JPH1012558A - Apparatus and method for plasma chemical vapor deposition - Google Patents

Apparatus and method for plasma chemical vapor deposition

Info

Publication number
JPH1012558A
JPH1012558A JP16722996A JP16722996A JPH1012558A JP H1012558 A JPH1012558 A JP H1012558A JP 16722996 A JP16722996 A JP 16722996A JP 16722996 A JP16722996 A JP 16722996A JP H1012558 A JPH1012558 A JP H1012558A
Authority
JP
Japan
Prior art keywords
plasma
reaction vessel
vapor deposition
chemical vapor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16722996A
Other languages
Japanese (ja)
Inventor
Tatsufumi Aoi
辰史 青井
Shoji Morita
章二 森田
Yoshiaki Takeuchi
良昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16722996A priority Critical patent/JPH1012558A/en
Publication of JPH1012558A publication Critical patent/JPH1012558A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a uniform amorphous thin film at a high forming rate by a plasma chemical vapor deposition apparatus for forming wide area thin films, usable for various electronic devices, such as solar cells, thin-film transistors, etc. SOLUTION: In a reaction vessel 1, a plasma generating electrode and ground electrode are respectively opposite in an upper and lower spaces with a substrate parallel to them. Two pairs of solenoid coils 14a, 14b and 15a, 15b are disposed on the opposite sides of the vessel 1 with their axes crossed mutually to which the a-c currents being out of phase are fed from their respective etching a-c power sources 16a, 16b, 16c, 16d with a high frequency power fed between the electrodes. A phase controller 20 controls the power sources 16a-16d, to alternately generate lines of magnetic force at a central and peripheral areas of the substrate 13. This changes the distribution of a plasma confined by the lines of magnetic force, thereby making the film thickness distribution uniform over the ends and central parts of the substrate 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアモルファスシリコ
ン太陽電池、薄膜トランジスタ、光センサ、半導体保護
膜など各種電子デバイスに使用される大面積薄膜の製造
に適用されるプラズマ化学蒸着装置(以下プラズマCV
D装置とする)及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma chemical vapor deposition apparatus (hereinafter referred to as plasma CV) applied to the production of large-area thin films used for various electronic devices such as amorphous silicon solar cells, thin film transistors, optical sensors, and semiconductor protective films.
D apparatus) and a method.

【0002】[0002]

【従来の技術】図7は従来の大面積アモルファスシリコ
ン薄膜を製造するために適用されるプラズマCVD装置
の構成の側面図、図8はそのプラズマCVD装置の構成
の平面図である。このような装置の詳細は、例えば、特
開平5−299680号等に記載されているが、従来の
プラズマCVD装置について図7、図8によりその概要
を説明する。
2. Description of the Related Art FIG. 7 is a side view of a configuration of a conventional plasma CVD apparatus applied to manufacture a large-area amorphous silicon thin film, and FIG. 8 is a plan view of the configuration of the plasma CVD apparatus. The details of such an apparatus are described in, for example, Japanese Patent Application Laid-Open No. 5-299680. The outline of a conventional plasma CVD apparatus will be described with reference to FIGS.

【0003】反応容器1内には、グロー放電、プラズマ
を発生させるための電極2と接地電極3が互いに対向し
て配置されている。電極2には、高周波電源4から例え
ば、13.56MHzの周波数の電力が、インピーダン
スマッチング回路5、第1の高周波ケーブル6及び電力
導入端子7を介して供給される。接地電極3は、反応容
器1及び第2高周波ケーブル8を介してアース9に接続
されている。また、上記インピーダンスマッチング回路
5の接地側端子は、第3の高周波ケーブル10により、
反応容器1に接続されている。
In a reaction vessel 1, an electrode 2 and a ground electrode 3 for generating glow discharge and plasma are arranged to face each other. The electrode 2 is supplied with power of a frequency of, for example, 13.56 MHz from the high-frequency power supply 4 via the impedance matching circuit 5, the first high-frequency cable 6, and the power introduction terminal 7. The ground electrode 3 is connected to the ground 9 via the reaction vessel 1 and the second high-frequency cable 8. Further, the ground-side terminal of the impedance matching circuit 5 is connected to the third high-frequency cable 10.
It is connected to the reaction vessel 1.

