JPH10128012A - Detection of flocculating degree of sewerage sludge and flocculating degree detector - Google Patents

Detection of flocculating degree of sewerage sludge and flocculating degree detector

Info

Publication number
JPH10128012A
JPH10128012A JP29096996A JP29096996A JPH10128012A JP H10128012 A JPH10128012 A JP H10128012A JP 29096996 A JP29096996 A JP 29096996A JP 29096996 A JP29096996 A JP 29096996A JP H10128012 A JPH10128012 A JP H10128012A
Authority
JP
Japan
Prior art keywords
sludge
light
average particle
average
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29096996A
Other languages
Japanese (ja)
Other versions
JP3477332B2 (en
Inventor
Kohei Inoue
公平 井上
Tokio Oodo
時喜雄 大戸
Hirohide Yamaguchi
太秀 山口
Tooru Yoake
徹 夜明
Kenzo Sugaya
謙三 菅谷
Takafumi Omae
隆文 大前
Masayoshi Katayama
雅義 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Ishigaki Co Ltd
Original Assignee
Fuji Electric Co Ltd
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Ishigaki Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29096996A priority Critical patent/JP3477332B2/en
Publication of JPH10128012A publication Critical patent/JPH10128012A/en
Application granted granted Critical
Publication of JP3477332B2 publication Critical patent/JP3477332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly detect an optimum flocculating point of sludge by providing an arithmetic means for obtaining average particle size and average concentration of number of particles contained in liquid to be measure that has permeated a dia phragm having plural holes of prescribed size and furthermore obtaining average volume concentration from the average particle size and the average concentration of number of particles. SOLUTION: A flocculating degree detector 1 is installed in a mixing tank in which a flocculant is added and agitated by an agitator. A light source 9 radiates light beam 10 of an 820nm band, which irradiates the flowing liquid to be measured 11 in the mixing tank through a flood window 12. In this case, the flood window 12 is positioned and immersed in the liquid to be measured 11. A diaphragm 13 is a porous membrane, and particles of prescribed size or less pass through the diaphragm 13 and intersect the direction of the movement of the light beams 10. Continuously, the light beams are received by a photodetector 15 on the same optical axis as the irradiation light axis. A permeated light signal is converted into an electronic signal, which is sent to an arithmetic processing circuit. In this arithmetic processing circuit, average particle size, average number concentration and average volume concentration of flocs that can pass thorough the diaphragm 13 are calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水の汚泥処理に
おける汚泥凝集過程をインラインで検知する凝集度検知
装置と該装置を用いた凝集度検知方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coagulation degree detecting apparatus for in-line detecting a sludge coagulation process in sewage sludge treatment, and a coagulation degree detecting method using the apparatus.

【0002】[0002]

【従来の技術】従来から下水処理に際して、水中の汚濁
物質が沈殿してできた泥状の物質(以下、汚泥とする)
を回収し、天日乾燥あるいは機械乾燥による汚泥乾燥が
行われている。天日乾燥は多くの時間と土地面積とを必
要とし、また臭気が周辺地域にまで広がるため、現在は
汚泥乾燥機による機械乾燥法が一般的である。
2. Description of the Related Art Conventionally, in the case of sewage treatment, a muddy substance formed by precipitation of pollutants in water (hereinafter referred to as sludge).
And sludge drying is performed by solar drying or mechanical drying. Solar drying requires a lot of time and land area, and the odor spreads to the surrounding area. Therefore, at present, a mechanical drying method using a sludge dryer is generally used.

【0003】ところで、下水汚泥は、コロイド状の微粒
子を主体とし、汚泥粒子表面は負に帯電して互いに反発
しあっているので、そのままの状態では機械的に脱水す
ることは困難である。そこで、図5に示すように、水処
理施設における汚泥の機械脱水の前段工程として汚泥調
質(汚泥凝集)を行うための工程が設けられている。す
なわち、水処理施設50で排泥された汚泥を汚泥投入ポ
ンプ51を介して凝集混和槽8に投入する。つぎに、凝
集混和槽8へ凝集剤注入ポンプ8から凝集剤を注入す
る。この注入された凝集剤と汚泥とを凝集混和槽8内で
攪拌混合し、汚泥粒子の粘質物に包含する水分を脱水し
やすい状態にする。さらに、汚泥粒子によるフロックを
形成し成長させることで、後段の脱水プロセスでの固液
分離性を向上させる。凝集混和槽8で凝集した汚泥は、
いわゆるフロックの懸濁液として、汚泥脱水設備に送ら
れる。ここでフロックとは、上記凝集剤によって凝集し
た水中の微粒子の大きな固まりをいう。したがって、上
記汚泥調質の工程での最適な凝集点(最適な凝集剤注入
率)が最適な汚泥脱水性を得る上で重要となる。
By the way, sewage sludge is mainly composed of colloidal fine particles, and the surface of the sludge particles is negatively charged and repels each other. Therefore, it is difficult to mechanically dewater the sludge as it is. Therefore, as shown in FIG. 5, a process for performing sludge conditioning (sludge aggregation) is provided as a pre-process of mechanical dewatering of sludge in a water treatment facility. That is, the sludge discharged in the water treatment facility 50 is fed into the coagulation mixing tank 8 via the sludge feeding pump 51. Next, the coagulant is injected into the coagulation mixing tank 8 from the coagulant injection pump 8. The injected flocculant and sludge are stirred and mixed in the flocculation mixing tank 8 to make the water contained in the mucilage of the sludge particles easily dehydrated. Further, by forming and growing flocs of sludge particles, the solid-liquid separation property in the subsequent dehydration process is improved. The sludge flocculated in the flocculation mixing tank 8 is
It is sent to a sludge dewatering facility as a so-called floc suspension. Here, the floc means a large lump of fine particles in water agglomerated by the aggregating agent. Therefore, an optimum flocculation point (optimal coagulant injection rate) in the above-mentioned sludge refining process is important for obtaining an optimum sludge dewatering property.

【0004】以下、従来の最適凝集点の確認および凝集
剤注入率の決定方法について説明する。
[0004] A conventional method for confirming the optimum coagulation point and determining the coagulant injection rate will be described below.

【0005】泥乾燥固形物一定比率式による凝集剤注入
率の決定を行っている。
[0005] The coagulant injection rate is determined by a constant mud dry solids ratio formula.

