体層中で異物として作用する影響が大きくな
り、インパルス破壊強度の低下につながる。それに対し
て本発明で用いるカプリル酸亜鉛は、ベース樹脂100
重量部に対して0.0001〜0.01重量部というわ
ずかな配合量で絶縁体層の体積抵抗を低下させるという
効果を有しているために、良好なインパルス破壊強度を
維持しつつ、直流破壊強度を向上させることができる。
Fillers such as carbon black and magnesium oxide have the effect of lowering the volume resistance of the insulator layer by blending it with the resin composition of the insulator layer, similarly to zinc caprylate. In order to exhibit the above, it is necessary to mix the resin component up to about 0.2 to 5 parts by weight with respect to 100 parts by weight of the resin component. When the amount of the filler is increased, the effect of the filler acting as a foreign substance in the insulator layer is increased, which leads to a decrease in impulse breakdown strength. On the other hand, the zinc caprylate used in the present invention is a base resin 100
It has the effect of reducing the volume resistance of the insulator layer with a small amount of 0.0001 to 0.01 parts by weight based on the weight of the insulating layer. The breaking strength can be improved.

【0011】インパルス破壊強度の低下を抑制するため
には、カプリル酸亜鉛は絶縁体層中にできるだけ均一に
分布していることが望ましい。このため、絶縁体層に配
合する酸化防止剤として液状のものを選択して、液状の
酸化防止剤にカプリル酸亜鉛を溶解した状態で添加する
とより均一に分布させることができ好ましい。
In order to suppress a decrease in the impulse breakdown strength, it is desirable that zinc caprylate is distributed as uniformly as possible in the insulating layer. For this reason, it is preferable to select a liquid antioxidant to be added to the insulator layer and to add zinc caprylate in a dissolved state to the liquid antioxidant so that the zinc oxide can be more uniformly distributed.

【0012】絶縁体層を構成するエチレン系重合体とし
ては、通常絶縁体層の樹脂成分として用いられるエチレ
ン系重合体が使用でき、例えばポリエチレン、エチレン
−酢酸ビニル共重合体、エチレン−アクリル酸エチル共
重合体、エチレン−プロピレン共重合体、エチレン−ス
チレン共重合体などを挙げることができる。
As the ethylene polymer constituting the insulator layer, an ethylene polymer which is usually used as a resin component of the insulator layer can be used. For example, polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate Copolymers, ethylene-propylene copolymers, ethylene-styrene copolymers and the like can be mentioned.

【0013】架橋剤としては、ジクミルパーオキサイ
ド、2,5−ジメチル−2,5−ジ(t−ブチルパーオ
キシ)ヘキシン−3、1,3−ビス(t−ブチルパーオ
キシジイソプロピル)ベンゼン、t−ブチルクミルパー
オキサイド、4,4−ジ(t−ブチルパーオキシ)バレ
リック酸−n−ブチルエステル、1,1−ジ(t−ブチ
ルパーオキシ)−3,3,5−トリメチルシクロヘキサ
ンおよびジ−t−ブチルパーオキサイドなどの有機過酸
化物を挙げることができる。架橋剤の配合量が少なすぎ
ると、架橋が十分に行われず、絶縁体層の電気的特性や
耐熱性が不十分となる。また、配合量が多すぎると、樹
脂組成物を押出成形する際に焼けが発生し、ケーブルの
絶縁破壊強度を低下させる原因となる。これらを考慮し
て架橋剤の配合量は、樹脂成分100重量部に対して、
0.1〜10重量部程度が適当である。
Examples of the crosslinking agent include dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1,3-bis (t-butylperoxydiisopropyl) benzene, t-butylcumyl peroxide, 4,4-di (t-butylperoxy) valeric acid-n-butyl ester, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane and Organic peroxides such as -t-butyl peroxide may be mentioned. If the amount of the crosslinking agent is too small, crosslinking is not sufficiently performed, and the electrical properties and heat resistance of the insulating layer become insufficient. On the other hand, if the compounding amount is too large, burning occurs during extrusion molding of the resin composition, which causes a decrease in the dielectric breakdown strength of the cable. In consideration of these, the blending amount of the crosslinking agent is based on 100 parts by weight of the resin component.
About 0.1 to 10 parts by weight is appropriate.