【0004】反応容器1内には、流量計を有するボンベ
(図示せず)から、反応ガス管11を通して、例えば、
モノシラン等の反応ガスが供給され、反応容器1内のガ
スは、排気管12を通して真空ポンプ(図示せず)によ
り排気される。基板13は、電極2,3と平行に、すな
わち、電極2,3により発生する電界に直交するように
配置される。また、反応容器1の周囲には、有限長ソレ
ノイドコイル14a,14b,15a,15bがそれぞ
れ対向して配置されている。
In a reaction vessel 1, for example, a cylinder having a flow meter (not shown) is passed through a reaction gas pipe 11, for example.
A reaction gas such as monosilane is supplied, and the gas in the reaction vessel 1 is exhausted by a vacuum pump (not shown) through an exhaust pipe 12. The substrate 13 is arranged parallel to the electrodes 2 and 3, that is, orthogonal to the electric field generated by the electrodes 2 and 3. Around the reaction vessel 1, finite length solenoid coils 14a, 14b, 15a, and 15b are arranged to face each other.

【0005】薄膜の製造は、まず真空ポンプ(図示せ
ず)を用いて反応容器1内を排気する。その後、反応ガ
ス導入管11を通して、例えば、モノシランと水素との
混合ガスを供給し、反応容器1内の圧力を0.05〜
0.5torrに保ち、高周波電源4から電極2,3間
に電圧を印加し、電極2,3間にグロー放電プラズマを
発生させる。
In manufacturing a thin film, the inside of the reaction vessel 1 is first evacuated using a vacuum pump (not shown). After that, a mixed gas of, for example, monosilane and hydrogen is supplied through the reaction gas introduction pipe 11, and the pressure in the reaction vessel 1 is set to 0.05 to
While maintaining the pressure at 0.5 torr, a voltage is applied between the electrodes 2 and 3 from the high frequency power supply 4 to generate glow discharge plasma between the electrodes 2 and 3.

【0006】一方、有限長ソレノイドコイル14a,1
4b,15a,15bの対向したコイルに、位相可変2
出力発振器26から、例えば位相を90°ずらした周波
数1Hzの正弦波電圧をそれぞれ図示のように印加す
る。これにより、電極2,3の間の電界Eに対して直交
方向に、一定の角速度2π(ラジアン/sec)で回転
する磁界Bがプラズマに作用する。この結果、グロー放
電プラズマ内の荷電粒子は、電界Eによるクーロン力
と、磁界Bによるローレンツ力とによって、一定の角速
度で回転する力(E×Bドリフト)を受け、非晶質薄膜
を形成するラジカルと衝突するため、基板13の表面に
均一な非晶質薄膜が形成される。
On the other hand, a finite length solenoid coil 14a, 1
4b, 15a, and 15b, the phase variable 2
For example, a sine wave voltage having a frequency of 1 Hz and a phase shifted by 90 ° is applied from the output oscillator 26 as shown in the figure. Thus, a magnetic field B rotating at a constant angular velocity of 2π (radian / sec) in a direction orthogonal to the electric field E between the electrodes 2 and 3 acts on the plasma. As a result, the charged particles in the glow discharge plasma receive a force rotating at a constant angular velocity (E × B drift) by the Coulomb force due to the electric field E and the Lorentz force due to the magnetic field B to form an amorphous thin film. Since it collides with radicals, a uniform amorphous thin film is formed on the surface of the substrate 13.

【0007】[0007]

【発明が解決しようとする課題】図7、図8に説明した
従来のプラズマCVD装置において、プラズマはE×B
ドリフトを受け、非晶質薄膜を形成するラジカルと衝突
するが、ソレノイドコイルがつくる磁界は常に対抗する
コイルの方向に基板13を横切る向きに生じるため、そ
の磁力線に沿ってプラズマ中の電子が捕捉され、その結
果、磁界線中央寄りに、磁束密度分布を反映した筒状の
形でプラズマが閉じ込められる。
SUMMARY OF THE INVENTION In the conventional plasma CVD apparatus described with reference to FIGS.
Although it receives a drift and collides with radicals forming an amorphous thin film, the magnetic field generated by the solenoid coil is always generated in a direction crossing the substrate 13 in the direction of the opposing coil, so electrons in the plasma are captured along the magnetic field lines. As a result, the plasma is confined near the center of the magnetic field line in a cylindrical shape reflecting the magnetic flux density distribution.