【0006】(1)ジャーテストによる最適凝集点の確
認法 供給される汚泥の一定量を幾つかのビーカーに採取す
る。つぎに、採取された汚泥に凝集剤を投入する。この
際、ビーカーごとに、凝集剤注入率を段階的に変化させ
るとともに、攪拌速度を急速攪拌から緩速攪拌まで変化
させる。それぞれのビーカーで凝集反応を起こさせて、
フロック沈降性が最も良い、または上澄み液の濁度が最
も低い注入率をもって最適な凝集点と判断する。さら
に、このとき各条件で生成したフロックの水切れ性を測
定し、最適凝集点の最終的な判断をする場合もある(例
えば、生成フロックをろ過したときの分離水ろ過速度最
大のものが最適)。
(1) Method for confirming optimum coagulation point by jar test A certain amount of supplied sludge is collected in several beakers. Next, a coagulant is added to the collected sludge. At this time, the coagulant injection rate is changed stepwise for each beaker, and the stirring speed is changed from rapid stirring to slow stirring. Agglutination reaction is caused in each beaker,
The optimum flocculation point is determined by the injection rate at which the floc sedimentation is the best or the turbidity of the supernatant is the lowest. Further, at this time, the drainage property of the floc generated under each condition is measured, and the final determination of the optimal aggregation point may be made (for example, the one having the maximum separation water filtration speed when the generated floc is filtered is optimal). .

【0007】図6はジャーテストを行う装置の主要部の
概略的構成を説明するための模式的側面図である。ま
ず、汚泥1の適量を採取した複数個のビーカー2にそれ
ぞれ攪拌機3を挿入する。この攪拌機3は、攪拌翼が取
り付けれらた一端と滑車4が同軸的に取り付けられた他
端とを有する軸棒を備える。各滑車4に掛けた共通のベ
ルト5を、回転数調節器6を設置したモータ7により駆
動させる。この際、各ビーカー2中の汚泥1の攪拌速度
をモータ7の回転数調節器6により変化させる。
FIG. 6 is a schematic side view for explaining a schematic configuration of a main part of an apparatus for performing a jar test. First, a stirrer 3 is inserted into each of a plurality of beakers 2 from which an appropriate amount of sludge 1 has been collected. The stirrer 3 includes a shaft having one end to which a stirring blade is attached and the other end to which the pulley 4 is coaxially attached. A common belt 5 hung on each pulley 4 is driven by a motor 7 provided with a rotation speed regulator 6. At this time, the stirring speed of the sludge 1 in each beaker 2 is changed by the rotation speed controller 6 of the motor 7.

【0008】(2)流動電流測定による最適凝集点の確
認法 凝集汚泥の流動電流値を測定し、その値が0付近(電気
的に中和)となるような凝集剤注入率のときを最適凝集
点と判断する。
(2) Method for confirming the optimum coagulation point by measuring the flow current The flow current value of the coagulated sludge is measured, and when the coagulant injection rate is such that the value is close to 0 (electrically neutralized), it is optimal. Judge as the aggregation point.

【0009】(3)一般的な一定比率式による最適凝集
剤注入率の決定法 予め(1)のジャーテストで最適凝集点を確認して最適
な凝集剤注入率を求め、テストに用いた汚泥の汚泥乾燥
固形物量と前記最適注入率の比を最適比率とする。そこ
で、実際のプロセスでは、供給される汚泥の供給量とイ
ンライン型汚泥濃度計の測定値に基づく固形物濃度から
汚泥乾燥固形物量を概算し、この汚泥乾燥固形物量と凝
集剤注入率の比が、常に、先に求めた最適比率を維持す
るようにして、凝集剤注入率を決定する。
(3) Method for Determining Optimal Coagulant Injection Rate by General Constant Ratio Formula The optimum coagulant injection rate is determined by previously confirming the optimal coagulation point in the jar test of (1), and the sludge used in the test is determined. The ratio of the amount of dried sludge solids to the optimum injection rate is defined as the optimum ratio. Therefore, in the actual process, the sludge dry solids amount is estimated from the supplied sludge supply amount and the solids concentration based on the measured value of the in-line sludge densitometer, and the ratio of the sludge dry solids amount to the coagulant injection rate is calculated. The coagulant injection rate is always determined so as to maintain the optimum ratio previously obtained.

【0010】[0010]

【発明が解決しようとする課題】しかし、上記の従来の
最適凝集点確認法と凝集剤注入率決定法には、次のよう
な問題がある。
However, the above-mentioned conventional methods for confirming the optimal coagulation point and the method for determining the coagulant injection rate have the following problems.

【0011】上記(1)の方法は、テストに手間がかか
るため、汚泥性状の経時変化に追従することができな
い。また、凝集剤注入率を細かく設定することが比較的
困難なために、最適凝集点の詳細確認には不十分であ
る。
In the method (1), since the test is troublesome, it is impossible to follow the change with time of the sludge property. Further, since it is relatively difficult to finely set the coagulant injection rate, it is not sufficient to confirm the optimum coagulation point in detail.

【0012】上記(2)の方法は、汚泥粒子表面の電気
的な中和点までは確認できるが、それ以降の凝集機構は
基本的には粒子の衝突(電気的結合・吸着)によるもの
であるから、この方法ではフロックの最終的な凝集状態
を測定することは困難である。また、汚泥中の有機物や
凝集剤の種類によって、最適凝集点が電気的中和点とな
らない場合がある。
In the above method (2), it is possible to confirm up to the point of electrical neutralization of the sludge particle surface, but the subsequent aggregation mechanism is basically based on particle collision (electrical coupling / adsorption). For this reason, it is difficult to measure the final flocculation state of flocs by this method. Also, depending on the type of organic matter and coagulant in the sludge, the optimum coagulation point may not be the electrical neutralization point.

【0013】上記(3)の方法は、基本的には上記
(1)の方法により予め目標値(汚泥乾燥固形物量と凝
集剤注入率の比)を決定するものであるから、前述した
(1)と同様な問題があり、また、実プロセスでのイン
ライン型汚泥濃度計の信頼性の問題もある。さらに、水
温の相違や季節や天候による汚泥性状の変動による目標
値の補正が必要であり、目標値に普遍性がない。
The method (3) basically determines the target value (ratio of the sludge dry solid content to the coagulant injection rate) in advance by the method (1). ), And the reliability of the in-line sludge concentration meter in the actual process. Further, it is necessary to correct a target value due to a change in sludge properties due to a difference in water temperature or a season or weather, and the target value is not universal.