【0014】本発明における樹脂組成物には、ケーブル
製造時の熱老化防止、ケーブル敷設後、使用時における
酸化劣化防止などを目的として酸化防止剤が配合される
が、この酸化防止剤としては上述した通り液状であると
好ましい。さらにカプリル酸亜鉛が溶解可能な本発明に
適用できる液状酸化防止剤としては、ホスファイト系、
チオエーテル系の数種類が使用でき、適宜選択して配合
するが、耐酸化性能を考慮すると、ビス[2−メチル−
4−(3−n−ドデシルチオプロピオニルオキシ)−5
−t−ブチルフェニル]スルフィドが特に好ましい。も
ちろん、2種以上の酸化防止剤を使用しても良く、その
場合、すべてが液状の酸化防止剤でなくとも構わない。
酸化防止剤の配合量は、配合する酸化防止剤の種類、耐
酸化性能等を考慮して調整すれば良いが、樹脂成分10
0重量部に対して0.1〜10重量部程度が適当であ
る。
The resin composition of the present invention contains an antioxidant for the purpose of preventing thermal aging during the production of the cable, preventing oxidation deterioration during use after the cable is laid, and the like. It is preferably liquid as described above. Further, as a liquid antioxidant applicable to the present invention in which zinc caprylate can be dissolved, phosphite-based,
Several types of thioethers can be used, and are appropriately selected and blended. However, in consideration of oxidation resistance, bis [2-methyl-
4- (3-n-dodecylthiopropionyloxy) -5
-T-Butylphenyl] sulfide is particularly preferred. Of course, two or more antioxidants may be used, in which case it is not necessary that all of them be liquid antioxidants.
The amount of the antioxidant may be adjusted in consideration of the type of the antioxidant to be added, oxidation resistance, and the like.
About 0.1 to 10 parts by weight with respect to 0 parts by weight is appropriate.

【0015】[0015]

【実施例】以下に、本発明の実施例および比較例を示
す。 (実施例1)断面積100mm2 の導体上に、厚さ0.
8mm、エチレン−酢酸ビニル共重合体(架橋剤、カー
ボンブラック)からなる内部半導電層、表1に示す樹脂
組成物からなる厚さ3.5mmの絶縁体層、さらにその
上に厚さ0.7mm、内部半導電層と同材料の外部半導
電層を同時押出被覆により形成してケーブルコアを作製
した。このケーブルコアを、圧力10kg/cm2 、温
度270℃の条件下で、加圧加熱してポリエチレンの架
橋反応を行わせた後、常法により金属遮蔽層およびシー
ス層を被覆形成して、実施例1の直流電力ケーブルを得
た。
EXAMPLES Examples of the present invention and comparative examples are shown below. (Example 1) On a conductor having a cross-sectional area of 100 mm 2 , a thickness of 0.
8 mm, an internal semiconductive layer made of an ethylene-vinyl acetate copolymer (crosslinking agent, carbon black), a 3.5 mm-thick insulator layer made of the resin composition shown in Table 1, and a 0.3 mm thick insulator layer thereon. A cable core was prepared by forming a 7 mm outer semiconductive layer of the same material as the inner semiconductive layer by coextrusion coating. The cable core was pressurized and heated under the conditions of a pressure of 10 kg / cm 2 and a temperature of 270 ° C. to cause a crosslinking reaction of polyethylene, followed by forming a metal shielding layer and a sheath layer by a conventional method. The DC power cable of Example 1 was obtained.

【0016】(実施例2〜4および比較例1〜3)絶縁
体層の樹脂組成物として表1にそれぞれ示すものを用い
て、実施例1と同様にして実施例2〜4および比較例1
〜3の直流電力ケーブルを作製した。
(Examples 2 to 4 and Comparative Examples 1 to 3) Examples 2 to 4 and Comparative Example 1 were carried out in the same manner as in Example 1 using the resin compositions shown in Table 1 as the resin compositions of the insulator layers.
~ 3 DC power cables were produced.

【0017】得られたそれぞれの直流電力ケーブルにつ
いて、導体温度が90℃になるように導体通電をしなが
ら、下記の絶縁破壊試験を行った。
With respect to each of the obtained DC power cables, the following dielectric breakdown test was performed while conducting the conductor so that the conductor temperature became 90 ° C.

【0018】(1)負極性直流破壊強度 長さ8mの直流電力ケーブルを用意し、スタート電圧を
60kVとし、20kV/10分のステップアップで昇
圧し、破壊電圧を測定した。
(1) Negative DC Breakdown Strength A DC power cable having a length of 8 m was prepared, the start voltage was set to 60 kV, the voltage was increased in steps of 20 kV / 10 minutes, and the breakdown voltage was measured.