【0008】図5に、このようなプラズマ分布の概念図
を示す。これはミラー閉じ込めと呼ばれるもので、対抗
するソレイノドコイル15a,15bにより、磁力線1
8が前述のように基板13を横切るように発生し、この
磁力線18に沿ってプラズマ19が閉じ込められてい
る。
FIG. 5 shows a conceptual diagram of such a plasma distribution. This is called “mirror confinement”. The opposing soleinoid coils 15a and 15b cause the magnetic field lines 1
8 is generated across the substrate 13 as described above, and the plasma 19 is confined along the lines of magnetic force 18.

【0009】その際、ソレノイドコイル15a,15b
に印加する正弦波電圧の周波数に従い、磁界が回転し、
膜厚分布の均一化が図られる。しかしながら、プラズマ
は常に回転軸中心である基板13の中央部に接するた
め、基板13上に成膜される非晶質薄膜の膜厚分布は、
中央が若干厚めに成膜されるという問題点が生じてい
た。
At this time, the solenoid coils 15a, 15b
The magnetic field rotates according to the frequency of the sine wave voltage applied to
The film thickness distribution can be made uniform. However, since the plasma is always in contact with the center of the substrate 13 which is the center of the rotation axis, the thickness distribution of the amorphous thin film formed on the substrate 13 is
There has been a problem that the center is formed to be slightly thicker.

【0010】又、図6に示すように磁極の磁性が異なる
極の場合には、基板13の中央の磁束は打ち消し合い、
ソレノイドコイルがつくる磁力線18は隣り合うコイル
を結ぶ方向に生じ、プラズマ中の電子はその磁力線18
によって捕捉され、隣り合うコイルの軸に対してプラズ
マ19がそれぞれ閉じ込められる。これはカスプ閉じ込
めと呼ばれ、この場合にはプラズマは磁束密度の分布を
反映し、基板13の端部に高密度のプラズマが分布する
ため、基板13上に成膜される非晶質薄膜の膜厚分布は
端部が厚めに成膜されるという問題が生ずる。
When the magnetic poles have different magnetisms as shown in FIG. 6, the magnetic flux at the center of the substrate 13 cancels out,
The magnetic field lines 18 formed by the solenoid coil are generated in the direction connecting the adjacent coils, and the electrons in the plasma are generated by the magnetic field lines 18.
And the plasma 19 is confined with respect to the axis of the adjacent coil. This is called cusp confinement. In this case, the plasma reflects the distribution of the magnetic flux density, and the high-density plasma is distributed at the end of the substrate 13. In the film thickness distribution, there is a problem that an end portion is formed to be thicker.

【0011】[0011]

【課題を解決するための手段】上記従来技術の問題点を
解消するため、本発明では対抗するソレノイドコイルに
対して、それぞれ独立に位相及び励磁周波数制御が可能
な交流電源を接続する事により、基板上に均一な非晶質
薄膜を得る事が出来る次の(1)の装置及び(2)の方
法を提供する。
According to the present invention, an AC power supply capable of independently controlling the phase and the excitation frequency is connected to the opposing solenoid coil. The following (1) apparatus and (2) method capable of obtaining a uniform amorphous thin film on a substrate are provided.

【0012】(1)反応ガスを導入して排出する手段を
有する反応容器と、同反応容器内に収容された接地電極
及びプラズマ発生用電極と、この接地電極とプラズマ発
生用電極間にグロー放電用電力を供給する電源と、前記
電極間の軸に直交し、かつ互いに直交する方向に軸芯を
もつ様に前記反応容器を挟んで対峙して設置された2対
のソレノイドコイルと、これらのソレノイドコイルに磁
界発生用電力を供給する交流電源とを有し、前記電極間
の電界に直交するように支持された基板上に非晶質薄膜
を形成するプラズマ化学蒸着装置において、前記交流電
源は、前記ソレノイドコイルに対して、それぞれ独立に
位相または励磁周波数もしくはその両方のいずれかの制
御が可能である事を特徴とするプラズマ化学蒸着装置。
(1) A reaction vessel having a means for introducing and discharging a reaction gas, a ground electrode and a plasma generation electrode housed in the reaction vessel, and a glow discharge between the ground electrode and the plasma generation electrode. A power supply for supplying power for use, and two pairs of solenoid coils installed to face each other with the reaction container interposed therebetween so as to have axes in directions orthogonal to the axis between the electrodes and orthogonal to each other; An AC power supply for supplying electric power for generating a magnetic field to the solenoid coil, and a plasma chemical vapor deposition apparatus for forming an amorphous thin film on a substrate supported so as to be orthogonal to the electric field between the electrodes, wherein the AC power supply is A plasma chemical vapor deposition apparatus characterized in that it is possible to independently control either the phase or the excitation frequency or both of the solenoid coils.