【0014】このように、従来の方法は実際の凝集状態
がほとんど反映されない。したがって、現在のところ、
下水処理場に適用できるインラインの凝集状態測定方法
や装置は知られていない。
As described above, the conventional method hardly reflects the actual state of aggregation. Therefore, at the moment,
There is no known in-line coagulation state measurement method or apparatus applicable to a sewage treatment plant.

【0015】本発明は、上述の問題点を解決するために
なされたものであり、その目的は、下水汚泥処理におけ
る汚泥の最適な凝集点を、凝集によって生じる大粒子以
外の粒子を測定対象として、粒子径、または、粒子個数
濃度、または、粒子体積濃度をもって速やかに検知する
装置とその検知方法とを提供することにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to determine the optimum flocculation point of sludge in sewage sludge treatment by measuring particles other than large particles generated by flocculation. It is an object of the present invention to provide an apparatus and a method for quickly detecting the particle size, the particle number, the particle number concentration, or the particle volume concentration.

【0016】[0016]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明にもとづく下水汚泥の凝集度検知装置は、
供給される汚泥と凝集剤とを均一に混合する凝集混和槽
またはその後段の汚泥脱水設備に設けられる凝集度検知
装置であって、前記汚泥と前記凝集剤とが混合してなる
被測定液に浸漬して光を照射する投光手段と、前記投光
手段によって照射され、かつ前記被測定液を透過した前
記光を透過光信号として受光する受光手段と、前記投光
手段と前記受光手段との間に形成される前記光の経路を
包囲し、かつ所定の大きさの孔を複数有する隔膜と、前
記受光手段が検知した透過光強度信号にもとづいて、前
記隔膜を透過した前記被測定液に含まれる粒子の平均粒
径Dm と平均粒子個数濃度Nm とを求め、さらに前記平
均粒径Dm と前記平均粒子個数濃度Nm とから平均体積
濃度Vm を求める演算手段とを備えたことを特徴とす
る。
In order to solve the above-mentioned problems, an apparatus for detecting the degree of coagulation of sewage sludge according to the present invention comprises:
A coagulation mixing tank for uniformly mixing the supplied sludge and the coagulant, or a coagulation degree detection device provided in a sludge dewatering facility at a subsequent stage, wherein the measured liquid obtained by mixing the sludge and the coagulant is used. Light projecting means for immersing and irradiating light, light receiving means for receiving the light irradiated by the light projecting means and transmitting the liquid to be measured as a transmitted light signal, the light projecting means and the light receiving means And a diaphragm surrounding the light path formed therebetween and having a plurality of holes of a predetermined size, and the liquid to be measured having passed through the diaphragm based on a transmitted light intensity signal detected by the light receiving means. Calculating means for determining the average particle diameter D m and the average particle number concentration N m of the particles contained in, and further calculating the average volume concentration V m from the average particle diameter D m and the average particle number concentration N m. It is characterized by having.

【0017】また、本発明にもとづく下水汚泥の凝集度
検知装置は、供給される汚泥と凝集剤とを均一に混合す
る凝集混和槽またはその後段の汚泥脱水設備に設けられ
る凝集度検知装置を用いた汚泥の凝集度検知方法であっ
て、前記汚泥と前記凝集剤とが混合してなる被測定液に
浸漬された投光手段を用いて投光する工程と、前記投光
手段によって照射され、かつ所定の大きさの孔を複数有
する隔膜を通過した前記被測定液を介して前記光を透過
光信号として受光する受光手段によって受光する工程
と、前記受光手段が検知した透過光強度信号にもとづい
て、前記隔膜を透過した前記被測定液に含まれる粒子の
平均粒径Dm と平均粒子個数濃度Nm とを求め、さらに
前記平均粒径Dm と前記平均粒子個数濃度Nm とから平
均体積濃度Vm を演算手段を用いて求める工程とを有す
ることを特徴とする。
Further, the apparatus for detecting the degree of coagulation of sewage sludge according to the present invention uses a coagulation degree detecting apparatus provided in a coagulation mixing tank for uniformly mixing the supplied sludge and a coagulant or a sludge dewatering equipment at a subsequent stage. It is a method of detecting the degree of coagulation of sludge, wherein the step of projecting light using a light projecting means immersed in a liquid to be measured, wherein the sludge and the flocculant are mixed, and irradiated by the light projecting means, Receiving the light as a transmitted light signal through a liquid to be measured that has passed through a diaphragm having a plurality of holes having a predetermined size, and receiving the light as a transmitted light signal, based on a transmitted light intensity signal detected by the light receiving means. Te average from the passed through the membrane and the average particle diameter D m of the particles contained in the measurement liquid average seek and particle number concentration N m, further wherein the average particle diameter D m wherein the average particle number concentration N m calculating hand volume concentration V m And a step using a step.

【0018】また、前記汚泥と前記凝集剤との混合を異
なる条件下で行い、各条件下で前記演算手段によって求
められた平均粒径Dm を比較し、前記平均粒径Dmが最
大となった条件を最適凝集点を与える条件とする。
Further, performs mixing of the sludge and the coagulant under different conditions, by comparing the average particle diameter D m which is determined by said calculating means with each condition, the mean particle diameter Dm is the maximum These conditions are the conditions that give the optimum aggregation point.

【0019】前記汚泥と前記凝集剤との混合を異なる条
件下で行い、各条件下で前記演算手段によって求められ
た平均個数濃度Nm を比較し、前記平均個数濃度Nm
最小なった条件を最適凝集点を与える条件とする。
[0019] performs the mixing of the sludge and the coagulant under different conditions, the conditions by comparing the average number density N m determined by said calculating means with each condition, the mean number density N m becomes minimum Is the condition that gives the optimum aggregation point.

【0020】前記汚泥と前記凝集剤との混合を異なる条
件下で行い、各条件下で前記演算手段によって求められ
た平均粒子体積濃度Vm を比較し、前記平均粒子体積濃
度Vm が最小なった条件を最適凝集点を与える条件とす
る。
[0020] performs the mixing of the sludge and the coagulant under different conditions, by comparing the average particle volume concentration V m obtained by said calculating means with each condition, is the average particle volume concentration V m is the minimum These conditions are the conditions that give the optimum aggregation point.