【0019】(2)インパルス破壊強度 長さ8mの直流電力ケーブルを用意し、スタート電圧を
50kVとし、20kV/3回のステップアップで昇圧
し、破壊電圧を測定した。これらの結果を表1に示す。
(2) Impulse Breakdown Strength A DC power cable having a length of 8 m was prepared, the start voltage was set to 50 kV, the voltage was increased by 20 kV / 3 steps, and the breakdown voltage was measured. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように、実施例1〜4の直流電
力ケーブルは、直流破壊、インパルス破壊のいずれの絶
縁破壊強度も良好であるのに対して、比較例1〜3の直
流電力ケーブルは、カプリル酸亜鉛が配合されていない
または配合されていてもその配合量が不適当であるため
に、直流破壊強度、インパルス破壊強度の何れかが劣っ
ている。特に、実施例1〜3の直流電力ケーブルは、カ
プリル酸亜鉛が液状の酸化防止剤に溶解されて配合され
ているために、そうでない実施例4に比べてインパルス
破壊強度が優れている。
As shown in Table 1, the DC power cables of Examples 1 to 4 have good dielectric breakdown strengths of DC breakdown and impulse breakdown, whereas the DC power cables of Comparative Examples 1 to 3 have good breakdown strength. Is inferior in either DC breaking strength or impulse breaking strength because zinc caprylate is not blended or the blending amount is inappropriate even if it is blended. In particular, the DC power cables of Examples 1 to 3 are excellent in impulse breakdown strength as compared with Example 4 in which zinc caprylate is dissolved in a liquid antioxidant and compounded.

【0022】[0022]

【発明の効果】本発明のプラスチック絶縁直流電力ケー
ブルは、直流破壊強度だけでなくインパルス破壊強度も
良好であり、特に、高圧直流送電用として好適に使用す
ることができるものである。
The plastic insulated DC power cable of the present invention has good not only DC breakdown strength but also impulse breakdown strength, and can be suitably used particularly for high-voltage DC power transmission.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導体の外周に、エチレン系重合体100
重量部に対して、所望量の架橋剤、酸化防止剤およびカ
プリル酸亜鉛0.0001〜0.01重量部を含有する
樹脂組成物を架橋してなる絶縁体層を有することを特徴
とするプラスチック絶縁直流電力ケーブル。
1. An ethylene-based polymer 100 on the outer periphery of a conductor.
Plastic having an insulator layer formed by crosslinking a resin composition containing a desired amount of a crosslinking agent, an antioxidant, and 0.0001 to 0.01 parts by weight of zinc caprylate with respect to parts by weight. Insulated DC power cable.
【請求項2】 酸化防止剤が液状であることを特徴とす
る請求項1に記載のプラスチック絶縁直流電力ケーブ
ル。
2. The plastic insulated DC power cable according to claim 1, wherein the antioxidant is in a liquid state.
JP28526096A 1996-10-28 1996-10-28 Plastic-insulated dc power cable Pending JPH10134648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28526096A JPH10134648A (en) 1996-10-28 1996-10-28 Plastic-insulated dc power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28526096A JPH10134648A (en) 1996-10-28 1996-10-28 Plastic-insulated dc power cable

Publications (1)

Publication Number Publication Date
JPH10134648A true JPH10134648A (en) 1998-05-22

Family

ID=17689203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28526096A Pending JPH10134648A (en) 1996-10-28 1996-10-28 Plastic-insulated dc power cable

Country Status (1)

Country Link
JP (1) JPH10134648A (en)

Similar Documents

Publication Publication Date Title
US6395989B2 (en) Cross-linkable semiconductive composition, and an electric cable having a semiconductive coating
EP1880395B1 (en) Improved strippable cable shield compositions
US5231249A (en) Insulated power cable
JP3175297B2 (en) Ethylene-based polymer crosslinking composition, crosslinking method and power cable
KR100581459B1 (en) Electric cable and a method and composition for the production thereof
JPH10283851A (en) Direct current power cable and its connection part
JP2001325834A (en) Dc power cable
WO2002009123A1 (en) Insulated power cable
JPH10134648A (en) Plastic-insulated dc power cable
JP2000319464A (en) Semi-conductive resin composition and crosslinked polyethylene-insulated electric power cable
JPH09231839A (en) Direct current cable
JP4175588B2 (en) Resin composition for semiconductive layer of power cable
JPH08283470A (en) Rubber composition
KR100291668B1 (en) A semiconductive power cable shield
JPH09245520A (en) Composition for semiconductive layer of power cable
KR100291669B1 (en) A semiconductive power cable shield
JPH10289619A (en) Dc power cable
JP3414581B2 (en) Composition for semiconductive layer of power cable
JPS6245643B2 (en)
JPH10106363A (en) Power cable
JPS5842922B2 (en) Electric field relaxation self-fusing tape and high voltage power cable termination using the tape
JPH06203651A (en) Power cable
JPH0417208A (en) Rubber-plastic insulated electric power cable
JP2002042580A (en) Crosslinked polyethylene insulated power cable suitable for recycling
JPS60206855A (en) Electrically semiconductive composition