【0013】(2)上記のような構成のプラズマ化学蒸
着装置において、前記対峙するソレノイドコイルが生成
する磁極の極性が時間的に同じ極と異なる極に交互に変
化させ、この状態下で前記電極間の電界に直交するよう
に支持された基板上に非晶質薄膜を形成するプラズマ化
学蒸着方法。
(2) In the plasma-enhanced chemical vapor deposition apparatus configured as described above, the polarity of the magnetic poles generated by the opposed solenoid coils is alternately changed to the same pole and to a different pole in time. A plasma-enhanced chemical vapor deposition method for forming an amorphous thin film on a substrate supported orthogonally to an electric field between them.

【0014】上記の(1)の装置においては、対抗する
ソレノイドコイルに対して、お互いに独立に位相及び励
磁周波数制御が可能な交流電源を接続する事により磁極
の極性を変化させることができる。このような交流電源
を用いることにより、(2)の方法のように対抗するソ
レノイドコイルが生成する磁極の極性が時間的に同じ極
と異なる極に交互に変化させる事が出来る。
In the above device (1), the polarity of the magnetic pole can be changed by connecting an AC power supply capable of controlling the phase and the excitation frequency independently of each other to the opposing solenoid coil. By using such an AC power supply, the polarity of the magnetic pole generated by the opposing solenoid coil can be alternately changed in time to the same pole and a different pole as in the method (2).

【0015】ここで、磁極の極性が同じ極の場合は、従
来と同様に図5で示すように筒状の形でプラズマが閉じ
込められるので、プラズマは常に基板中央部に接し、基
板上に成膜される非晶質薄膜は、中央が厚めに成膜され
る膜厚分布となる。
Here, when the magnetic poles have the same polarity, the plasma is confined in a cylindrical shape as shown in FIG. 5 as in the prior art, so that the plasma is always in contact with the center of the substrate and formed on the substrate. The formed amorphous thin film has a film thickness distribution in which the center is formed thicker.

【0016】これに対して、磁極の極性が異なる極の場
合は、図6に示す様に基板中央部の磁束密度は打ち消し
あうので、ソレノイドコイルがつくる磁界は隣り合うコ
イルを結ぶ方向に生じる。プラズマ中の電子はその磁力
線に沿って捕捉され、その結果隣り合うコイルを結ぶ軸
に対してプラズマが閉じ込められる。これはカスプ閉じ
込めと呼ばれる。この場合、プラズマは磁束密度の分布
を反映し基板端部に高密度のプラズマが分布するため、
基板上に成膜される非晶質薄膜の膜厚分布は、端部が厚
めに成膜される状態となる。
On the other hand, when the magnetic poles have different polarities, the magnetic flux density at the center of the substrate cancels out as shown in FIG. 6, so that the magnetic field generated by the solenoid coil is generated in the direction connecting the adjacent coils. Electrons in the plasma are trapped along the lines of magnetic force, thereby confining the plasma to the axis connecting adjacent coils. This is called cusp confinement. In this case, the plasma reflects the distribution of the magnetic flux density and the high-density plasma is distributed at the edge of the substrate.
The thickness distribution of the amorphous thin film formed on the substrate is such that the end portions are formed to be relatively thick.

【0017】本発明の上記(1)の装置及び(2)の方
法においては、上記の磁極極性の状態を時間的に交互に
繰り返す事により、端部と中央部の膜厚分布を均一化出
来、基板上に均一な非晶質薄膜が得られる。
In the apparatus of (1) and the method of (2) of the present invention, the film thickness distribution at the end portion and the central portion can be made uniform by alternately repeating the above-mentioned magnetic pole states over time. As a result, a uniform amorphous thin film can be obtained on the substrate.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係るプラズマ化学蒸着装置の構成を示す側
面図、図2はその平面図を示す。これら図において、符
号1乃至13は図7、図8に示す従来例と同じ部材であ
り、本発明の特徴部分は、ソレノイドコイル14a,1
4b,15a,15bの結線方法、及び符号16a,1
6b,16c,16d,20の部分にあり、以下、これ
らの特徴について詳しく説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a side view showing a configuration of a plasma chemical vapor deposition apparatus according to one embodiment of the present invention, and FIG. 2 is a plan view thereof. In these figures, reference numerals 1 to 13 are the same members as those of the conventional example shown in FIGS. 7 and 8, and the feature of the present invention is that the solenoid coils 14a, 1
4b, 15a, 15b, and 16a, 1
6b, 16c, 16d, and 20. These features will be described in detail below.