【0021】[0021]

【発明の実施の形態】本発明の下水汚泥の凝集度検知装
置は、供給される下水汚泥に対し凝集剤が添加され均一
に混合される凝集混和槽またはその後段の汚泥脱水設備
内の被測定液に浸漬して光を照射する光投光手段と、液
中を透過した光を受光する受光手段と、前記投光手段に
よって照射される光ビームに所定の大きさ以下の粒子を
通過せしめる隔膜と、前記受光手段からの透過光強度信
号により粒子の平均粒径Dm と平均粒子個数濃度Nm
よびこれらから計算される平均粒子体積濃度Vm を計算
する演算手段とを備える。
BEST MODE FOR CARRYING OUT THE INVENTION The sewage sludge coagulation degree detecting apparatus of the present invention is a coagulation mixing tank in which a coagulant is added to a supplied sewage sludge and uniformly mixed therein, or a measurement target in a sludge dewatering facility at a subsequent stage. A light projecting means for irradiating light by immersing in a liquid, a light receiving means for receiving light transmitted through the liquid, and a diaphragm for allowing a light beam irradiated by the light projecting means to pass particles having a predetermined size or less. And arithmetic means for calculating an average particle diameter D m and an average particle number concentration N m of the particles based on the transmitted light intensity signal from the light receiving means and an average particle volume concentration V m calculated from these.

【0022】また、この装置を用いて凝集度を検知する
には、次の三つの方法を用いる。
The following three methods are used to detect the degree of agglomeration using this device.

【0023】第一の方法では、演算される平均粒径
m 、つまり、被測定液中の粒子の中で隔膜を通過した
所定の大きさ以下の被測定液中における粒子の平均粒径
m が最大となることにより最適凝集点を検知する。
In the first method, the average particle diameter D m to be calculated, that is, the average particle diameter D of the particles in the liquid to be measured having a predetermined size or less that have passed through the diaphragm among the particles in the liquid to be measured. The optimum aggregation point is detected when m becomes the maximum.

【0024】第二の方法では、演算される平均個数濃度
m 、つまり、被測定液中の粒子の中で隔膜を通過した
所定の大きさ以下の被測定液中における粒子の平均個数
濃度Nm が最小となることにより最適凝集点を検知す
る。
In the second method, the calculated average number concentration N m , that is, the average number concentration N of the particles in the liquid to be measured having a predetermined size or less and passing through the diaphragm among the particles in the liquid to be measured. The optimum aggregation point is detected when m is minimized.

【0025】第三の方法では、演算される平均粒子体積
濃度Vm 、つまり、被測定液中の粒子の中で隔膜を通過
した所定の大きさ以下の被測定液中における粒子の平均
粒子体積濃度Vm が最小となることにより最適凝集点を
検知する。
In the third method, the calculated average particle volume concentration V m , that is, the average particle volume of particles in the liquid to be measured having a predetermined size or less and passing through the diaphragm among the particles in the liquid to be measured. The optimum aggregation point is detected when the concentration Vm becomes minimum.

【0026】したがって、本発明の下水汚泥の凝集度検
知装置は、上記のように構成したため、適宜供給される
汚泥の性状変化に迅速に対応して凝集過程のインライン
計測ができ、また、照射される光ビームに所定の大きさ
以下の粒子を通過せしめる隔膜を備えたことで、凝集過
程において生成する数μm〜数十mmの広範な粒度分布
をもつ母液の凝集状態を、大粒子を除いた粒子を測定す
ることで推測でき、この隔膜通過粒子の平均粒径が最
大、または、平均個数濃度が最小、または、平均体積濃
度が最小となることで混和槽内凝集汚泥の最適凝集点を
検知することができる。
Therefore, the sewage sludge coagulation degree detecting apparatus of the present invention is configured as described above, so that the in-line measurement of the coagulation process can be performed in response to the change in the properties of the sludge supplied as appropriate, and the irradiation can be performed. By providing a diaphragm that allows particles having a predetermined size or less to pass through the light beam, the aggregation state of the mother liquor having a wide particle size distribution of several μm to several tens of mm generated in the aggregation process is removed, and large particles are removed. It can be inferred by measuring the particles, and the optimum flocculation point of the flocculated sludge in the mixing tank is detected when the average particle size of the particles passing through the diaphragm is the maximum, the average number concentration is the minimum, or the average volume concentration is the minimum. can do.

【0027】以下、本発明の下水汚泥の凝集度検知装置
を一実施形態例に基づき説明する。
The sewage sludge coagulation degree detecting apparatus of the present invention will be described below based on an embodiment.

【0028】図1は、本発明にもとづく下水汚泥の凝集
度検知装置の一例の主要部の概略的構成を説明するため
の模式的断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a schematic configuration of a main part of an example of a sewage sludge cohesion degree detecting apparatus according to the present invention.

【0029】この実施例の凝集度検知装置1は、図5に
示した凝集混和槽8または汚泥脱水設備52に設置され
る。凝集度検知装置1は、光源9と、該光源から照射さ
れる光ビーム10を受光する受光素子15と、光ビーム
10を円筒状に包囲するようにして、かつ該光ビーム1
0に対して同軸的に配置されるようにして設けられた隔
膜13と、光ビーム10によって伝送される光信号を電
気信号に変換する演算処理回路16とを備える。
The cohesion degree detecting apparatus 1 of this embodiment is installed in the coagulation mixing tank 8 or the sludge dewatering equipment 52 shown in FIG. The cohesion degree detecting device 1 includes a light source 9, a light receiving element 15 for receiving a light beam 10 emitted from the light source, a cylindrical shape surrounding the light beam 10, and the light beam 1.
A diaphragm 13 is provided so as to be coaxially arranged with respect to zero, and an arithmetic processing circuit 16 that converts an optical signal transmitted by the light beam 10 into an electric signal.

