JPH10125316A - Manufacture of nickel positive electrode - Google Patents

Manufacture of nickel positive electrode

Info

Publication number
JPH10125316A
JPH10125316A JP9274211A JP27421197A JPH10125316A JP H10125316 A JPH10125316 A JP H10125316A JP 9274211 A JP9274211 A JP 9274211A JP 27421197 A JP27421197 A JP 27421197A JP H10125316 A JPH10125316 A JP H10125316A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
active material
cobalt
nickel positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9274211A
Other languages
Japanese (ja)
Inventor
Binzen Haku
旻善 白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung Electron Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electron Devices Co Ltd filed Critical Samsung Electron Devices Co Ltd
Publication of JPH10125316A publication Critical patent/JPH10125316A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel positive electrode capable of raising cell capacity and improving a characteristic by preparing active material paste through a process for mixing nickel hydroxide, or more preferably oxide as a conductivity improver with an alkaline solution under oxidizing atmosphere and, then coating a porous nickel current collector with the paste. SOLUTION: Preferably cobalt oxide or more preferably cobalt monoxide is used as a conductivity improver, and a solution of potassium hydroxide between 30% and 40% is used as an alkaline solution. Oxidizing atmosphere is generated by heating a reaction mixture up to a temperature between 40 and 80 deg.C or feeding oxygen gas to a reactant. The cobalt oxide under dissolution into the alkaline solution reacts with the oxygen, thereby forming cobalt oxyhydroxide film on the surface of the nickel hydroxide. The active material so obtained is applied to a porous nickel current collector and dried. A nickel positive electrode is thereby provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル陽電極の製
造方法に係り、特に電池の内圧を減少させて寿命特性を
改善させたニッケル陽電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nickel positive electrode, and more particularly to a method for manufacturing a nickel positive electrode in which the internal pressure of a battery is reduced to improve the life characteristics.

【0002】[0002]

【従来の技術】ニッケル水素電池において、ニッケル陽
電極は多孔性ニッケル集電体とその孔に充電される陽極
活物質を含んでなるものであって、一般的に焼結式方法
により製造される。この方法は網状のニッケルメッキ鋼
板にニッケル粉末を主成分としたスラリーを塗布して乾
燥、焼結して多孔性ニッケル集電体を形成させた後、こ
のように形成された多孔性ニッケル集電体をニッケル塩
溶液とアルカリ溶液に順次に反復含浸させてニッケル集
電体の気孔内に水酸化ニッケルを析出させ、これをアル
カリ電解液の中で化成して電極を製造する方法である。
2. Description of the Related Art In a nickel-metal hydride battery, a nickel positive electrode comprises a porous nickel current collector and an anode active material charged in its pores, and is generally manufactured by a sintering method. . In this method, a slurry containing nickel powder as a main component is applied to a mesh-plated nickel-plated steel sheet, dried and sintered to form a porous nickel current collector, and then the porous nickel current collector thus formed is formed. This is a method for producing an electrode by repeatedly impregnating the body with a nickel salt solution and an alkali solution sequentially to precipitate nickel hydroxide in the pores of the nickel current collector, and forming the nickel hydroxide in an alkaline electrolyte.

【0003】しかし、焼結式で製造されたニッケル陽電
極は耐久性は優れているが、小容量で、複雑な製造工程
を要し、かつ長い製造時間を要する等の短所がある。
[0003] However, although the nickel positive electrode manufactured by the sintering method has excellent durability, it has disadvantages such as a small capacity, a complicated manufacturing process, and a long manufacturing time.

【0004】このような短所を補完してニッケル陽電極
を製造する他の方法として、80年代末から実用化し始
めたのがペースト式製造方法である。この方法は、発泡
ニッケルやニッケルフェルトのような多孔性ニッケル集
電体の表面に導電剤、接着剤及び活物質が混合された混
合物ペーストをスプレーで噴霧したりローラーで塗布し
た後、乾燥させてニッケル陽電極を製造する方法であ
る。
[0004] As another method of manufacturing a nickel positive electrode to make up for such disadvantages, a paste-type manufacturing method started to be put into practical use in the late 1980s. In this method, a paste of a mixture of a conductive agent, an adhesive, and an active material is sprayed on a surface of a porous nickel current collector such as foamed nickel or nickel felt, sprayed or applied with a roller, and then dried. This is a method for producing a nickel positive electrode.

【0005】ペースト式ニッケル陽電極の製造方法にお
いて、集電体として使用される多孔性ニッケル集電体
は、平均気孔径が大きいため活物質を充填しやすく充填
量も多い。従って、ペースト式で製造されたニッケル陽
電極は焼結式製造方法により製造されたニッケル陽電極
に比べて電極容量を大きくしうるだけでなく製造工程も
単純である。
[0005] In the method for producing the paste-type nickel positive electrode, the porous nickel current collector used as the current collector has a large average pore diameter, so that the active material is easily filled, and the filling amount is large. Therefore, the nickel positive electrode manufactured by the paste method can increase the electrode capacity and simplify the manufacturing process as compared with the nickel positive electrode manufactured by the sintering method.