【0019】原料ガスを反応させる反応容器1内におい
て、電極2,3の間に、図示省略しているが、プラズマ
発生用電極を取り囲む形でメッシュ電極が配置されてい
る。電極2,3を結ぶ軸に直交し、かつ互いに直交する
方向に軸芯をもつ様に反応容器を挟んで2対のソレノイ
ドコイルが設置されている。
Although not shown, a mesh electrode is disposed between the electrodes 2 and 3 in the reaction vessel 1 for reacting the source gas so as to surround the plasma generating electrode. Two pairs of solenoid coils are provided so as to sandwich the reaction vessel so as to have an axis perpendicular to the axis connecting the electrodes 2 and 3 and perpendicular to each other.

【0020】これらのコイルについて、あるコイルを基
準として、反時計回りにコイル14a,15a,14
b,15bと定義する。また、各々のコイルには励磁用
交流電源16a〜16dがそれぞれ接続され、各励磁用
交流電源はそれぞれ位相コントローラ20に接続されて
いる。
The coils 14a, 15a, and 14a are rotated counterclockwise with respect to a certain coil.
b, 15b. In addition, excitation AC power supplies 16a to 16d are connected to the respective coils, and the excitation AC power supplies are connected to the phase controller 20, respectively.

【0021】薄膜の製造は、まず真空ポンプ(図示せ
ず)を用いて反応容器1内を排気する。その後、反応ガ
ス導入管11を通して、例えば、モノシランと水素との
混合ガスを供給し、反応容器1内の圧力を0.05〜
0.5torrに保ち、高周波電源4から電極2,3間
に高周波電圧を印加し、電極2,3間にグロー放電プラ
ズマを発生させる。
In manufacturing a thin film, the inside of the reaction vessel 1 is first evacuated using a vacuum pump (not shown). After that, a mixed gas of, for example, monosilane and hydrogen is supplied through the reaction gas introduction pipe 11, and the pressure in the reaction vessel 1 is set to 0.05 to
While maintaining the pressure at 0.5 torr, a high frequency voltage is applied between the electrodes 2 and 3 from the high frequency power supply 4 to generate glow discharge plasma between the electrodes 2 and 3.

【0022】同時に、ソレノイドコイル14a,15
a,14b,15bに励磁用交流電源16a〜16dを
用い交流電流を通電する。その際、位相コントローラ2
0を用いて各励磁用交流電源16a〜16dの交流電流
17a〜17dの位相制御を行う事により、各ソレノイ
ドコイルがつくる磁界が有効に作用し、基板13上に均
一な非晶質薄膜を得る事ができるようにする。
At the same time, the solenoid coils 14a, 15
AC currents are supplied to a, 14b, and 15b using the exciting AC power supplies 16a to 16d. At that time, the phase controller 2
By performing the phase control of the alternating currents 17a to 17d of the excitation AC power supplies 16a to 16d using 0, the magnetic field generated by each solenoid coil works effectively, and a uniform amorphous thin film is obtained on the substrate 13. Be able to do things.

【0023】例えば、コイル14aに通電する励磁周波
数f(Hz)とし、スタート時における各コイルの電流
17a〜17dの位相関係が図3の状態であるとする。
コイル14aに対してn回周期の通電後にコイル15
a,14b,15bの電流周期が各々n+1/4、n+
1/2、n−1/2となる様な励磁周波数で各コイルに
通電する。
For example, it is assumed that the exciting frequency f (Hz) for energizing the coil 14a is set, and the phase relationship between the currents 17a to 17d of each coil at the start is in the state shown in FIG.
After energizing the coil 14a for n cycles, the coil 15
a, 14b, and 15b have current cycles of n + / and n +, respectively.
Each coil is energized at an excitation frequency such as 1/2, n-1 / 2.