【0030】このような構成からなる凝集度検知装置1
を、凝集剤を添加して攪拌機で混合している混和槽8に
設置する。光源9は820nm帯域の光ビーム10を放
つ。この光ビーム10、投光窓12を介して混和槽8内
の流動被測定液11中に照射される。この場合、投光窓
12は被測定液11中に浸漬した位置にある。また、隔
膜13は所定の大きさの孔が多数形成された多孔膜であ
る。したがって、所定の大きさ以下の粒子が隔膜13を
通過し、光ビーム10の進行方向と交差する。したがっ
て、粒子が光ビーム10中を通過するときに透過光の減
衰が生ずる。この減衰された光ビーム10は、照射光軸
と同一光軸上にあって投光窓12と対向した位置にある
受光窓14を介して受光素子15により受光される。さ
らに、この受光素子15で透過光信号が電気信号へ変換
されて演算処理回路16に送られる。この演算処理回路
16で、隔膜13を通過可能なフロックの平均粒径、平
均個数濃度、平均体積濃度の演算を行う。
The cohesion degree detecting device 1 having such a configuration
Is placed in a mixing tank 8 in which a flocculant is added and mixed with a stirrer. The light source 9 emits a light beam 10 in the 820 nm band. The light beam 10 is applied to the flowing liquid 11 to be measured in the mixing tank 8 through the light projecting window 12. In this case, the light projecting window 12 is located at a position immersed in the liquid 11 to be measured. The diaphragm 13 is a porous film in which a large number of holes of a predetermined size are formed. Therefore, particles smaller than a predetermined size pass through the diaphragm 13 and intersect with the traveling direction of the light beam 10. Accordingly, attenuation of the transmitted light occurs as the particles pass through the light beam 10. The attenuated light beam 10 is received by the light receiving element 15 via the light receiving window 14 located on the same optical axis as the irradiation optical axis and facing the light projecting window 12. Further, the transmitted light signal is converted into an electric signal by the light receiving element 15 and sent to the arithmetic processing circuit 16. The arithmetic processing circuit 16 calculates the average particle size, average number concentration, and average volume concentration of the flocs that can pass through the diaphragm 13.

【0031】つぎに、演算処理回路16での信号処理に
ついて説明する。
Next, signal processing in the arithmetic processing circuit 16 will be described.

【0032】図2は、演算処理回路16の概略的構成を
説明するためのブロック図である。この図において、図
1に示す光源9から受光素子9に直接入力された直接光
の電気信号21を、光源9から被測定液11を透過して
受光素子9に入力された透過光の電気信号22で除した
値を対数アンプ23にて対数変換する。対数変換された
値に対して、さらにローパスフィルタ24で高周波成分
の除去がなされる。その後、直流成分(吸光度)は直ち
にA/Dコンバータ25でデジタル変換され、一方、変
動成分(吸光度の標準偏差)はACアンプ26にて抽出
した後、A/Dコンバータ25でデジタル変換される。
A/Dコンバータ25でデジタル変換された各成分は入
力情報としてCPU27に送られる。このCPU27で
は、入力情報にもとづいて平均粒径Dm 、平均個数濃度
m 、平均体積濃度Vm を演算し、その演算結果を格納
する。なお、具体的な演算方法は、特開平4−3667
50号公報に開示されている吸光度変動解析法を適用し
て行うことができる。すなわち、以下の式(1)、
(2)および(3)を用いて演算する。
FIG. 2 is a block diagram for explaining a schematic configuration of the arithmetic processing circuit 16. In this figure, the electric signal 21 of the direct light directly input from the light source 9 to the light receiving element 9 shown in FIG. The value divided by 22 is logarithmically converted by a logarithmic amplifier 23. From the logarithmically converted values, high-frequency components are further removed by a low-pass filter 24. Thereafter, the DC component (absorbance) is immediately converted to digital by the A / D converter 25, while the fluctuation component (standard deviation of absorbance) is extracted by the AC amplifier 26 and then converted to digital by the A / D converter 25.
Each component digitally converted by the A / D converter 25 is sent to the CPU 27 as input information. The CPU 27 calculates the average particle diameter D m , the average number concentration N m , and the average volume concentration V m based on the input information, and stores the calculation results. The specific calculation method is described in Japanese Patent Application Laid-Open No. Hei 4-3667.
The method can be carried out by applying the absorbance fluctuation analysis method disclosed in Japanese Patent Publication No. 50. That is, the following equation (1):
The calculation is performed using (2) and (3).

【0033】[0033]

【数1】 (Equation 1)

【0034】[0034]

【数2】 (Equation 2)

【0035】[0035]

【数3】 (Equation 3)

【0036】ここで、上記式(1)、(2)、および
(3)中、Dm は平均粒径、Nm は平均個数濃度、Vm
は平均粒子体積濃度、Aは光路断面積、σは近赤外吸光
度の標準偏差、Qは粒子の近赤外の光散乱係数、Em
近赤外の平均吸光度である。また、Qは画像処理等の他
の方法での粒径測定値との比較により求めることができ
る。
Here, in the above formulas (1), (2) and (3), D m is the average particle diameter, N m is the average number concentration, Vm
The average particle volume concentration, A is the optical path cross-sectional area, sigma is the standard deviation of the near-infrared absorbance, Q is a near-infrared light scattering coefficient of the particles, the E m is the average absorbance of near infrared. Further, Q can be determined by comparison with a measured value of particle size by another method such as image processing.

【0037】以上のように、混和槽内に適宜供給される
汚泥の性状変化に迅速に対応して、凝集過程の所定の大
きさ以下の粒子の平均粒径と平均個数濃度をインライン
かつ実時間で計測できる。
As described above, the average particle diameter and the average number concentration of particles having a predetermined size or less in the coagulation process are determined in-line and in real time in response to the property change of the sludge appropriately supplied into the mixing tank. Can be measured.

【0038】次に、本発明にもとづく下水汚泥の凝集度
検知方法について述べる。図3は下水汚泥に高分子凝集
剤を添加したときのフロックの粒度分布の推移を模式化
したグラフである。ここでは、凝集剤無添加から最適注
入率まで上昇したときの粒度分布の推移を示した(V1
→V2→V3→V4)。
Next, a method for detecting the degree of aggregation of sewage sludge based on the present invention will be described. FIG. 3 is a graph schematically showing a change in the particle size distribution of floc when a polymer flocculant is added to sewage sludge. Here, the transition of the particle size distribution when the coagulant was not added to the optimum injection rate was shown (V1
→ V2 → V3 → V4).