【0006】このような長所に起因して、最近ニッケル
水素電池のニッケル陽電極はかなりペースト式製造方法
で製造されている。
Due to these advantages, the nickel positive electrode of a nickel-metal hydride battery has been manufactured by a paste-type manufacturing method.

【0007】陽極活物質として使用される水酸化ニッケ
ルが不導体であるため、コバルト化合物、金属化合物ま
たは他の導電剤を添加して導電性を与えて活物質の利用
率も改善するために多くの努力を傾けてきた。
[0007] Since nickel hydroxide used as an anode active material is a non-conductor, it is often used to add a cobalt compound, a metal compound or another conductive agent to provide conductivity and improve the utilization rate of the active material. Have been working hard.

【0008】導電剤のうち最も望ましく使われているの
はコバルト化合物である。ニッケル陽電極中に含まれた
コバルト化合物は、電池の活性化工程の中でアルカリ電
解液中に溶解されてコバルト錯イオンを形成し、これが
水酸化ニッケルの表面に水酸化コバルトの形で析出され
た後、初充電時導電性の大きいオキシ水酸化コバルトに
酸化されて導電性被膜を形成する。
[0008] Cobalt compounds are most preferably used among the conductive agents. The cobalt compound contained in the nickel positive electrode is dissolved in the alkaline electrolyte during the battery activation process to form cobalt complex ions, which are deposited in the form of cobalt hydroxide on the surface of nickel hydroxide. After that, at the time of initial charge, it is oxidized to cobalt oxyhydroxide having high conductivity to form a conductive film.

【0009】即ち、コバルト化合物はニッケル陽電極の
導電性を向上させるのには非常に効果的であるが、陽極
でニッケル活物質の表面にオキシ水酸化コバルト被膜が
形成されるまでは水酸化ニッケルの充電量が足りなくな
り、これに該当する電気量が陰極の放電リザーバとして
作用することになる。ところが、このように放電リザー
バが大きくなると、陰極の充電リザーバが縮まるために
過充電時に発生する酸素ガスを十分に除去できず、これ
により電池の内圧が高まるという望ましくない結果をも
たらす。
That is, although the cobalt compound is very effective in improving the conductivity of the nickel positive electrode, nickel hydroxide is used until a cobalt oxyhydroxide coating is formed on the surface of the nickel active material at the anode. Becomes insufficient, and the corresponding amount of electricity acts as a cathode discharge reservoir. However, when the discharge reservoir becomes large in this manner, the oxygen gas generated at the time of overcharging cannot be sufficiently removed due to the shrinkage of the charge reservoir of the cathode, which has an undesirable result of increasing the internal pressure of the battery.

【0010】また、活性化工程中に前記オキシ水酸化コ
バルト被膜が活物質表面に効果的で均一に形成されない
ので導電剤を多量添加すべきであり、これにより活物質
の量が減少されることにより電池容量及び性能が劣化す
るという問題点が発生する。
In addition, since the cobalt oxyhydroxide coating is not effectively and uniformly formed on the surface of the active material during the activation step, a large amount of a conductive agent must be added, thereby reducing the amount of the active material. This causes a problem that the battery capacity and performance are deteriorated.

【0011】[0011]

【発明が解決しようとする課題】本発明は前記のごとき
従来の問題点に鑑みてなされたもので、その目的とする
ところは、水酸化ニッケルの表面に導電膜を予め形成す
ることにより内圧が少なく、電池容量及び性能の改善さ
れたニッケル陽電極の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to reduce the internal pressure by forming a conductive film on the surface of nickel hydroxide in advance. It is an object of the present invention to provide a method for producing a nickel positive electrode having a reduced battery capacity and improved performance.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するため
に、本発明のニッケル陽電極の製造方法は、水酸化ニッ
ケル、伝導性向上剤及びアルカリ溶液を酸化性雰囲気下
で攪拌しながら混合して活物質ペーストを製造する段階
と、前記活物質ペーストを多孔性ニッケル集電体に塗布
して乾燥する段階とを含むことを特徴とする。
In order to achieve the above object, a method for producing a nickel positive electrode according to the present invention comprises mixing nickel hydroxide, a conductivity improver and an alkaline solution while stirring under an oxidizing atmosphere. Producing an active material paste by applying the active material paste to a porous nickel current collector and drying the active material paste.