【0024】スタート時の磁力線18は図4(a)の様
に一方向に基板13を横切るのに対して、コイル14a
に関してn周期の通電後の磁力線18は図4(b)の様
に基体13の端部で高磁束密度が保たれる。また、2n
周期後、3n周期後の磁力線18は図4(c)、図4
(d)となり、4n周期後はスタート時に戻る。この様
に4n周期の間に対峙する磁極が同極から反極へ入れ替
わる。また、各状態の間は磁極極性が変化しながら磁力
線が回転する状態となる。
The magnetic lines of force 18 at the start cross the substrate 13 in one direction as shown in FIG.
As for the magnetic field lines 18 after energization for n cycles, the high magnetic flux density is maintained at the end of the base 13 as shown in FIG. Also, 2n
After the cycle, the magnetic field lines 18 after 3n cycles are shown in FIG.
It becomes (d) and returns to the start after 4n cycles. In this way, the magnetic poles facing each other during the 4n period are switched from the same pole to the opposite pole. Further, during each state, the magnetic field lines rotate while the magnetic pole polarity changes.

【0025】従って、薄膜成膜時間をT0 とおくと、薄
膜成膜時間よりも4n周期の通電に費やす時間を充分短
くすると共に、磁極極性が変化しながら磁力線が回転す
る状態を充分長くとる事により、この周期の通電を繰り
返す事で端部と中央部の膜厚分布が均一化される。上記
条件を式で表わすと次式の様になる。
Accordingly, if the thin film deposition time is set to T 0 , the time spent for energization in a 4n cycle can be made sufficiently shorter than the thin film deposition time, and the state in which the magnetic field lines rotate while the magnetic pole polarity changes can be made sufficiently long. Thus, by repeating the energization in this cycle, the film thickness distribution at the end and the center is made uniform. The above condition is expressed by the following equation.

【0026】[0026]

【数1】 (Equation 1)

【0027】具体例として、圧力0.05torr、薄
膜成膜時間T=1800sec、磁束密度60ガウスの
場合で、各コイルの励磁周波数が同じ(f=1Hz)場
合、基板寸法400mm角に対して、中央値に対する膜
厚分布が13〜25%あったが、磁極交代周期n=10
回として各コイルの励磁周波数を変化させる(コイル1
4a,15a,14b,15bに関して、各々1Hz、
1.025Hz、1.05Hz、0.975Hz)事に
より、膜厚分布を10%以下にする事が出来た。
As a specific example, when the pressure is 0.05 torr, the thin film forming time T is 1800 sec, the magnetic flux density is 60 Gauss, and the excitation frequency of each coil is the same (f = 1 Hz), the substrate size is 400 mm square. Although the film thickness distribution with respect to the median value was 13 to 25%, the magnetic pole alternation period n = 10
Change the excitation frequency of each coil (coil 1
For each of 4a, 15a, 14b and 15b, 1 Hz,
(1.025 Hz, 1.05 Hz, 0.975 Hz), the film thickness distribution could be reduced to 10% or less.

【0028】なお、上記の具体例では励磁周波数のみを
変えて磁界を制御したが、本発明の実施の形態で説明の
ように位相を周期的に変える事でも磁極極性の状態を時
間的に交互に繰り返す事が出来、上記具体例と同様の効
果が得られ、端部と中央部の膜厚分布を均一化出来、基
板13上に均一な非晶質薄膜が得られる。
In the specific example described above, the magnetic field is controlled by changing only the excitation frequency. However, as described in the embodiment of the present invention, the phase of the magnetic pole polarity can be alternately changed with time by periodically changing the phase. The same effect as in the above specific example can be obtained, the film thickness distribution at the end and the center can be made uniform, and a uniform amorphous thin film can be obtained on the substrate 13.

【0029】[0029]

【発明の効果】以上、具体的に説明したように、本発明
は、プラズマ化学蒸着装置において、対峙するソレイノ
ドコイルに対し、それぞれ独立に位相、励磁周波数もし
くはその両方のいずれかを制御することが可能な交流電
源を設けたことを特徴とし、更にこの蒸着方法も提供す
るので、大面積で均一な高品質の非晶質薄膜を高い成膜
速度で形成する事が出来る。
As described above, according to the present invention, in the plasma enhanced chemical vapor deposition apparatus, it is possible to independently control either the phase, the excitation frequency, or both of the opposed solenoid coils. The present invention is characterized by providing a high-precision AC power supply and further provides this vapor deposition method, whereby a large-area and uniform high-quality amorphous thin film can be formed at a high film forming rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るプラズマ化学蒸着
装置の構成を示す側面図である。
FIG. 1 is a side view showing a configuration of a plasma chemical vapor deposition apparatus according to one embodiment of the present invention.

【図2】本発明の実施の一形態に係るプラズマ化学蒸着
装置の構成を示す平面図である。
FIG. 2 is a plan view showing a configuration of a plasma chemical vapor deposition apparatus according to one embodiment of the present invention.

【図3】本発明の実施の一形態に係るプラズマ化学蒸着
装置におけるコイル電流位相関係図であり、(a)、
(b)、(c)、(d)は各コイルにおけるスタート時
の電流を示す。
FIGS. 3A and 3B are coil current phase relation diagrams in a plasma chemical vapor deposition apparatus according to one embodiment of the present invention, wherein FIGS.
(B), (c), and (d) show the current at the start of each coil.

【図4】本発明の実施の一形態に係るプラズマ化学蒸着
装置における磁力線の概念図であり(a)はスタート
時、(b)はn周期通電後、(c)は2n周期通電後、
(d)は3n周期通電後の状態を示す。
4A and 4B are conceptual diagrams of lines of magnetic force in a plasma chemical vapor deposition apparatus according to an embodiment of the present invention, wherein FIG. 4A shows a start, FIG. 4B shows a state after n cycles, FIG.
(D) shows a state after energization for 3n cycles.

【図5】プラズマ化学蒸着装置における磁極極性が同じ
場合のプラズマ分布の概念図である。
FIG. 5 is a conceptual diagram of a plasma distribution in a plasma chemical vapor deposition apparatus when magnetic pole polarities are the same.

【図6】プラズマ化学蒸着装置における磁極極性が異な
る場合のプラズマ分布の概念図である。
FIG. 6 is a conceptual diagram of a plasma distribution when magnetic pole polarities are different in a plasma chemical vapor deposition apparatus.

【図7】従来のプラズマ化学蒸着装置の構成を示す側面
図である。
FIG. 7 is a side view showing a configuration of a conventional plasma chemical vapor deposition apparatus.

【図8】従来のプラズマ化学蒸着装置の構成を示す平面
図である。
FIG. 8 is a plan view showing a configuration of a conventional plasma chemical vapor deposition apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器 2 プラズマ発生用電極 3 接地電極 4 高周波電源 5 インピーダンス整合
器 11 反応ガス導入管 12 排気管 13 基板 14a,14b,14c,14d ソレノイドコイル 16a,16b,16c,16d 励磁用交流電源 17a,17b,17c,17d コイル電流 18 磁力線 19 プラズマ 20 位相コントローラ
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Plasma generation electrode 3 Ground electrode 4 High frequency power supply 5 Impedance matching device 11 Reaction gas introduction pipe 12 Exhaust pipe 13 Substrate 14a, 14b, 14c, 14d Solenoid coil 16a, 16b, 16c, 16d Excitation AC power supply 17a, 17b, 17c, 17d Coil current 18 Magnetic field lines 19 Plasma 20 Phase controller

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年8月13日[Submission date] August 13, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】本発明の実施の一形態に係るプラズマ化学蒸着
装置におけるコイル電流位相関係図である。
FIG. 3 is a coil current phase relationship diagram in a plasma chemical vapor deposition apparatus according to one embodiment of the present invention.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応ガスを導入して排出する手段を有す
る反応容器と、同反応容器内に収容された接地電極及び
プラズマ発生用電極と、この接地電極とプラズマ発生用
電極間にグロー放電用電力を供給する電源と、前記電極
間の軸に直交し、かつ互いに直交する方向に軸芯をもつ
様に前記反応容器を挟んで対峙して設置された2対のソ
レノイドコイルと、これらのソレノイドコイルに磁界発
生用電力を供給する交流電源とを有し、前記電極間の電
界に直交するように支持された基板上に非晶質薄膜を形
成するプラズマ化学蒸着装置において、前記交流電源
は、前記ソレノイドコイルに対して、それぞれ独立に位
相または励磁周波数もしくはその両方のいずれかの制御
が可能である事を特徴とするプラズマ化学蒸着装置。
1. A reaction vessel having means for introducing and discharging a reaction gas, a ground electrode and a plasma generation electrode housed in the reaction vessel, and a glow discharge electrode between the ground electrode and the plasma generation electrode. A power supply for supplying electric power, two pairs of solenoid coils installed opposite to each other with the reaction vessel interposed therebetween so as to have axes in directions orthogonal to the axis between the electrodes and orthogonal to each other, and these solenoids An AC power supply that supplies power for generating a magnetic field to the coil, and in a plasma chemical vapor deposition apparatus that forms an amorphous thin film on a substrate supported so as to be orthogonal to the electric field between the electrodes, the AC power supply includes: A plasma chemical vapor deposition apparatus characterized in that it is possible to independently control either the phase or the excitation frequency or both of the solenoid coils.
【請求項2】 反応ガスを導入して排出する手段を有す
る反応容器と、同反応容器内に収容された接地電極及び
プラズマ発生用電極と、この接地電極とプラズマ発生用
電極間にグロー放電用電力を供給する電源と、前記電極
間の軸に直交し、かつ互いに直交する方向に軸芯をもつ
様に前記反応容器を挟んで対峙して設置された2対のソ
レノイドコイルと、これらのソレノイドコイルに磁界発
生用電力を供給する交流電源とを有するプラズマ化学蒸
着装置において、前記対峙するソレノイドコイルが生成
する磁極の極性が時間的に同じ極と異なる極に交互に変
化させ、この状態下で前記電極間の電界に直交するよう
に支持された基板上に非晶質薄膜を形成するプラズマ化
学蒸着方法。
2. A reaction vessel having a means for introducing and discharging a reaction gas, a ground electrode and a plasma generation electrode housed in the reaction vessel, and a glow discharge electrode between the ground electrode and the plasma generation electrode. A power supply for supplying electric power, two pairs of solenoid coils installed opposite to each other with the reaction vessel interposed therebetween so as to have axes in directions orthogonal to the axis between the electrodes and orthogonal to each other, and these solenoids In a plasma-enhanced chemical vapor deposition apparatus having an AC power supply that supplies electric power for generating a magnetic field to the coil, the polarity of the magnetic pole generated by the opposed solenoid coil is alternately changed to the same pole and a different pole in time. A plasma enhanced chemical vapor deposition method for forming an amorphous thin film on a substrate supported orthogonally to an electric field between the electrodes.
JP16722996A 1996-06-27 1996-06-27 Apparatus and method for plasma chemical vapor deposition Withdrawn JPH1012558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16722996A JPH1012558A (en) 1996-06-27 1996-06-27 Apparatus and method for plasma chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16722996A JPH1012558A (en) 1996-06-27 1996-06-27 Apparatus and method for plasma chemical vapor deposition

Publications (1)

Publication Number Publication Date
JPH1012558A true JPH1012558A (en) 1998-01-16

Family

ID=15845853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16722996A Withdrawn JPH1012558A (en) 1996-06-27 1996-06-27 Apparatus and method for plasma chemical vapor deposition

Country Status (1)

Country Link
JP (1) JPH1012558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936297B2 (en) * 2007-09-04 2012-05-23 シャープ株式会社 Plasma processing apparatus, plasma processing method, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936297B2 (en) * 2007-09-04 2012-05-23 シャープ株式会社 Plasma processing apparatus, plasma processing method, and semiconductor device
US8395250B2 (en) 2007-09-04 2013-03-12 Kabushiki Kaisha Sharp Plasma processing apparatus with an exhaust port above the substrate

Similar Documents

Publication Publication Date Title
EP0574100B1 (en) Plasma CVD method and apparatus therefor
TWI293855B (en) Plasma reactor coil magnet system
US6082293A (en) Plasma source
JP2785442B2 (en) Plasma CVD equipment
JPH1012558A (en) Apparatus and method for plasma chemical vapor deposition
JPH05335277A (en) Plasma treatment device
US5424905A (en) Plasma generating method and apparatus
JPH11283926A (en) Plasma processor
JPH03162583A (en) Vacuum process device
JPH0766138A (en) Plasma cvd system
JP2851765B2 (en) Plasma generation method and apparatus
JPH0645096A (en) Method for generating plasma and device therefor
JP3151596B2 (en) Plasma processing method and apparatus
JP3825048B2 (en) Scalable helicon wave plasma processing apparatus with non-cylindrical source chamber
JPH0760798B2 (en) Method and apparatus for forming amorphous thin film
JP5174346B2 (en) Plasma processing equipment
JPH11121198A (en) Plasma generating device
JPH0682635B2 (en) Semiconductor processing equipment
JPH09270299A (en) Plasma treating device
JP3133174B2 (en) Plasma processing apparatus and plasma processing method
JPS63253617A (en) Plasma treatment apparatus
JPH1012557A (en) Plasma chemical vapor deposition apparatus
JPH05299680A (en) Plasma cvd method and its device
JPH02219218A (en) Formation of thin film
JPH0697657B2 (en) Amorphous thin film forming equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902