【0039】ここで、凝集剤無添加の汚泥の粒度分布V
1は、自然水中の粒度分布と基本的には同様の形(対数
正規分布)であり、かなり広い粒径分布を持つと考えら
れる。そして、凝集剤注入にともなって、フロックの形
成がはじまり、全体の粒度分布は粒径大の方に分布の幅
を狭めながらシフトし、かつ個数濃度は全体的に小さく
なる。最適凝集点V3では平均フロック粒径は最大、個
数濃度は最小、分布の幅は最小となる。さらに、最適凝
集点を過ぎて、過剰注入V4となると今度は逆に、平均
フロック粒径は減少、分布の幅と個数濃度は増大に転じ
る。図3から明らかなように、最適凝集点は、平均フロ
ック粒径最大、個数濃度最小となる点である。
Here, the particle size distribution V of the sludge without the addition of the flocculant
1 has basically the same shape (log-normal distribution) as the particle size distribution in natural water, and is considered to have a fairly wide particle size distribution. Then, floc formation starts with the coagulant injection, the overall particle size distribution shifts toward a larger particle size while narrowing the distribution width, and the number concentration decreases as a whole. At the optimum aggregation point V3, the average floc particle size is maximum, the number concentration is minimum, and the distribution width is minimum. Further, when the excess injection V4 is reached after the optimal aggregation point, the average floc particle size decreases, and the distribution width and the number concentration start increasing. As is clear from FIG. 3, the optimum aggregation point is a point at which the average floc particle size becomes maximum and the number concentration becomes minimum.

【0040】しかし、上述の数μm〜数十mmの広範に
わたって存在する凝集過程の粒度分布を連続的に測定す
る光学系の実現は困難である。
However, it is difficult to realize an optical system that continuously measures the particle size distribution in the aggregation process, which exists over a wide range of several μm to several tens of mm.

【0041】そこで、本発明者らは、凝集によって生じ
る大粒子を除いた粒子の粒度分布に着目した。
Therefore, the present inventors have paid attention to the particle size distribution of particles excluding large particles generated by aggregation.

【0042】本発明にもとづく凝集度検知装置に適用さ
れる隔膜として、最小補足粒径(Ds)が300μmの
ろ布を用いた場合の、ろ布透過粒子の粒度分布と上記最
適凝集点との関係について以下説明する。
When a filter cloth having a minimum supplementary particle size (Ds) of 300 μm is used as a diaphragm applied to the cohesion degree detecting device according to the present invention, the particle size distribution of the filter cloth permeable particles and the above-mentioned optimum flocculation point are determined. The relationship will be described below.

【0043】図4は、ろ布(Ds=300μm)で、粒
度分布が広い範囲で一定の試料水をろ過したときのろ液
の粒度分布を模式的に示すものである。ここでは、凝集
剤無添加から最適注入率まで上昇させたときの粒度分布
の推移を示し(W1→W2→W3)、また薬注後の平均
粒径の推移は粒径大へシフトし個数濃度は減少する。つ
まり、ろ液についても上記と同様に、最適凝集点で平均
粒径は最大、個数濃度は最小となる。
FIG. 4 schematically shows the particle size distribution of a filtrate obtained by filtering a sample water having a wide range of particle size distribution with a filter cloth (Ds = 300 μm). Here, the transition of the particle size distribution when the coagulant is not added to the optimum injection rate is shown (W1 → W2 → W3), and the transition of the average particle diameter after chemical injection shifts to a large particle diameter and the number concentration Decreases. That is, as for the filtrate, the average particle diameter becomes the maximum and the number concentration becomes the minimum at the optimum aggregation point, as described above.

【0044】一方、ここでは図示していない平均体積濃
度については、一定量の供給汚泥に対して、任意の凝集
状態(母液とろ液のフロック体積濃度の和が一定の状
態)を考えたとき、母液つまり大粒子の体積濃度が最大
となる点が、フロックの成長が最も促進された点とな
る。したがって、必然的に大粒子を除いたろ液における
粒子では、平均体積濃度が最小となる点が最適凝集点と
なる。
On the other hand, regarding the average volume concentration not shown here, when a given amount of supplied sludge is considered to have an arbitrary coagulation state (a state in which the sum of the floc volume concentrations of the mother liquor and the filtrate is constant) The point at which the volume concentration of the mother liquor, that is, the large particles, becomes maximum is the point at which the growth of floc is most promoted. Therefore, for the particles in the filtrate that exclude the large particles, the point at which the average volume concentration is the minimum is the optimum aggregation point.

【0045】また、本発明の装置にある隔膜の最小補足
粒径は、本実施例で示した300μm以外においても、
上記の平均粒径、個数濃度、体積濃度と最適凝集点の関
係が同様に成り立つ。
The minimum supplementary particle size of the diaphragm in the apparatus of the present invention is not limited to 300 μm shown in the present embodiment.
The relationship between the above average particle diameter, number concentration, volume concentration and the optimum aggregation point is similarly established.

【0046】したがって、本発明にもとづく凝集度検知
方法は、図1に示す凝集度検知装置を用い、隔膜を透過
する粒子の平均粒径と平均個数濃度および平均体積濃度
を演算し、前記3項目各々について予め設定された値と
各演算結果とを比較し、平均粒径の場合は前記設定値よ
り大きければ最適凝集点と検知し、また平均個数濃度の
場合は前記設定値より小さければ最適凝集点と検知し、
さらに平均体積濃度の場合は前記設定値より小さければ
最適凝集点と検知することができる。
Therefore, the method for detecting the degree of agglomeration according to the present invention uses the agglutination degree detector shown in FIG. For each of the values, a preset value is compared with each calculation result. If the average particle diameter is larger than the set value, it is detected as the optimum aggregation point.If the average number concentration is smaller than the set value, the optimum aggregation point is detected. Point and
Furthermore, in the case of the average volume concentration, if it is smaller than the set value, it can be detected as the optimum aggregation point.

【0047】[0047]

【発明の効果】以上説明したように、本発明にもとづく
下水汚泥の凝集度検知装置と凝集度検知方法によれば、
汚泥性状の変化に迅速に対応して、凝集過程のインライ
ン計測を可能とする。また、母液の粒度分布を測定する
ために必要な数十mmオーダーの大口径の光学的手段が
不要となる。これにより小型で低価格の構成部品により
有効な情報を得ることが可能となる。さらに、従来のも
のに比べて計測に要する時間は数秒と短く、ほぼリアル
タイム計測が可能となる。
As described above, according to the sewage sludge coagulation degree detecting apparatus and method according to the present invention,
In-line measurement of the coagulation process is possible, responding quickly to changes in sludge properties. In addition, a large-diameter optical means on the order of several tens of mm required for measuring the particle size distribution of the mother liquor becomes unnecessary. This makes it possible to obtain more effective information from small and inexpensive components. Further, the time required for measurement is as short as several seconds as compared with the conventional one, and almost real-time measurement is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にもとづく下水汚泥の凝集度検知装置の
主要部の概略的構成を説明するための模式的断面図であ
る。
FIG. 1 is a schematic cross-sectional view for explaining a schematic configuration of a main part of a sewage sludge cohesion degree detecting device based on the present invention.