【0013】また、本発明のニッケル陽電極の製造方法
において、望ましくは前記伝導性向上剤としてはコバル
ト酸化物が、さらに望ましくはコバルトモノオキシドが
使われ、前記アルカリ溶液としては30乃至40%の水
酸化カリウム溶液が使われる。
In the method of manufacturing a nickel positive electrode according to the present invention, preferably, the conductivity improver is cobalt oxide, more preferably cobalt monoxide, and the alkali solution is 30 to 40%. Potassium hydroxide solution is used.

【0014】[0014]

【発明の実施の形態】本発明において、前記酸化性雰囲
気は前記反応物を大気中で40〜80℃に加熱したり反
応物に酸素ガスを供給することによりなされる。前記コ
バルト酸化物がアルカリ溶液に溶解されながら酸素と反
応することにより水酸化ニッケルの表面にオキシ水酸化
コバルト膜を形成することになる。従って、初充電時に
充電リザーバの大きさの減少に起因して発生しうる電池
内圧の上昇を防ぎ、電池の寿命改善効果も得られる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, the oxidizing atmosphere is formed by heating the reactant to 40 to 80.degree. C. in the air or supplying oxygen gas to the reactant. The cobalt oxide reacts with oxygen while being dissolved in the alkaline solution to form a cobalt oxyhydroxide film on the surface of the nickel hydroxide. Therefore, it is possible to prevent the internal pressure of the battery from increasing due to the decrease in the size of the charging reservoir at the time of the initial charging, and to obtain the effect of improving the life of the battery.

【0015】以下、実施例及び比較例に基づき本発明を
さらに詳しく説明するが、本発明はこれに限定されるも
のではない。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0016】<実施例1〜6>球状水酸化ニッケル10
0gにコバルトモノオキシド12gを添加した後、水酸
化カリウム溶液の濃度、混合時間及び混合温度を下記表
1に示した通り調整しながら水酸化ニッケル、コバルト
モノオキシド及び水酸化カリウム溶液を混合して活物質
ペーストA乃至Fを製造した。
<Examples 1 to 6> Spherical nickel hydroxide 10
After adding 12 g of cobalt monoxide to 0 g, nickel hydroxide, cobalt monoxide and potassium hydroxide solution were mixed while adjusting the concentration, mixing time and mixing temperature of the potassium hydroxide solution as shown in Table 1 below. Active material pastes A to F were produced.

【0017】[0017]

【表1】 [Table 1]

【0018】それぞれの活物質ペーストを発泡ニッケル
に充填した後、乾燥及び圧延してニッケル陽電極A乃至
Fを製造した。
Each of the active material pastes was filled in foamed nickel, dried and rolled to produce nickel positive electrodes A to F.

【0019】前記ニッケル陽電極を各々水素貯蔵合金の
陰極とポリプロピレン不織布セパレータと共に組立てて
公称容量の1200mAhである電池A乃至Fを製造し
た後、製造されたそれぞれの電池に対して100回の充
放電を実施した以降の内圧及び寿命を測定して下記表2
に示した。この時、内圧は1Cの電流で200%充電し
た時の最高圧力であり、寿命は1Cの電流で130%充
電した後1Cの電流で1.0Vまで放電する充放電過程
を繰返して初期容量の90%となる時を意味する。
Each of the nickel positive electrodes is assembled with a cathode of a hydrogen storage alloy and a polypropylene non-woven fabric separator to produce batteries A to F having a nominal capacity of 1200 mAh, and each of the produced batteries is charged and discharged 100 times. After measuring the internal pressure and life, the following Table 2
It was shown to. At this time, the internal pressure is the maximum pressure when the battery is charged by 200% with the current of 1C, and the life is repeated by charging / discharging the battery to 130% with the current of 1C and then discharging to 1.0V with the current of 1C. It means when it becomes 90%.

【0020】<比較例1>アルカリ溶液を添加しない従
来の方法により水酸化ニッケルとコバルトモノオキシド
を常温で混合して活物質ペーストを製造することを除け
ば、前記実施例に記載した方法に応じて電池Gを製造
し、製造された電池の内圧及び寿命を測定してその結果
を下記表2に示した。
<Comparative Example 1> According to the method described in the above Example, an active material paste was produced by mixing nickel hydroxide and cobalt monoxide at room temperature by a conventional method without adding an alkali solution. The battery G was manufactured by the above method, and the internal pressure and the life of the manufactured battery were measured. The results are shown in Table 2 below.

【0021】[0021]

【表2】 [Table 2]

【0022】前記表2の結果から分かるように、通常の
方法により製造されたニッケル陽電極を採用する電池G
の場合には内圧が著しく高い反面寿命は極端に短い。
As can be seen from the results shown in Table 2, the battery G employing the nickel positive electrode manufactured by the usual method was used.
In the case of (1), the internal pressure is extremely high, but the life is extremely short.

【0023】本発明による陽極活物質ペースト製造時に
アルカリ溶液を添加して酸化性雰囲気下で攪拌しながら
混合反応を実施すると、水酸化ニッケルの表面にオキシ
水酸化コバルト膜が形成されることにより初充電時に発
生する充電リザーバの大きさが減少し、放電リザーバの
大きさが大きくなって内圧上昇に効果的に対処しうる。
また、多量の導電剤を使用しなくても活物質表面に均一
の導電膜を形成しうるので電池の容量及び性能の向上に
も寄与しうる。
When an alkaline solution is added during the production of the anode active material paste according to the present invention and a mixing reaction is carried out with stirring in an oxidizing atmosphere, a cobalt oxyhydroxide film is formed on the surface of nickel hydroxide, which results in an initial reaction. The size of the charging reservoir generated during charging is reduced, and the size of the discharging reservoir is increased, so that it is possible to effectively cope with an increase in internal pressure.
In addition, since a uniform conductive film can be formed on the surface of the active material without using a large amount of a conductive agent, the capacity and performance of the battery can be improved.

【0024】[0024]

【発明の効果】以上説明したように、本発明のニッケル
陽電極の製造方法によれば、内圧上昇を抑制し、電池の
容量が大きくなり、かつ寿命特性のような電池の性能向
上も改善されうる。
As described above, according to the method for manufacturing a nickel positive electrode of the present invention, an increase in internal pressure is suppressed, the capacity of the battery is increased, and improvement in battery performance such as life characteristics is also improved. sell.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル、伝導性向上剤及びアル
カリ溶液を酸化性雰囲気下で攪拌、混合して活物質ペー
ストを製造する段階と、 前記活物質ペーストを多孔性ニッケル集電体に塗布して
乾燥する段階と、 を含むことを特徴とするニッケル陽電極の製造方法。
1. A step of producing an active material paste by stirring and mixing nickel hydroxide, a conductivity improver and an alkaline solution in an oxidizing atmosphere, and applying the active material paste to a porous nickel current collector. And drying. A method for producing a nickel positive electrode, comprising:
【請求項2】 前記伝導性向上剤がコバルト酸化物であ
ることを特徴とする請求項1に記載のニッケル陽電極の
製造方法。
2. The method of claim 1, wherein the conductivity improver is cobalt oxide.
【請求項3】 前記コバルト酸化物がコバルトモノオキ
シドであることを特徴とする請求項2に記載のニッケル
陽電極の製造方法。
3. The method according to claim 2, wherein the cobalt oxide is cobalt monoxide.
【請求項4】 前記アルカリ溶液が30乃至40%の水
酸化カリウム溶液であることを特徴とする請求項1に記
載のニッケル陽電極の製造方法。
4. The method according to claim 1, wherein the alkaline solution is a 30 to 40% potassium hydroxide solution.
JP9274211A 1996-10-09 1997-10-07 Manufacture of nickel positive electrode Withdrawn JPH10125316A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1996-44906 1996-10-09
KR1019960044906A KR19980026469A (en) 1996-10-09 1996-10-09 Nickel electrode and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH10125316A true JPH10125316A (en) 1998-05-15

Family

ID=19476839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9274211A Withdrawn JPH10125316A (en) 1996-10-09 1997-10-07 Manufacture of nickel positive electrode

Country Status (2)

Country Link
JP (1) JPH10125316A (en)
KR (1) KR19980026469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883798B2 (en) 2001-07-19 2011-02-08 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883798B2 (en) 2001-07-19 2011-02-08 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same

Also Published As

Publication number Publication date
MX9707763A (en) 1998-08-30
KR19980026469A (en) 1998-07-15

Similar Documents

Publication Publication Date Title
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
US20020172758A1 (en) Alkaline storage battery
JP2001185153A (en) Electrode and nonaqueous electrolyte secondary battery
EP1207576A2 (en) Cobalt compound for use in alkaline storage battery, method for manufacturing the same, and positive electrode plate of alkaline storage battery employing the same
JPH0221098B2 (en)
JPH10125316A (en) Manufacture of nickel positive electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP4404447B2 (en) Method for producing alkaline storage battery
JP2001297758A (en) Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP3182228B2 (en) Method for producing non-sintered positive electrode plate for alkaline storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP4305029B2 (en) Alkaline storage battery with non-sintered nickel positive electrode
JP2001236959A (en) Non-sintered alkali cell positive electrode
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JP2003045420A (en) Non-sintered positive electrode, its manufacturing method, and alkaline storage battery using same
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH08329942A (en) Manufacture of positive active material for alkaline storage battery
JP2000188125A (en) Manufacture of sealed alkaline storage battery
JP2001345099A (en) Active material for nickel positive electrode and nickel- hydrogen secondary cell
JP2002117858A (en) Alkaline storage battery
JPH10172551A (en) Nickel electrode for alkaline storage battery
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
JPH11224666A (en) Alkaline storage battery and its manufacture
JP2000223146A (en) Nickel hydrogen storage battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207