【図2】本発明にもとづく下水汚泥の凝集度検知装置に
適用される演算処理回路のブロック図である。
FIG. 2 is a block diagram of an arithmetic processing circuit applied to the sewage sludge cohesion degree detecting apparatus according to the present invention.

【図3】汚泥に高分子凝集剤を添加したときのフロック
の粒度分布推移を説明するためのグラフである。
FIG. 3 is a graph for explaining a change in the particle size distribution of floc when a polymer flocculant is added to sludge.

【図4】ろ布でろ過したときのろ液の粒度分布を説明す
るためのグラフである。
FIG. 4 is a graph for explaining a particle size distribution of a filtrate when filtered with a filter cloth.

【図5】汚泥調質を行うための装置の構成を説明するた
めの模式図である。
FIG. 5 is a schematic diagram for explaining a configuration of an apparatus for performing sludge conditioning.

【図6】ジャーテストに用いられる装置の主要部の概略
的構成を説明するための模式図である。
FIG. 6 is a schematic diagram for explaining a schematic configuration of a main part of an apparatus used for a jar test.

【符号の説明】[Explanation of symbols]

1 凝集度検知装置 2 ビーカー 3 攪拌翼 4 滑車 5 ベルト 6 回転数調節器 7 モータ 8 混和槽 9 光源 10 光ビーム 11 被測定液 12 投光窓 13 隔膜 14 受光窓 15 受光素子 16 演算処理回路 21 直接光の電気信号 22 透過光の電気信号 23 対数アンプ 24 ローパスフィルタ 25 A/Dコンバータ 26 ACアンプ 27 CPU 50 水処理施設 51 汚泥投入ポンプ 52 汚泥脱水設備 54 凝集剤注入ポンプ DESCRIPTION OF SYMBOLS 1 Cohesion degree detection apparatus 2 Beaker 3 Stirrer blade 4 Pulley 5 Belt 6 Rotation speed controller 7 Motor 8 Mixing tank 9 Light source 10 Light beam 11 Liquid to be measured 12 Projection window 13 Separator 14 Light reception window 15 Light reception element 16 Arithmetic processing circuit 21 Electric signal of direct light 22 Electric signal of transmitted light 23 Logarithmic amplifier 24 Low-pass filter 25 A / D converter 26 AC amplifier 27 CPU 50 Water treatment facility 51 Sludge input pump 52 Sludge dewatering equipment 54 Coagulant injection pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 太秀 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 夜明 徹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 菅谷 謙三 東京都中央区京橋1丁目1番1号 株式会 社石垣内 (72)発明者 大前 隆文 香川県坂出市江尻町483−16 株式会社石 垣坂出工場内 (72)発明者 片山 雅義 香川県坂出市江尻町483−16 株式会社石 垣坂出工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Taihide Yamaguchi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Toru Tomei 1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture No. 1 Inside Fuji Electric Co., Ltd. (72) Inventor Kenzo Sugaya 1-1-1, Kyobashi, Chuo-ku, Tokyo Co., Ltd. Ishigakiuchi Co., Ltd. (72) Inventor Takafumi Omae 483-16 Ejiricho, Sakaide-shi, Kagawa Co., Ltd. Inside the Ishigaki Sakaide Plant (72) Inventor Masayoshi Katayama 483-16 Ejiricho, Sakaide City, Kagawa Prefecture Inside the Ishigaki Sakaide Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 供給される汚泥と凝集剤とを均一に混合
する凝集混和槽またはその後段の汚泥脱水設備に設けら
れる凝集度検知装置であって、 前記汚泥と前記凝集剤とが混合してなる被測定液に浸漬
して光を照射する投光手段と、 前記投光手段によって照射され、かつ前記被測定液を透
過した前記光を透過光信号として受光する受光手段と、 前記投光手段と前記受光手段との間に形成される前記光
の経路を包囲し、かつ所定の大きさの孔を複数有する隔
膜と、 前記受光手段が検知した透過光強度信号にもとづいて、
前記隔膜を透過した前記被測定液に含まれる粒子の平均
粒径Dm と平均粒子個数濃度Nm とを求め、さらに前記
平均粒径Dm と前記平均粒子個数濃度Nm とから平均体
積濃度Vm を求める演算手段とを備えたことを特徴とす
る下水汚泥の凝集度検知装置。
1. A coagulation degree detecting device provided in a coagulation mixing tank for uniformly mixing supplied sludge and a coagulant, or a coagulation degree detecting device provided in a subsequent sludge dewatering facility, wherein the sludge and the coagulant are mixed. A light projecting means for immersing in the liquid to be measured and irradiating light; a light receiving means for receiving the light irradiated by the light projecting means and passing through the liquid to be measured as a transmitted light signal; and the light projecting means. And surrounding the light path formed between the light receiving means, and a diaphragm having a plurality of holes of a predetermined size, based on the transmitted light intensity signal detected by the light receiving means,
Mean volume concentration and an average particle diameter D m average seek and particle number concentration N m, further wherein the average particle diameter D m and the average particle number concentration N m of the particles contained in the test liquid having passed through the diaphragm cohesion detector sewage sludge, characterized in that a calculation means for calculating a V m.
【請求項2】 供給される汚泥と凝集剤とを均一に混合
する凝集混和槽またはその後段の汚泥脱水設備に設けら
れる凝集度検知装置を用いた汚泥の凝集度検知方法であ
って、 前記汚泥と前記凝集剤とが混合してなる被測定液に浸漬
された投光手段を用いて投光する工程と、 前記投光手段によって照射され、かつ所定の大きさの孔
を複数有する隔膜を通過した前記被測定液を介して前記
光を透過光信号として受光する受光手段によって受光す
る工程と、 前記受光手段が検知した透過光強度信号にもとづいて、
前記隔膜を透過した前記被測定液に含まれる粒子の平均
粒径Dm と平均粒子個数濃度Nm とを求め、さらに前記
平均粒径Dm と前記平均粒子個数濃度Nm とから平均体
積濃度Vm を演算手段を用いて求める工程とを有するこ
とを特徴とする下水汚泥の凝集度検知方法。
2. A method for detecting the degree of coagulation of sludge using a coagulation mixing tank for uniformly mixing supplied sludge and a coagulant or a coagulation degree detection device provided in a sludge dewatering facility at a subsequent stage, And a step of projecting light using a light projecting means immersed in the liquid to be measured, which is a mixture of the coagulant and the coagulant; and irradiating by the light projecting means and passing through a diaphragm having a plurality of holes of a predetermined size. Receiving the light as a transmitted light signal through the liquid to be measured by a light receiving unit, based on the transmitted light intensity signal detected by the light receiving unit,
Mean volume concentration and an average particle diameter D m average seek and particle number concentration N m, further wherein the average particle diameter D m and the average particle number concentration N m of the particles contained in the test liquid having passed through the diaphragm Determining the Vm using arithmetic means.
【請求項3】 請求項2に記載の方法であって、 前記汚泥と前記凝集剤との混合を異なる条件下で行い、
各条件下で前記演算手段によって求められた平均粒径D
m を比較し、前記平均粒径Dmが最大となった条件を最
適凝集点を与える条件とすることを特徴とする下水汚泥
の凝集度検知方法。
3. The method according to claim 2, wherein the mixing of the sludge and the flocculant is performed under different conditions,
The average particle size D obtained by the arithmetic means under each condition
a method for detecting the degree of agglomeration of sewage sludge, wherein m is compared with each other, and a condition in which the average particle diameter Dm is maximized is set as a condition for giving an optimum aggregation point.
【請求項4】 請求項2に記載の方法であって、 前記汚泥と前記凝集剤との混合を異なる条件下で行い、
各条件下で前記演算手段によって求められた平均個数濃
度Nm を比較し、前記平均個数濃度Nm が最小となった
条件を最適凝集点を与える条件とすることを特徴とする
下水汚泥の凝集度検知方法。
4. The method according to claim 2, wherein the mixing of the sludge and the flocculant is performed under different conditions,
Comparing the average number density N m determined by said calculating means with each condition, the aggregation of sewage sludge, characterized by the condition that the average number density N m gives the best flocculation point the condition that the minimum Degree detection method.
【請求項5】 請求項2記載の方法であって、 前記汚泥と前記凝集剤との混合を異なる条件下で行い、
各条件下で前記演算手段によって求められた平均粒子体
積濃度Vm を比較し、前記平均粒子体積濃度Vm が最小
となった条件を最適凝集点を与える条件とすることを特
徴とする下水汚泥の凝集度検知方法。
5. The method according to claim 2, wherein the mixing of the sludge and the flocculant is performed under different conditions,
Sewage sludge by comparing the average particle volume concentration V m obtained by said calculating means with each condition, characterized by the condition that the average particle volume concentration V m gives the best flocculation point the minimum and become criteria Cohesion degree detection method.
JP29096996A 1996-11-01 1996-11-01 Method and apparatus for detecting cohesion of sewage sludge Expired - Fee Related JP3477332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29096996A JP3477332B2 (en) 1996-11-01 1996-11-01 Method and apparatus for detecting cohesion of sewage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29096996A JP3477332B2 (en) 1996-11-01 1996-11-01 Method and apparatus for detecting cohesion of sewage sludge

Publications (2)

Publication Number Publication Date
JPH10128012A true JPH10128012A (en) 1998-05-19
JP3477332B2 JP3477332B2 (en) 2003-12-10

Family

ID=17762787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29096996A Expired - Fee Related JP3477332B2 (en) 1996-11-01 1996-11-01 Method and apparatus for detecting cohesion of sewage sludge

Country Status (1)

Country Link
JP (1) JP3477332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347599A (en) * 1998-06-04 1999-12-21 Fuji Electric Co Ltd Flocculant injection amount determining apparatus
WO2002020116A3 (en) * 2000-09-06 2002-12-12 Stockhausen Chem Fab Gmbh Device and method for particle agglomeration
CN1300014C (en) * 2005-07-13 2007-02-14 哈尔滨工业大学 Method for on-line testing effect of polution removing by permanganate composite drug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347599A (en) * 1998-06-04 1999-12-21 Fuji Electric Co Ltd Flocculant injection amount determining apparatus
WO2002020116A3 (en) * 2000-09-06 2002-12-12 Stockhausen Chem Fab Gmbh Device and method for particle agglomeration
CN1300014C (en) * 2005-07-13 2007-02-14 哈尔滨工业大学 Method for on-line testing effect of polution removing by permanganate composite drug

Also Published As

Publication number Publication date
JP3477332B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
Kang et al. Temperature effects on flocculation kinetics using Fe (III) coagulant
JP4793193B2 (en) Aggregation apparatus and aggregation method
JPH02290205A (en) Coagulating apparatus
JP3925621B2 (en) Water or sludge treatment system
Tiravanti et al. Influence of the charge density of cationic polyelectrolytes on sludge conditioning
JP2002253905A (en) Coagulation monitoring system
JP3477332B2 (en) Method and apparatus for detecting cohesion of sewage sludge
JP4238983B2 (en) Flocculant injection control method and control apparatus therefor
WO2023017637A1 (en) Flocculation processing device
Guan et al. Rapid determination of fractal structure of bacterial assemblages in wastewater treatment: Implications to process optimisation
JPH05329302A (en) Waste liquid treatment device and detecting method for aggregation degree of fat and oil content in waste liquid
Packham The laboratory evaluation of polyelectrolyte flocculants
KR20000052923A (en) Sludge dewatering control system
JP3967462B2 (en) Flocculant injection amount determination device
JP4400720B2 (en) Water treatment system
JP2020078797A (en) Flocculation treatment system, flocculation treatment method, computer program and flocculation treatment control device
JP2006272228A (en) Dewatering method and apparatus for sludge
JP3500606B2 (en) How to determine the optimal coagulant injection amount
JP7484974B2 (en) Method for determining flocculation state and method for flocculation treatment
JP2019155285A (en) Solid/liquid separation apparatus
JP6385860B2 (en) Aggregation state determination method and aggregation state determination device
JP3690677B2 (en) Determination method of appropriate amount of flocculant and determination indicator used therefor
WO2024018885A1 (en) Method for determining state of aggregation and method for processing aggregation
JP2024019027A (en) Method for measuring aluminum content aggregated particles, device for measuring the same, aggregation processing device for processed water, method for determining superiority of aggregation processing conditions, and device for determining the same
JPH01139109A (en) Flocculant injection controller in water purifying plant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees