JPH10112946A - Motor - Google Patents

Motor

Info

Publication number
JPH10112946A
JPH10112946A JP8264960A JP26496096A JPH10112946A JP H10112946 A JPH10112946 A JP H10112946A JP 8264960 A JP8264960 A JP 8264960A JP 26496096 A JP26496096 A JP 26496096A JP H10112946 A JPH10112946 A JP H10112946A
Authority
JP
Japan
Prior art keywords
permanent magnet
motor
magnetic
field
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8264960A
Other languages
Japanese (ja)
Other versions
JP3541582B2 (en
Inventor
Akihito Uetake
昭仁 植竹
Sei Arai
聖 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26496096A priority Critical patent/JP3541582B2/en
Publication of JPH10112946A publication Critical patent/JPH10112946A/en
Application granted granted Critical
Publication of JP3541582B2 publication Critical patent/JP3541582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Brushless Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To control an armature current and prevent the increase of copper loss and motor efficiency drop even in the case of enlarging the rotation range with weakish field control, by constituting the constituent structure of the magnetic material of a permanent magnet for a field out of a hard magnetic phase and a soft magnetic phase, and putting the recoil relative permeability at a specified value or over. SOLUTION: Four magnetic poles 13a-13d projecting in diametrical direction at 90 deg. with each other are made at the peripheral face of a yoke 11 where many steel plates are stacked, and each magnetic pole is provided with slots 14a-14d to insert permanent magnets for fields, and in each slot 14a-14d, composite magnets where the first permanent magnets 15a-15d consisting of roughly single phases of hard magnetic phases and the second permanent magnets consisting of soft magnetic phases and hard magnetic phases and being 1.5 or over in recoil relative permeability are laid on top of the other are set, severally. What is more, the permanent magnets 15a-15d, and 16a-16d are magnetized so that each magnetic pole 13-13 may appear alternately. Therefore, a reverse magnetic field can be lessened by 20% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】界磁用永久磁石を有するモー
タ、例えばブラシ付DCモータやブラシレスDCモー
タ、ステッピングモータなどは、OA機器をはじめ幅広
い分野で用いられている。そのうち数百W以上の比較的
出力の大きなモータは、エアコン用コンプレッサ、電気
自動車や電気スクータなど移動体の駆動用モータとして
使われ始めている。家庭での電力消費が比較的大きいエ
アコン用モータや電池などを電源とする移動体の駆動用
モータに対しては、小型・高効率でかつ広い運転範囲を
持つことが要求される。一方、OA機器や玩具などに使
用される百W程度以下の比較的出力の小さなモータは、
小型であることが強く望まれていると共に、今後広い運
転範囲を持つことも要求されよう。これらの要求に対し
ていろいろな試みがなされているが、本発明は、界磁用
に永久磁石を持つモータの磁気回路構成に関するもので
ある。
BACKGROUND OF THE INVENTION Motors having field permanent magnets, such as brushed DC motors, brushless DC motors, and stepping motors, are used in a wide range of fields including OA equipment. Among them, motors having a relatively large output of several hundred W or more have begun to be used as motors for driving moving objects such as air conditioner compressors, electric vehicles and electric scooters. 2. Description of the Related Art A motor for an air conditioner or a driving motor for a mobile object powered by a battery or the like, which consumes relatively large amount of power at home, is required to be small, highly efficient, and have a wide operating range. On the other hand, motors with relatively small output of about 100 W or less used for OA equipment and toys,
While compactness is strongly desired, it will also be required to have a wide operating range in the future. Although various attempts have been made to meet these requirements, the present invention relates to a magnetic circuit configuration of a motor having a permanent magnet for a field.

【0002】[0002]

【従来の技術】界磁用永久磁石を固定子に持つブラシ付
DCモータは、制御性がよく比較的に安価であること、
複雑なインバータ制御がいらないことから市場での使用
実績が高い。
2. Description of the Related Art A brushed DC motor having a field permanent magnet on a stator has good controllability and is relatively inexpensive.
Since it does not require complicated inverter control, it has a high track record in the market.

【0003】また、界磁用永久磁石を回転子に持つブラ
シレスDCモータは、ブラシなどの接触機構を持たない
ので信頼性を確保しやすく、永久磁石界磁であるため、
インダクションモータのような励磁損や2次銅損がな
く、小型で高効率な特性が得られる。
Also, a brushless DC motor having a permanent magnet for a field in its rotor does not have a contact mechanism such as a brush, so that it is easy to ensure reliability.
There is no excitation loss or secondary copper loss unlike an induction motor, and a small and highly efficient characteristic can be obtained.

【0004】これら界磁用永久磁石を有するモータで
は、近年高性能で低価格な希土類磁石が得られるように
なったことから、更に小型・高効率化が進むと同時に低
価格化が進み、インダクションモータとの価格差も小さ
くなってきた。
In recent years, high-performance and low-priced rare earth magnets have been obtained in motors having these field permanent magnets. The price difference with the motor has also become smaller.

【0005】また、インダクションモータは比較的定出
力特性が得られやすく、広い回転範囲を実現できること
に対して、界磁用永久磁石を有するモータにおいても、
d軸電機子反作用を利用し界磁用永久磁石の磁石表面磁
束密度を低下させ、モータ端子電圧の上昇を抑えつつ運
転制御する、いわゆる弱め界磁制御により、定出力特性
を持たせ、広い回転範囲を得ることも可能となってい
る。さらに言えば、モータの回転に伴って発生する逆起
電力が供給電圧よりも低い回転領域では、id=0制御
あるいは逆起電力よりも電機子電流位相を若干進み位相
としてモータ効率が最大となるように運転制御し(定ト
ルク領域)、回転数が高まり供給電圧とほぼ等しくなる
と、さらに電機子電流位相を進み位相(電気角で最大9
0度)としてd軸へ積極的に電流を流すことでモータ端
子電圧の上昇を抑え回転数を大幅に拡大できる(定出力
領域)。
On the other hand, the induction motor can easily obtain a relatively constant output characteristic and can realize a wide rotation range.
By using the d-axis armature reaction to reduce the magnet surface magnetic flux density of the permanent magnet for field, and to control the operation while suppressing the increase in the motor terminal voltage. It is also possible to obtain. Furthermore, in the rotation region where the back electromotive force generated by the rotation of the motor is lower than the supply voltage, the motor efficiency is maximized by setting the armature current phase slightly ahead of the id = 0 control or the back electromotive force. Operation (constant torque range), and when the rotation speed increases and becomes almost equal to the supply voltage, the armature current phase further advances and the phase (electrical angle is up to 9).
By positively flowing a current to the d-axis as 0 °), an increase in the motor terminal voltage can be suppressed and the number of revolutions can be greatly increased (constant output region).

【0006】具体例として、例えば供給電圧DC280
V、定格電流8AのブラシレスDCモータの出力特性を
示す図10において、第1の曲線はid=0制御として
運転した時の運転範囲を示している。最大回転数550
0r/min、最大出力約700Wである。第2の曲線
は弱め界磁制御を併用して最大回転数を1.5倍の90
00r/min、最大出力1.3倍の900Wを達成し
ている。モータ端子電圧が供給電圧よりも低い回転数範
囲(約4000r/min以下)の定トルク領域では、
電機子電流位相を逆起電力位相よりも若干進み位相とし
てモータが最大効率となるように制御し、回転数が高ま
り供給電圧とほぼ等しくなってからは、トルク最大・回
転数最大となるように電機子電流の進み位相を制御して
いる。このモータをエアコン用コンプレッサのモータと
して採用すれば、例えば運転初期時比較的負荷トルクの
小さい状態で、最高回転数となるように弱め界磁制御す
ると冷暖房能力を拡大でき、エアコンとしてより急速な
冷房暖房を実現できる。
As a specific example, for example, a supply voltage DC280
In FIG. 10 showing output characteristics of a brushless DC motor having a rated current of 8 V and a rated current of 8 A, a first curve shows an operation range when the motor is operated with id = 0 control. Maximum rotation speed 550
0 r / min, maximum output about 700 W. The second curve is 90 times of 1.5 times the maximum number of revolutions in combination with field weakening control.
It achieves 900W at 00r / min and 1.3 times the maximum output. In the constant torque range where the motor terminal voltage is lower than the supply voltage in the rotation speed range (about 4000 r / min or less),
The motor is controlled so that the armature current phase is slightly advanced from the back electromotive force phase so that the motor has the maximum efficiency, and after the rotation speed increases and becomes almost equal to the supply voltage, the torque and the rotation speed become maximum. The leading phase of the armature current is controlled. If this motor is adopted as a motor for an air conditioner compressor, for example, in the state of relatively low load torque at the beginning of operation, the field heating can be controlled so that the maximum number of revolutions is achieved, and the cooling and heating capacity can be expanded. realizable.

【0007】図示はしないが定格電流の2倍の16Aま
で通電すれば理論的には30000r/minまで回転
数を上げることができ、回転数が上昇しても出力がほぼ
一定な理想的な定出力特性が得られる。id=0制御の
場合と比較すれば最高回転数を約6倍に拡大できる。こ
のモータを電気自動車駆動用モータとして採用すれば、
例えば高速運転時の最大速度を大幅に上昇させることが
できる。また、このモータを工作機械の主軸モータとし
て採用すれば主軸回転数を大幅に上昇でき加工できる材
料の選択幅が広げられる。
Although not shown, if the current is supplied to 16 A, which is twice the rated current, the number of revolutions can be increased theoretically up to 30,000 r / min. Output characteristics are obtained. As compared with the case of id = 0 control, the maximum rotational speed can be increased about six times. If this motor is adopted as an electric vehicle drive motor,
For example, the maximum speed during high-speed operation can be significantly increased. Further, if this motor is used as a spindle motor of a machine tool, the number of spindle rotations can be greatly increased, and the range of materials to be processed can be widened.

【0008】このように、界磁用永久磁石を有するモー
タは、小型・高効率という特長と弱め界磁制御による運
転範囲の拡大という新たな特長を兼ね備えつつあるの
で、各応用用途での採用が積極的に検討されている。
As described above, the motor having the permanent magnet for the field has a feature of small size and high efficiency, and a new feature of extending the operation range by the field weakening control. Is being considered.

【0009】以上説明してきたモータは、出力が数百W
から数十キロWの比較的大きなモータであるが百W以下
の電動工具やOA機器、玩具等に用いられるブラシ付D
Cモータ、ブラシレスDCモータ、ステッピングモータ
などにおいても、今後小型・高効率でより運転範囲が広
いことが求められよう。
The motor described above has an output of several hundred watts.
Is a relatively large motor of several tens of kilowatts, but a brushed D used for electric tools, OA equipment, toys, etc. of less than 100 W
C motors, brushless DC motors, stepping motors, and the like will also need to be smaller, more efficient, and have a wider operating range.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、界磁用
永久磁石を有するモータの弱め界磁制御は、定出力特性
の実現と引き換えに、モータ効率の低下やインバータの
大型化を招くといった課題があった。
However, the field-weakening control of the motor having the field permanent magnet has a problem that the motor efficiency is reduced and the inverter is increased in size in exchange for realizing the constant output characteristic.

【0011】すなわち、ブラシ付DCモータ、ブラシレ
スDCモータにおける弱め界磁制御は、トルクを発生さ
せるq軸電流に加えて、電機子反作用を得るためのd軸
電流を流す必要がある。d軸電流は、モータの出力トル
クに直接寄与しない電流であるため、モータにおいては
銅損の増加を招きモータの効率を低下させていた。ま
た、インバータ等の駆動回路においては電流容量を増加
させる必要があり大型化していた。更にモータ効率の低
下は、モータの大型化をまねき、小型・高効率という特
長を阻害する要因となっていた。
That is, the field-weakening control in the brush DC motor and the brushless DC motor requires the flow of the d-axis current for obtaining the armature reaction in addition to the q-axis current for generating the torque. Since the d-axis current is a current that does not directly contribute to the output torque of the motor, the motor causes an increase in copper loss and decreases the efficiency of the motor. In addition, a drive circuit such as an inverter has to be increased in current capacity to increase its size. Further, a decrease in motor efficiency has led to an increase in the size of the motor, which has been a factor hindering the features of small size and high efficiency.

【0012】上記の課題に鑑み、本願請求項1記載の発
明は、界磁用永久磁石としてリコイル比透磁率が1.3
以上の永久磁石を用いることで、弱め界磁制御で回転範
囲を拡大する場合でも、電機子電流を小さく押さえ、銅
損の増加、モータ効率低下、モータ大型化、インバータ
大型化といった課題を解決しようとするものである。
In view of the above problems, the invention according to claim 1 of the present application has a recoil relative permeability of 1.3 as a field permanent magnet.
By using the above permanent magnets, even if the rotation range is expanded by field-weakening control, we will try to solve the problems of keeping the armature current small, increasing copper loss, decreasing motor efficiency, increasing the motor size, and increasing the inverter size. Things.

【0013】請求項2記載の発明は、比較的出力が大き
いモータなどで、より残留磁束密度の高い界磁用永久磁
石が要求された場合に弱め界磁制御を用いて回転範囲を
拡大する場合でも、複合磁石を用いることによって電機
子電流を小さく押さえ、銅損の増加、モータ効率低下、
モータ大型化、インバータ大型化といった課題を解決し
ようとするものである。
According to a second aspect of the present invention, even in a motor having a relatively large output, when a permanent magnet for a field having a higher residual magnetic flux density is required, even when the rotation range is expanded by using the field weakening control, By using a composite magnet, the armature current is kept small, copper loss increases, motor efficiency decreases,
It is intended to solve problems such as enlargement of motor and inverter.

【0014】請求項3記載の発明は、請求項2記載の発
明の解決課題とともに、2種類の永久磁石を扱うことか
ら来る磁石の取扱いの難しさ、および永久磁石の破損と
いった課題の解決を図るものである。
The third aspect of the present invention aims to solve the problems of the second aspect of the present invention, such as difficulty in handling magnets resulting from handling two types of permanent magnets and breakage of the permanent magnets. Things.

【0015】請求項4記載の発明は、請求項2および3
記載の発明の解決課題に加えて、界磁用永久磁石全体の
寸法精度に対する課題の解決を図るものである。
The invention described in claim 4 is the second and third inventions.
Another object of the present invention is to solve the problem with respect to the dimensional accuracy of the entire field permanent magnet in addition to the above-described solution of the invention.

【0016】請求項5記載の発明は、請求項2ないし4
記載の発明の解決課題に加えて、2種類の永久磁石から
なる界磁用永久磁石の製造課題の解決を図るものであ
る。
The invention described in claim 5 is the invention according to claims 2 to 4
Another object of the present invention is to solve a problem of manufacturing a field permanent magnet including two types of permanent magnets, in addition to the above-described problem.

【0017】請求項6記載の発明は、請求項2記載の発
明の解決課題に加えて、電機子電流の位相制御を容易に
することを目的とする。
A sixth object of the present invention is to facilitate the phase control of the armature current in addition to the object of the second object of the present invention.

【0018】請求項7記載の発明は、請求項2記載の発
明の解決課題に加えて、界磁用永久磁石の減磁を起こし
にくくすることを目的とする。
A seventh object of the present invention is to provide a permanent magnet for a field which is hardly demagnetized, in addition to the object of the second object of the present invention.

【0019】請求項8記載の発明は、請求項2記載の発
明の解決課題に加えて、磁石組込みの際の取扱いについ
ての課題を解決するものである。
An eighth aspect of the present invention solves the problem of handling at the time of assembling a magnet in addition to the solution of the second aspect of the present invention.

【0020】[0020]

【課題を解決するための手段】請求項1記載の発明は、
界磁用永久磁石を有するモータにおいて、界磁用永久磁
石が、磁石材料の構成組織がハード磁性相とソフト磁性
相からなりリコイル比透磁率が1.3以上の永久磁石で
あることを特徴とする。
According to the first aspect of the present invention,
In a motor having a permanent magnet for a field, the permanent magnet for a field is a permanent magnet having a magnetic material comprising a hard magnetic phase and a soft magnetic phase and having a recoil relative permeability of 1.3 or more. I do.

【0021】請求項2記載の発明は、界磁用永久磁石を
有するモータにおいて、前記界磁用永久磁石が、構成組
織がハード磁性相ほぼ単相からなる第1の永久磁石と、
磁石材料の構成組織がハード磁性相とソフト磁性相から
なりリコイル比透磁率が1.5以上の第2の永久磁石と
を、厚み方向に重ねて形成された複合磁石であり、該複
合磁石のリコイル比透磁率が1.3以上であることを特
徴とする。
According to a second aspect of the present invention, in the motor having a field permanent magnet, the field permanent magnet comprises: a first permanent magnet having a structural structure of a substantially single magnetic phase;
A composite magnet in which the constituent structure of the magnet material is formed by laminating a second permanent magnet having a hard magnetic phase and a soft magnetic phase and having a recoil relative permeability of 1.5 or more in the thickness direction. The recoil relative magnetic permeability is 1.3 or more.

【0022】請求項3記載の発明は、前記界磁用永久磁
石が前記第1および第2の永久磁石を、該第2の永久磁
石において厚み方向にほぼ垂直な面の少なくとも1面
が、該第1の磁石と接合しているように複数配置されて
形成された複合磁石であることを特徴とする。
According to a third aspect of the present invention, the field permanent magnet includes the first and second permanent magnets, and at least one surface of the second permanent magnet that is substantially perpendicular to the thickness direction includes the first and second permanent magnets. It is characterized by being a composite magnet formed by arranging a plurality of magnets so as to be joined to the first magnet.

【0023】請求項4記載の発明は、請求項2および3
記載のモータであって、前記第2の永久磁石は、構成組
織がハード磁性相とソフト磁性相からなる磁石粉末を樹
脂にて結合した樹脂結合型磁石であることを特徴とす
る。
The invention according to claim 4 is the invention according to claims 2 and 3.
The motor according to any one of the preceding claims, wherein the second permanent magnet is a resin-bonded magnet in which the constituent structure is formed by bonding magnetic powder composed of a hard magnetic phase and a soft magnetic phase with a resin.

【0024】請求項5記載の発明は、界磁用永久磁石を
有するモータにおいて、前記界磁用永久磁石が、保磁力
の異なる2種またはそれ以上の永久磁石粉末を混合し、
少なくとも1種の粉末のリコイル比透磁率が1.5以上
であり、さらに樹脂にて結合した樹脂結合型磁石であっ
て、該樹脂結合型磁石のリコイル比透磁率が1.3以上
であることを特徴とする。
According to a fifth aspect of the present invention, in the motor having the permanent magnet for the field, the permanent magnet for the field mixes two or more kinds of permanent magnet powders having different coercive forces,
At least one kind of powder has a recoil relative permeability of 1.5 or more, and is a resin-bonded magnet bonded with resin, and the resin-bonded magnet has a recoil relative permeability of 1.3 or more. It is characterized by.

【0025】請求項6記載の発明は、界磁用永久磁石を
有するブラシレスDCモータの回転子において、塊状鉄
芯または積層された複数の鋼板によってヨークが形成さ
れ、前記ヨークは外周上に少なくとも2つ以上の偶数の
界磁用永久磁石が配設されて磁極を形成し、前記界磁用
永久磁石は請求項1ないし請求項5に記載の界磁用永久
磁石であることを特徴とする。
According to a sixth aspect of the present invention, in a rotor of a brushless DC motor having a permanent magnet for a field, a yoke is formed by a massive iron core or a plurality of laminated steel plates, and the yoke is formed on an outer periphery by at least two or more. At least one even-numbered field permanent magnet is provided to form a magnetic pole, and the field permanent magnet is a field permanent magnet according to any one of claims 1 to 5.

【0026】請求項7記載の発明は、界磁用永久磁石を
有するブラシレスDCモータの回転子において、積層さ
れた複数の鋼板によってヨークが形成され、前記ヨーク
は外周上に少なくとも2つ以上の偶数の磁極を有し、こ
れらの磁極には界磁用永久磁石を挿入するスロットが1
磁極おき又は各磁極に設けられ、前記スロットには請求
項1ないし請求項5に記載された界磁用永久磁石が挿入
されていることを特徴とする。
According to a seventh aspect of the present invention, in a rotor of a brushless DC motor having a permanent magnet for a field, a yoke is formed by a plurality of laminated steel plates, and the yoke has at least two or more even numbers on its outer periphery. These magnetic poles have a slot for inserting a field permanent magnet.
It is provided at every magnetic pole or at each magnetic pole, and the field permanent magnet according to any one of claims 1 to 5 is inserted into the slot.

【0027】請求項8記載の発明は、界磁用永久磁石を
有するブラシレスDCモータの回転子において、積層さ
れた複数の鋼板によってヨークが形成され、前記ヨーク
は外周上に少なくとも2つ以上の偶数の磁極を有し、こ
れらの磁極には永久磁石を挿入するスロットが径方向わ
ずかな間隔で2つずつ各磁極または1磁極おきに設けら
れ、前記スロットにはハード磁性相ほぼ単相からなる第
1の永久磁石と、ソフト磁性相とハード磁性相からなり
リコイル比透磁率が1.5以上の第2の永久磁石と、が
挿入されていることを特徴とする。
According to an eighth aspect of the present invention, in a rotor of a brushless DC motor having a permanent magnet for a field, a yoke is formed by a plurality of laminated steel plates, and the yoke has at least two or more even numbers on its outer periphery. These magnetic poles are provided with two slots for inserting permanent magnets at small intervals in the radial direction at every magnetic pole or every other magnetic pole, and the slot has a hard magnetic phase substantially consisting of a single phase. 1 is inserted, and a second permanent magnet comprising a soft magnetic phase and a hard magnetic phase and having a recoil relative permeability of 1.5 or more is inserted.

【0028】[0028]

【発明の実施の形態】以下に、本発明を図に基づき、ま
た、本発明の界磁用永久磁石を有するモータの一例とし
て、出力が1kW程度のブラシレスDCモータを用いて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings and using a brushless DC motor having an output of about 1 kW as an example of a motor having a field permanent magnet of the present invention.

【0029】図1は本発明のブラシレスDCモータの回
転子断面を示す。回転子1は、多数の鋼板を積層したヨ
ーク11と、ヨーク中心部に貫通穴を設け、前記貫通穴
に焼きばめ等によって固定された回転軸12と、前記ヨ
ークの外周面に互いに90°をなして径方向に突出した
4つの磁極部13a〜13dを形成し、それぞれの磁極
には界磁用永久磁石を挿入するスロット14a〜14d
が設けられ、それぞれのスロットには、第1の永久磁石
15a〜15dと第2の永久磁石16a〜16dとを厚
み方向に重ねた複合磁石が挿入されている。尚、永久磁
石は各磁極部が回転方向交互にN極とS極とが現れるよ
うに着磁されている。
FIG. 1 shows a cross section of a rotor of a brushless DC motor according to the present invention. The rotor 1 includes a yoke 11 in which a number of steel plates are stacked, a rotating shaft 12 provided with a through hole in the center of the yoke, and fixed to the through hole by shrink fitting or the like. To form four magnetic pole portions 13a to 13d protruding in the radial direction, and each of the magnetic poles has a slot 14a to 14d into which a permanent magnet for field is inserted.
Is provided in each slot, and a composite magnet in which the first permanent magnets 15a to 15d and the second permanent magnets 16a to 16d are stacked in the thickness direction is inserted. The permanent magnet is magnetized so that the magnetic poles alternately show N and S poles in the direction of rotation.

【0030】上記構成に基づいて本発明のモータの作用
を以下に説明する。
The operation of the motor of the present invention based on the above configuration will be described below.

【0031】まず、第1の永久磁石15の動作について
第2図に基づき説明する。使用した磁石は、Nd−Fe
−B焼結磁石で最大エネルギー積(BH)max=34.
8MGOe、残留磁束密度Br=12.3kG、保磁力
iHc=20.5kOe、リコイル比透磁率μr=1.0
5、厚み1mmであり、図中に示す曲線および直線は、
常温での4πI−H、B−Hの磁気履歴曲線と外部から
逆磁場を印加しない時の動作線Aおよび残留磁束密度を
半減させる逆磁場を与えた時の動作線Bである。残留磁
束密度、保磁力とも大きな永久磁石である。
First, the operation of the first permanent magnet 15 will be described with reference to FIG. The magnet used was Nd-Fe
-B sintered magnet with maximum energy product (BH) max = 34.
8MGOe, residual magnetic flux density Br = 12.3kG, coercive force
iHc = 20.5 kOe, recoil relative permeability μr = 1.0
5, the thickness is 1 mm, the curve and the straight line shown in the figure are:
The magnetic hysteresis curves of 4πI-H and BH at normal temperature, the operation line A when no reverse magnetic field is applied from the outside, and the operation line B when a reverse magnetic field that reduces the residual magnetic flux density by half is applied. It is a permanent magnet with large residual magnetic flux density and coercive force.

【0032】第1の永久磁石を単独で磁気回路に組み込
んだ時には、図から外部から逆磁場を印加しない時の磁
石表面磁束密度は8kGと、大きな動作磁束密度を得る
ことができる。これはブラシレスDCモータの小型化に
大きく寄与する。また、磁石表面磁束密度を4kGと半
減させる為の逆磁場として、3.75kOe必要である
ことがわかる。
When the first permanent magnet is incorporated in a magnetic circuit by itself, a large operating magnetic flux density of 8 kG can be obtained as shown in FIG. This greatly contributes to downsizing of the brushless DC motor. In addition, it can be seen that 3.75 kOe is required as a reverse magnetic field for halving the magnet surface magnetic flux density to 4 kG.

【0033】モータを運転制御する場合、d軸電流を印
加し、例えば磁石表面磁束密度を半減させ定出力特性を
持たせることで、d軸電流を流さない場合の3倍以上の
回転速度を得ることができる。
When controlling the operation of the motor, a d-axis current is applied, for example, by reducing the magnet surface magnetic flux density by half to give a constant output characteristic, thereby obtaining a rotation speed three times or more that in the case where no d-axis current is passed. be able to.

【0034】次に、第2の永久磁石の動作について第3
図に基づき説明する。使用した磁石は、ハード磁性相で
あるNd2Fe14Bとソフト磁性相であるα−Fe相が
10nmオーダーで共存した構成組織からなる磁石粉末
を樹脂と結合して得たNd−Fe−B系ボンド磁石で
(BH)max=8.6MGOe、Br=7.9kG、iH
c=4.4kOe、μr=1.5であり、図中に示す曲
線および直線は、常温での4πI−H、B−Hの磁気履
歴曲線である。第1の永久磁石に比べてリコイル比透磁
率が高いことが特徴であり、外部から印加される逆磁場
に対して動作磁束密度の変化率が大きい。すなわち、第
1の永久磁石に比べ、より小さな逆磁場で磁石表面磁束
密度を大きく減少させることができる。しかし、一方残
留磁束密度が高くないことから、第2の永久磁石を単独
で磁気回路に組み込んだ時には、図から磁石表面磁束密
度が所望の8000Gを得ることが出来ず、モータの大
型化に繋がる。
Next, the operation of the second permanent magnet will be described in the third.
A description will be given based on the drawings. The magnet used was an Nd-Fe-B-based bonded magnet obtained by combining a resin with a magnet powder having a constitutional structure in which Nd2Fe14B as a hard magnetic phase and α-Fe phase as a soft magnetic phase coexist on the order of 10 nm. (BH) max = 8.6 MGOe, Br = 7.9 kG, iH
c = 4.4 kOe, μr = 1.5, and the curve and the straight line shown in the figure are the magnetic history curves of 4πIH and BH at normal temperature. It is characterized by a higher recoil relative permeability than the first permanent magnet, and the change rate of the operating magnetic flux density with respect to a reverse magnetic field applied from the outside is large. That is, compared with the first permanent magnet, the magnet surface magnetic flux density can be greatly reduced with a smaller reverse magnetic field. However, since the residual magnetic flux density is not high, when the second permanent magnet is incorporated in the magnetic circuit alone, the desired magnet surface magnetic flux density of 8000 G cannot be obtained from the figure, which leads to an increase in the size of the motor. .

【0035】図4は、第1の永久磁石および第2の永久
磁石を厚み方向に重ねた時の磁石動作を説明する図を示
す。図中に示す曲線および直線は、常温での4πI−
H、B−Hの磁気履歴曲線と外部から逆磁場を印加しな
い時の動作線Aおよび残留磁束密度を半減させる逆磁場
を与えた時の動作線Bである。第1の永久磁石と第2の
永久磁石とを厚み方向に重ねて組み合わせた複合磁石と
することにより、第1の永久磁石よりも高いリコイル比
透磁率μr=1.3を示し、第2の永久磁石よりも高い
残留磁束密度Br=9kGを有する。本実施例では、そ
れぞれの磁石厚み1.5mmでありパーミアンス係数P
c=6に設定されており、図から外部から逆磁場を印加
しない時の磁石表面磁束密度は8kG、磁石表面磁束密
度を4kGと半減させるための逆磁場は3kOeでよい
ということがわかる。
FIG. 4 is a view for explaining the magnet operation when the first permanent magnet and the second permanent magnet are stacked in the thickness direction. The curve and the straight line shown in the figure are 4πI-
H and BH show a magnetic hysteresis curve, an operation line A when no reverse magnetic field is applied from the outside, and an operation line B when a reverse magnetic field for reducing the residual magnetic flux density by half is applied. By forming a composite magnet in which the first permanent magnet and the second permanent magnet are superposed and combined in the thickness direction, a higher recoil ratio permeability μr = 1.3 than that of the first permanent magnet is obtained, and It has a higher residual magnetic flux density Br = 9 kG than a permanent magnet. In this embodiment, the thickness of each magnet is 1.5 mm and the permeance coefficient P
Since c = 6 is set, it can be seen from the drawing that the magnet surface magnetic flux density when no external reverse magnetic field is applied from outside is 8 kG, and the reverse magnetic field for halving the magnet surface magnetic flux density to 4 kG is 3 kOe.

【0036】すなわち、図2に示した特性を持つ永久磁
石に比べて図4に示す界磁用永久磁石は、磁石表面磁束
密度を4kGと半減させるための逆磁場が20%少なく
て済むという作用がある。
That is, the field permanent magnet shown in FIG. 4 requires only 20% less reverse magnetic field to halve the magnet surface magnetic flux density to 4 kG than the permanent magnet having the characteristics shown in FIG. There is.

【0037】表1に第1、および第2の永久磁石のリコ
イル比透磁率を変化させた時、複合磁石のリコイル比透
磁率がどう変化するか、また必要となる逆磁界の大きさ
を第1の永久磁石を単独で用いた場合を基準として、そ
れぞれ比率で表した。
Table 1 shows how the recoil relative permeability of the composite magnet changes when the first and second permanent magnets change the recoil relative permeability, and the magnitude of the required reverse magnetic field. Each of the ratios was represented on the basis of the case where one permanent magnet was used alone.

【0038】[0038]

【表1】 [Table 1]

【0039】表1によれば、第2の永久磁石のリコイル
比透磁率が1.3の場合には複合磁石としてのリコイル
比透磁率が1.1程度であり逆磁界比率は95%と、5
%しかd軸電流を減らせない。第2の永久磁石のリコイ
ル比透磁率が1.5となれば逆磁界比率は80%となり
20%改善できる。このことから、第2の永久磁石のリ
コイル比透磁率は1.5以上であることが望ましい。
According to Table 1, when the recoil relative permeability of the second permanent magnet is 1.3, the recoil relative permeability of the composite magnet is about 1.1 and the reverse field ratio is 95%. 5
% Can reduce the d-axis current. When the recoil relative permeability of the second permanent magnet becomes 1.5, the reverse magnetic field ratio becomes 80%, which can be improved by 20%. For this reason, the recoil relative permeability of the second permanent magnet is desirably 1.5 or more.

【0040】以上の作用は、図4に示すような特性を単
独の永久磁石で実現できれば、それでもよいが、現状で
は上述した特性を満足できる単独の永久磁石は発明者の
知る限り存在しない。
The above operation may be achieved as long as the characteristics shown in FIG. 4 can be realized by a single permanent magnet. However, at present, there is no single permanent magnet that can satisfy the above-mentioned characteristics as far as the inventor knows.

【0041】上述した図1に示した界磁用永久磁石にお
いては、2種の永久磁石が厚み方向に重ねられている、
すなわち2種の磁石の磁化方向と磁石の接合面が垂直な
関係となっている。これに対して図5に示すように幅方
向に重ねられている、すなわち磁化方向と2種の磁石の
接合面が平行な関係にある場合には、全体の磁石として
の磁気履歴曲線は図6に示すように低保磁力の磁石の曲
線と高保磁力の磁石の曲線を単に重ね合わせた曲線とな
り、実質的な保磁力は低保磁力の磁石のそれと同様とな
り、複合磁石としたことの効果は全く得られない。すな
わち本発明の効果を得るためには、複合磁石の磁化方向
と磁石の接合面が垂直な関係となっていることが必要で
ある。
In the field permanent magnet shown in FIG. 1 described above, two types of permanent magnets are stacked in the thickness direction.
That is, the magnetization directions of the two types of magnets are perpendicular to the joint surface of the magnets. On the other hand, when the magnets are superposed in the width direction as shown in FIG. 5, that is, when the magnetization direction and the joint surface of the two kinds of magnets are in a parallel relationship, the magnetic hysteresis curve of the entire magnet is shown in FIG. As shown in the graph, the curve of the low coercive force magnet and the curve of the high coercive force magnet are simply superimposed, the actual coercive force is the same as that of the low coercive force magnet, and the effect of the composite magnet is Not at all. That is, in order to obtain the effects of the present invention, it is necessary that the magnetization direction of the composite magnet is perpendicular to the joint surface of the magnet.

【0042】上記の事実が効果を得るために有効である
ことから、異なる特性を有する磁石の接合面が磁化方向
と垂直となっていれば同様の効果を得ることができる。
このため複合磁石として図7のように複数の特性の異な
る磁石を、その接合面が磁化方向と垂直となるような関
係を保ちながら組み合わせても前記実施例1と同様な効
果が得られる。
Since the above fact is effective for obtaining the effect, the same effect can be obtained if the joining surfaces of the magnets having different characteristics are perpendicular to the magnetization direction.
For this reason, even when a plurality of magnets having different characteristics as shown in FIG. 7 are combined as a composite magnet while maintaining the relationship that the joining surface is perpendicular to the magnetization direction, the same effect as in the first embodiment can be obtained.

【0043】本実施例においては、2種の永久磁石を厚
み方向に接合面がほぼ垂直となるように単に重ねあわ
せ、スロットに挿入している。2種の永久磁石がそれぞ
れ独自に成形されたものを単に重ねあわせているので、
接合面の密着度が低く、複合磁石全体の寸法精度もラフ
になるので、スロットの開口部は重ねあわせた永久磁石
を容易に挿入できるよう大きめに形成されている。これ
でもよいが、界磁用永久磁石の磁束を有効に作用させる
為には、2種の永久磁石は予め接合されて寸法精度を確
保し、スロットの開口部寸法をなるべく小さくすること
が、より好ましい。また、着磁を複合磁石として行う、
あるいはさらにスロットに挿入したのち行う場合、着磁
磁場の急激な変化による衝撃により、磁石が破損するこ
とを防ぐためにも、磁石間すきま、磁石とスロットとの
隙間は小さい方がより好ましい。接合方法は特に規定さ
れるものではなく、接着剤による接合、ボルト、ナット
による機械的な締結でもよい。また、2種の永久磁石が
共に樹脂結合型磁石であれば、一体に成形してもよい。
In this embodiment, two types of permanent magnets are simply overlapped so that the joining surfaces are substantially perpendicular to the thickness direction, and inserted into the slots. Since two types of permanent magnets are simply superimposed on their own,
Since the degree of adhesion of the joint surface is low and the dimensional accuracy of the entire composite magnet is rough, the opening of the slot is formed large so that the superposed permanent magnet can be easily inserted. Although this may be used, in order to effectively use the magnetic flux of the field permanent magnet, it is more preferable that the two types of permanent magnets are joined in advance to secure dimensional accuracy and reduce the opening size of the slot as much as possible. preferable. In addition, magnetization is performed as a composite magnet,
Alternatively, in the case where the magnet is inserted into the slot, it is more preferable that the gap between the magnets and the gap between the magnet and the slot be small in order to prevent the magnet from being damaged by an impact due to a sudden change in the magnetizing magnetic field. The joining method is not particularly limited, and joining by an adhesive or mechanical fastening by bolts and nuts may be used. If both types of permanent magnets are resin-bonded magnets, they may be integrally formed.

【0044】ここで本発明に使用される界磁用永久磁石
について、より詳細に述べる。
Here, the field permanent magnet used in the present invention will be described in more detail.

【0045】まず上述のような第1の永久磁石では高い
磁束密度が要求される。上述したNd−Fe−B焼結磁
石はこのような用途に最適であるが、このほかにもSm
2Co17系の焼結磁石やR−Fe−B(ただしRは希
土類元素を示す)系の鋳造インゴットを熱間加工し熱処
理を施した磁石、さらに20MGOeレベルの高い最大
エネルギー積を有する異方性のボンド磁石を使用しても
良い。特に異方性ボンド磁石は、形状自由度に優れると
いう利点も有している。異方性のボンド磁石材料として
は、Sm2Co17系、Sm−Fe−N系、HDDRに
よるNd−Fe−B系などが挙げられる。
First, the first permanent magnet as described above requires a high magnetic flux density. The above-described Nd-Fe-B sintered magnet is most suitable for such an application.
2Co17 sintered magnet or R-Fe-B (where R is a rare earth element) cast ingot hot-processed and heat-treated magnet, and anisotropic material having high maximum energy product of 20MGOe level A bonded magnet may be used. In particular, anisotropic bonded magnets also have the advantage of having a high degree of freedom in shape. Examples of anisotropic bonded magnet materials include Sm2Co17-based, Sm-Fe-N-based, and Nd-Fe-B-based HDDR.

【0046】第2の永久磁石において重要な特性は高い
リコイル比透磁率が得られるという点である。1.5以
上の高いリコイル比透磁率が得られるのは、永久磁石の
構成組織としてハード磁性相と共に10nmオーダーか
らなるソフト磁性相の複合組織が存在していることに起
因する。このような微細複合組織を構成していることか
ら、ソフト磁性相の磁化反転が、ハード磁性相との界面
での交換相互作用により抑制されて磁石特性を得る。ま
た逆磁場をかけてこれを元に戻すような動作を行った場
合に、ソフト相の磁化反転はハード相に比べて急激に起
きるため、高いリコイル比透磁率が実現する。
An important characteristic of the second permanent magnet is that a high recoil specific magnetic permeability can be obtained. The high recoil relative magnetic permeability of 1.5 or more is obtained because the composite structure of the soft magnetic phase of the order of 10 nm exists together with the hard magnetic phase as the constituent structure of the permanent magnet. Due to such a fine composite structure, the magnetization reversal of the soft magnetic phase is suppressed by the exchange interaction at the interface with the hard magnetic phase, and the magnet characteristics are obtained. In addition, when an operation is performed to restore the original state by applying a reverse magnetic field, the magnetization reversal in the soft phase occurs more rapidly than in the hard phase, so that a high recoil ratio magnetic permeability is realized.

【0047】このような高いリコイル比透磁率を有する
いわゆるナノコンポジット磁石としては、上述した実施
例中で示されたNd2Fe14Bとソフト磁性相であるα
−Fe相を有する磁石の他に、以下のようなハード磁性
相とソフト磁性相の組み合わせを有するナノコンポジッ
ト磁石も挙げられる。
The so-called nanocomposite magnet having such a high recoil relative permeability includes Nd2Fe14B shown in the above-mentioned embodiment and α which is a soft magnetic phase.
In addition to a magnet having a -Fe phase, a nanocomposite magnet having a combination of a hard magnetic phase and a soft magnetic phase as described below is also included.

【0048】1)Sm2Fe17Nx相とα−Fe相 2)(Sm,Zr)(Fe,Co)7Nx相とα−Fe
相 3)Nd2Fe14B相とFe3BまたはFe2B相 4)SmCo5相とα−Fe相 などである。またこれらの磁石については必要に応じて
様々な添加元素を加えることが可能である。
1) Sm2Fe17Nx phase and α-Fe phase 2) (Sm, Zr) (Fe, Co) 7Nx phase and α-Fe
Phase 3) Nd2Fe14B phase and Fe3B or Fe2B phase 4) SmCo5 phase and α-Fe phase. Various additional elements can be added to these magnets as needed.

【0049】これら磁石の構成組織は10nmオーダー
の結晶粒径からなる複合組織とする必要があり、その製
造方法として最も適しているのは液体急冷法によるもの
である。これは合金溶湯を高速回転する単ロールまたは
双ロールの上に噴射して薄帯または粉末状の磁石材料を
得るものであり、場合によってはその後熱処理を施した
り、窒素中での熱処理により窒化処理を行って作製され
る。
The constituent structure of these magnets must be a composite structure having a crystal grain size of the order of 10 nm, and the most suitable manufacturing method is a liquid quenching method. In this method, a molten alloy is sprayed onto a single roll or twin rolls rotating at high speed to obtain a ribbon or powdered magnet material. In some cases, heat treatment may be performed, or nitriding may be performed by heat treatment in nitrogen. Is performed.

【0050】図8は本発明の他の実施例を示す界磁用永
久磁石を有するブラシレスDCモータの回転子断面を示
す。回転子5は、塊状鉄芯または多数の鋼板を積層した
ヨーク51と、ヨーク中心部に貫通穴を設け、前記貫通
穴に焼きばめ等によって固定された回転軸52と、前記
ヨークの外周面に互いに90°をなして第1の永久磁石
53a〜53dと第2の永久磁石54a〜54dとを厚
み方向(着磁方向)に重ねて界磁用永久磁石となし、4
つの磁極部を構成する。前記界磁用永久磁石の外周には
絶縁管55が被覆され、回転時の磁石飛散を防止する構
成となっている。
FIG. 8 shows a cross section of a rotor of a brushless DC motor having field permanent magnets according to another embodiment of the present invention. The rotor 5 includes a yoke 51 in which a massive iron core or a large number of steel plates are stacked, a rotary shaft 52 provided with a through hole at the center of the yoke, and fixed to the through hole by shrink fitting, and an outer peripheral surface of the yoke. The first permanent magnets 53a to 53d and the second permanent magnets 54a to 54d are superposed in the thickness direction (magnetization direction) at 90 ° to each other to form a field permanent magnet.
Constitute one magnetic pole part. The outer circumference of the field permanent magnet is covered with an insulating tube 55 to prevent the magnet from scattering during rotation.

【0051】上記構成によっても、実施例1で説明した
と同様の作用を得る。
With the above configuration, the same operation as described in the first embodiment can be obtained.

【0052】図9は本発明のさらに他の実施例を示す界
磁用永久磁石を有するブラシレスDCモータの回転子断
面図である。回転子6は、多数の鋼板を積層したヨーク
61と、ヨーク中心部に貫通穴を設け、前記貫通穴に焼
きばめ等によって固定された回転軸62と、前記ヨーク
の外周面に互いに90°をなして径方向に突出した4つ
の磁極部63a〜63dを形成し、それぞれの磁極部に
は第1の永久磁石を挿入するスロット64a〜64dが
設けられ、さらに径方向わずかな間隔で第2の永久磁石
を挿入するスロット65a〜65dが設けられている。
そして、それぞれのスロットには、第1の永久磁石66
a〜66dと第2の永久磁石67a〜67dとが挿入さ
れている。尚、永久磁石は各磁極部が回転方向交互にN
極とS極とが現れるように着磁されている。
FIG. 9 is a cross-sectional view of a rotor of a brushless DC motor having field permanent magnets according to still another embodiment of the present invention. The rotor 6 includes a yoke 61 in which a large number of steel plates are stacked, a rotation shaft 62 provided with a through hole in the center of the yoke and fixed to the through hole by shrink fitting, and an outer peripheral surface of the yoke 90 ° apart from each other. To form four magnetic pole portions 63a to 63d protruding in the radial direction. Slots 64a to 64d for inserting the first permanent magnet are provided in each of the magnetic pole portions. Slots 65a to 65d for inserting the permanent magnets are provided.
Each slot has a first permanent magnet 66.
a to 66d and second permanent magnets 67a to 67d are inserted. In the permanent magnet, each magnetic pole portion is N
It is magnetized so that a pole and an S pole appear.

【0053】上記構成によっても、実施例1で説明した
と同様の作用を得る。
With the above configuration, the same operation as that described in the first embodiment can be obtained.

【0054】以上、出力が1kW程度のブラシレスDC
モータを例として説明したが、界磁用永久磁石を固定子
に持つブラシ付DCモータにおいても第1の永久磁石と
第2の永久磁石とを着磁方向に重ねて磁気回路を構成す
ることで同様の作用を得ることができる。
As described above, a brushless DC having an output of about 1 kW
Although the motor has been described as an example, a brushless DC motor having a field permanent magnet as a stator also has a magnetic circuit formed by superimposing the first permanent magnet and the second permanent magnet in the magnetization direction. A similar effect can be obtained.

【0055】一方、OA機器制御用に用いられるモー
タ、例えばブラシレスDCモータを始め、ブラシ付DC
モータ、PMステッピングモータ、HBステッピングモ
ータなどで残留磁束密度が8kG程度と低くてもよい場
合には、複合磁石とせずとも図3に示すような第2の永
久磁石を単独で界磁用永久磁石として用いることによ
り、実施例1で説明したと同様の作用を得る。その際、
表1を参考としてリコイル比透磁率は1.3以上あれば
20%以上d軸電流を減少させることができる。
On the other hand, a motor used for controlling OA equipment, such as a brushless DC motor,
When the residual magnetic flux density may be as low as about 8 kG in a motor, a PM stepping motor, an HB stepping motor, or the like, the second permanent magnet as shown in FIG. As a result, the same operation as that described in the first embodiment is obtained. that time,
Referring to Table 1, if the recoil relative permeability is 1.3 or more, the d-axis current can be reduced by 20% or more.

【0056】[0056]

【発明の効果】以上のように、請求項1記載の発明は、
電機子反作用を得るための逆磁場を20%以上少なくで
きるので、モータにおいてはd軸電流を印加して弱め界
磁制御をした時の銅損の増加を抑制でき、モータ効率の
低下の抑制、モータ大型化の抑制、インバータ大型化の
抑制に寄与することができる。
As described above, the first aspect of the present invention provides
Since the reverse magnetic field for obtaining the armature reaction can be reduced by 20% or more, it is possible to suppress an increase in copper loss when a d-axis current is applied to perform field weakening control in the motor, to suppress a decrease in motor efficiency, and to increase the motor size. This can contribute to the suppression of the increase in the size of the inverter and the increase in the size of the inverter.

【0057】請求項2記載の発明は、複合磁石とするこ
とで前記請求項1記載の発明と同様の効果を得ることが
できる。
According to the second aspect of the invention, the same effect as the first aspect of the invention can be obtained by using a composite magnet.

【0058】請求項3記載の発明は、前記請求項1の効
果を得ると同時にさらに第1および第2の永久磁石を一
体化できることで重ね合わせ面の隙間を磁石で埋められ
界磁用永久磁石としての特性を最大限引き出せるととも
に、永久磁石の着磁やモータの組立てにおいて取扱いが
容易となる。これは単にハンドリングが容易となるだけ
でなく、着磁した磁石同士を重ねる際に強力な吸引力が
発生するので、磁石の破損が生じたり重ねあわせ精度を
出しにくいといった課題にも対応できる。モータを組み
立てた後着磁をするような組立て工程とした時、衝撃的
な着磁磁場により重ね合わせ面に発生する振動衝撃にも
対応することができる。
According to a third aspect of the present invention, the first and second permanent magnets can be integrated at the same time as obtaining the effect of the first aspect, so that the gap between the overlapping surfaces is filled with the magnets, so that the field permanent magnet can be used. Characteristics can be maximized, and handling is easy in magnetizing permanent magnets and assembling the motor. This not only simplifies handling, but also solves the problem that a strong attractive force is generated when magnetized magnets are overlapped with each other, which may cause damage to the magnets or make it difficult to obtain superposition accuracy. When the assembling process is performed such that magnetization is performed after the motor is assembled, it is possible to cope with a vibration impact generated on the superposed surface due to a shocking magnetizing magnetic field.

【0059】請求項4記載の発明は、前記請求項1およ
び2の効果を得ると同時に第2の永久磁石が形状自由度
の高い樹脂結合型磁石であるので磁石全体の寸法精度を
出しやすくなり、2次加工をせずとも磁気回路に組み込
むことができる。
According to a fourth aspect of the present invention, the effects of the first and second aspects are obtained, and at the same time, the second permanent magnet is a resin-bonded magnet having a high degree of freedom in shape. It can be incorporated in a magnetic circuit without performing secondary processing.

【0060】請求項5記載の発明は、前記請求項1ない
し3の効果を得ると同時に、第1、第2の永久磁石がと
もに樹脂結合型磁石であるので同一金型内で界磁用永久
磁石形状まで形成することが可能になる。また、第1お
よび第2の永久磁石が成形樹脂により強固に接合でき
る。さらに、中間成形品のハンドリングが容易になるな
ど、磁石製造工程での大幅な合理化が期待できる。
According to a fifth aspect of the present invention, at the same time as obtaining the effects of the first to third aspects, since the first and second permanent magnets are both resin-bonded magnets, the permanent magnet for the field in the same mold is used. It is possible to form even a magnet shape. Further, the first and second permanent magnets can be more firmly joined by the molding resin. Further, it is expected that the rationalization in the magnet manufacturing process is greatly improved, for example, the handling of the intermediate molded product becomes easy.

【0061】請求項6記載の発明は、請求項1の効果に
加えて、ブラシ、整流子などの機械要素を持たずに電機
子電流の切替えが行えるモータであるので電機子電流の
位相制御が容易にできる。
According to a sixth aspect of the present invention, in addition to the effect of the first aspect, since the motor is capable of switching the armature current without having a mechanical element such as a brush or a commutator, the phase control of the armature current can be performed. Easy.

【0062】請求項7記載の発明は、界磁用永久磁石を
持つモータの一例として磁石埋め込み型回転子を持つブ
ラシレスDCモータにおいて請求項1の効果を得ること
に併せて、鋼板から形成された磁極部を持つことから、
磁石表面への減磁界が比較的均一にかかるので局部的な
減磁を起こしにくいという効果がある。
According to a seventh aspect of the present invention, a brushless DC motor having a magnet-embedded rotor as an example of a motor having a field permanent magnet is formed of a steel plate in addition to obtaining the effect of the first aspect. Because it has a magnetic pole,
Since the demagnetizing field on the magnet surface is applied relatively uniformly, there is an effect that local demagnetization hardly occurs.

【0063】請求項8記載の発明は、請求項1の効果に
加えて、磁石を回転子に組み込む際に既に着磁されてい
る場合には、第1、第2それぞれの永久磁石を独立に組
み込めるので取扱いが容易となる。
According to the invention of claim 8, in addition to the effect of claim 1, when the magnets are already magnetized when incorporated in the rotor, the first and second permanent magnets are independently separated. Easy to handle because it can be incorporated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の界磁用永久磁石を有するブラシレスD
Cモータの回転子断面を示す図である。
FIG. 1 shows a brushless D having a field permanent magnet according to the present invention.
It is a figure showing the rotor section of C motor.

【図2】第1の永久磁石の動作を説明する図である。FIG. 2 is a diagram illustrating the operation of a first permanent magnet.

【図3】第2の永久磁石の動作を説明する図である。FIG. 3 is a diagram illustrating the operation of a second permanent magnet.

【図4】第1の永久磁石および第2の永久磁石を厚み方
向に重ねた複合磁石の動作を説明する図である。
FIG. 4 is a diagram illustrating an operation of a composite magnet in which a first permanent magnet and a second permanent magnet are stacked in a thickness direction.

【図5】永久磁石接合方法を説明するための図である。FIG. 5 is a view for explaining a permanent magnet joining method.

【図6】図5の接合方法による磁石の磁気履歴を説明す
る図である。
FIG. 6 is a view for explaining the magnetic history of the magnet by the joining method of FIG. 5;

【図7】本発明の他の実施例における複合磁石の構成を
説明する図である。
FIG. 7 is a diagram illustrating a configuration of a composite magnet according to another embodiment of the present invention.

【図8】本発明の他の実施例におけるブラシレスDCモ
ータの回転子断面を示す図である。
FIG. 8 is a view showing a rotor cross section of a brushless DC motor according to another embodiment of the present invention.

【図9】本発明の更に他の実施例におけるブラシレスD
Cモータの回転子断面を示す図である。
FIG. 9 shows a brushless D according to still another embodiment of the present invention.
It is a figure showing the rotor section of C motor.

【図10】ブラシレスDCモータの出力特性を説明する
図である。
FIG. 10 is a diagram illustrating output characteristics of a brushless DC motor.

【符号の説明】[Explanation of symbols]

1 回転子 11 ヨーク 12 回転軸 13 磁極部 14 スロット 15 第1の永久磁石 16 第2の永久磁石 DESCRIPTION OF SYMBOLS 1 Rotor 11 Yoke 12 Rotation axis 13 Magnetic pole part 14 Slot 15 1st permanent magnet 16 2nd permanent magnet

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 界磁用永久磁石を有するモータにおい
て、界磁用永久磁石が、磁石材料の構成組織がハード磁
性相とソフト磁性相からなりリコイル比透磁率が1.3
以上の永久磁石であることを特徴とするモータ。
1. A motor having a permanent magnet for a field, wherein the permanent magnet for a field is composed of a magnetic material having a hard magnetic phase and a soft magnetic phase, and has a recoil ratio permeability of 1.3.
A motor comprising the above permanent magnet.
【請求項2】 界磁用永久磁石を有するモータにおい
て、前記界磁用永久磁石が、構成組織がハード磁性相ほ
ぼ単相からなる第1の永久磁石と、磁石材料の構成組織
がハード磁性相とソフト磁性相からなりリコイル比透磁
率が1.5以上の第2の永久磁石とを、厚み方向に重ね
て形成した複合磁石であり、該複合磁石のリコイル比透
磁率が1.3以上であることを特徴とするモータ。
2. A motor having a permanent magnet for a field, wherein the permanent magnet for a field comprises a first permanent magnet having a constitutional structure of substantially a single phase of a hard magnetic phase, and a constitutional structure of a magnet material comprising a hard magnetic phase. And a second permanent magnet made of a soft magnetic phase and having a recoil relative magnetic permeability of 1.5 or more, which is formed by superimposing in the thickness direction a composite permanent magnet having a recoil relative magnetic permeability of 1.3 or more. A motor characterized by the following.
【請求項3】 前記界磁用永久磁石が前記第1および第
2の永久磁石を、該第2の永久磁石において厚み方向に
ほぼ垂直な面の少なくとも1面が、該第1の磁石と接合
しているように複数配置されて形成された複合磁石であ
ることを特徴とする請求項2記載のモータ。
3. The field permanent magnet joins the first and second permanent magnets, and at least one surface of the second permanent magnet, which is substantially perpendicular to the thickness direction, is joined to the first magnet. 3. The motor according to claim 2, wherein the motor is a composite magnet formed by arranging a plurality of magnets.
【請求項4】 前記第2の永久磁石は、構成組織がハー
ド磁性相とソフト磁性相からなる磁石粉末を樹脂にて結
合した樹脂結合型磁石であることを特徴とする請求項2
または3記載のモータ。
4. The resin-bonded magnet according to claim 2, wherein the second permanent magnet is a resin-bonded magnet in which a constituent structure is formed by bonding magnetic powder composed of a hard magnetic phase and a soft magnetic phase with a resin.
Or the motor according to 3.
【請求項5】 界磁用永久磁石を有するモータにおい
て、界磁用永久磁石が、保磁力の異なる2種またはそれ
以上の永久磁石粉末を混合し、少なくとも1種の粉末の
リコイル比透磁率が1.5以上であり、さらに樹脂にて
結合した樹脂結合型磁石であって、該樹脂結合型磁石の
リコイル比透磁率が1.3以上であることを特徴とする
モータ。
5. A motor having a permanent magnet for a field, wherein the permanent magnet for a field mixes two or more kinds of permanent magnet powders having different coercive forces, and the at least one kind of powder has a recoil relative permeability. A motor having a resin-coupling magnet of 1.5 or more and a resin-coupling magnet having a recoil relative magnetic permeability of 1.3 or more.
【請求項6】 界磁用永久磁石を有するブラシレスDC
モータの回転子において、塊状鉄芯または積層された複
数の鋼板によってヨークが形成され、前記ヨークは外周
上に少なくとも2つ以上の偶数の界磁用永久磁石が配設
されて磁極を形成し、前記界磁用永久磁石は請求項1な
いし請求項5のいずれかに記載の界磁用永久磁石である
ことを特徴とするモータ。
6. A brushless DC having a field permanent magnet.
In the rotor of the motor, a yoke is formed by a massive iron core or a plurality of laminated steel plates, and the yoke is provided with at least two or more even-numbered field permanent magnets on its outer periphery to form magnetic poles, A motor, wherein the field permanent magnet is the field permanent magnet according to any one of claims 1 to 5.
【請求項7】 界磁用永久磁石を有するブラシレスDC
モータの回転子において、積層された複数の鋼板によっ
てヨークが形成され、前記ヨークは外周上に少なくとも
2つ以上の偶数の磁極を有し、これらの磁極には界磁用
永久磁石を挿入するスロットが1磁極おき又は各磁極に
設けられ、前記スロットには請求項1ないし請求項5の
いずれかに記載された界磁用永久磁石が挿入されている
ことを特徴とするモータ。
7. A brushless DC having a field permanent magnet
In a rotor of a motor, a yoke is formed by a plurality of laminated steel plates, and the yoke has at least two or more even-numbered magnetic poles on an outer periphery thereof, and a slot for inserting a field permanent magnet in these magnetic poles. A motor is provided at every other magnetic pole or at each magnetic pole, and the field permanent magnet according to any one of claims 1 to 5 is inserted into the slot.
【請求項8】 界磁用永久磁石を有するブラシレスDC
モータの回転子において、積層された複数の鋼板によっ
てヨークが形成され、前記ヨークは外周上に少なくとも
2つ以上の偶数の磁極を有し、これらの磁極には永久磁
石を挿入するスロットが径方向わずかな間隔で2つずつ
以上各磁極または1磁極おきに設けられ、前記スロット
にはハード磁性相ほぼ単相からなる第1の永久磁石と、
ソフト磁性相とハード磁性相からなりリコイル比透磁率
が1.5以上の第2の永久磁石と、が挿入されているこ
とを特徴とするモータ。
8. A brushless DC having a field permanent magnet.
In the rotor of the motor, a yoke is formed by a plurality of laminated steel plates, and the yoke has at least two or more even-numbered magnetic poles on an outer periphery, and a slot for inserting a permanent magnet is provided in each of these magnetic poles in a radial direction. At least two magnetic poles are provided at every magnetic pole or every other magnetic pole at a slight interval, and the slot has a first permanent magnet made of a hard magnetic phase substantially single phase;
A second permanent magnet comprising a soft magnetic phase and a hard magnetic phase and having a recoil relative permeability of 1.5 or more is inserted.
JP26496096A 1996-10-04 1996-10-04 motor Expired - Fee Related JP3541582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26496096A JP3541582B2 (en) 1996-10-04 1996-10-04 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26496096A JP3541582B2 (en) 1996-10-04 1996-10-04 motor

Publications (2)

Publication Number Publication Date
JPH10112946A true JPH10112946A (en) 1998-04-28
JP3541582B2 JP3541582B2 (en) 2004-07-14

Family

ID=17410607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26496096A Expired - Fee Related JP3541582B2 (en) 1996-10-04 1996-10-04 motor

Country Status (1)

Country Link
JP (1) JP3541582B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225724B1 (en) 1998-10-23 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Motor and motor rotor having embedded permanent magnets
US6359359B1 (en) * 1998-12-01 2002-03-19 Toyota Jidosha Kabushiki Kaisha Permanent magnet motor
JP2002112479A (en) * 2000-09-27 2002-04-12 Yaskawa Electric Corp Permanent magnet motor and its control
JP2003134750A (en) * 2001-10-24 2003-05-09 Railway Technical Res Inst Manufacturing method for permanent magnet, permanent magnet piece and permanent magnet
JP2003197419A (en) * 2001-12-27 2003-07-11 Techno Takatsuki Co Ltd Polar anisotropic magnet
JP2004328963A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Manufacturing method of rotor for electric motor, and the rotor for electric motor
JP2006129616A (en) * 2004-10-28 2006-05-18 Nidec Shibaura Corp Rotor
JP2007116850A (en) * 2005-10-21 2007-05-10 Mitsubishi Electric Corp Permanent-magnet rotating electric machine and cylindrical linear motor
US7270591B2 (en) 2004-04-13 2007-09-18 Black & Decker Inc. Electric sander and motor control therefor
JPWO2012101896A1 (en) * 2011-01-26 2014-06-30 株式会社マキタ Brushless motor for electric tools
WO2014208469A1 (en) * 2013-06-24 2014-12-31 ダイキン工業株式会社 Motor and compressor
JP5674962B2 (en) * 2011-11-30 2015-02-25 三菱電機株式会社 Permanent magnet embedded motor
WO2017163450A1 (en) * 2016-03-22 2017-09-28 株式会社 東芝 Rotating electrical machine system, driving device for rotating electrical machine, driving method thereof, and vehicle
JP2019154232A (en) * 2017-09-11 2019-09-12 株式会社東芝 Rotor and dynamo-electric machine
JP2020054022A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Permanent magnet-type motor
JP2022074552A (en) * 2020-11-04 2022-05-18 トヨタ自動車株式会社 motor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225724B1 (en) 1998-10-23 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Motor and motor rotor having embedded permanent magnets
DE19941107B4 (en) * 1998-10-23 2014-09-04 Mitsubishi Denki K.K. Permanent magnet embedded motor and method of manufacturing a motor
US6359359B1 (en) * 1998-12-01 2002-03-19 Toyota Jidosha Kabushiki Kaisha Permanent magnet motor
JP2002112479A (en) * 2000-09-27 2002-04-12 Yaskawa Electric Corp Permanent magnet motor and its control
JP2003134750A (en) * 2001-10-24 2003-05-09 Railway Technical Res Inst Manufacturing method for permanent magnet, permanent magnet piece and permanent magnet
JP2003197419A (en) * 2001-12-27 2003-07-11 Techno Takatsuki Co Ltd Polar anisotropic magnet
JP2004328963A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Manufacturing method of rotor for electric motor, and the rotor for electric motor
US7371150B2 (en) 2004-04-13 2008-05-13 Black & Decker Inc. Electric sander and motor control therefor
US7270591B2 (en) 2004-04-13 2007-09-18 Black & Decker Inc. Electric sander and motor control therefor
US7318768B2 (en) 2004-04-13 2008-01-15 Black & Decker Inc. Low profile electric sander
JP2006129616A (en) * 2004-10-28 2006-05-18 Nidec Shibaura Corp Rotor
JP2007116850A (en) * 2005-10-21 2007-05-10 Mitsubishi Electric Corp Permanent-magnet rotating electric machine and cylindrical linear motor
JPWO2012101896A1 (en) * 2011-01-26 2014-06-30 株式会社マキタ Brushless motor for electric tools
US9509180B2 (en) 2011-01-26 2016-11-29 Makita Corporation Brushless motor for electric power tool
JP5674962B2 (en) * 2011-11-30 2015-02-25 三菱電機株式会社 Permanent magnet embedded motor
JPWO2013080342A1 (en) * 2011-11-30 2015-04-27 三菱電機株式会社 Permanent magnet embedded motor
WO2014208469A1 (en) * 2013-06-24 2014-12-31 ダイキン工業株式会社 Motor and compressor
WO2017163450A1 (en) * 2016-03-22 2017-09-28 株式会社 東芝 Rotating electrical machine system, driving device for rotating electrical machine, driving method thereof, and vehicle
JPWO2017163450A1 (en) * 2016-03-22 2018-03-29 株式会社東芝 Rotating electrical machine system, rotating electrical machine drive apparatus, driving method thereof, and vehicle
US10103655B2 (en) 2016-03-22 2018-10-16 Kabushiki Kaisha Toshiba Rotary electrical machine system, drive unit for rotary electrical machine, method for driving rotary electrical machine and vehicle
JP2019154232A (en) * 2017-09-11 2019-09-12 株式会社東芝 Rotor and dynamo-electric machine
JP2020054022A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Permanent magnet-type motor
JP2022074552A (en) * 2020-11-04 2022-05-18 トヨタ自動車株式会社 motor
CN114530960A (en) * 2020-11-04 2022-05-24 丰田自动车株式会社 Motor
CN114530960B (en) * 2020-11-04 2024-05-17 丰田自动车株式会社 Motor with a motor housing

Also Published As

Publication number Publication date
JP3541582B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP3541582B2 (en) motor
JP3371314B2 (en) DC brushless motor and control device
US7898137B2 (en) Permanent magnet and permanent magnet rotating machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
US9318927B2 (en) Amorphous stator, and electric motor using same
US7005764B2 (en) Electrodynamic apparatus and method of manufacture
WO2009104529A1 (en) Permanent magnet type dynamo electric machine, method for assembling permanent magnet type dynamo electric machine, method for disassembling permanent magnet type dynamo electric machine and permanent magnet motor drive system
JP2000350393A (en) Permanent-magnet motor
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JPH08214478A (en) Permanent-magnet field type dynamo electric machine
EP1298773A1 (en) Permanent magnet synchronous motor
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
JP3704881B2 (en) Synchronous rotating machine with permanent magnet and driving method thereof
JPH089610A (en) Permanent magnet rotating electric machine
JP4238588B2 (en) Motor, motor rotor and composite anisotropic magnet
JP3985281B2 (en) Rotating electric machine
JPH10271723A (en) Permanent-magnet field type rotating machine and its manufacture
JPH09298852A (en) Brushless dc motor
JPH05176487A (en) Permanent magnet type motor
JP2519435B2 (en) Magnetization method of electric motor
JP3683442B2 (en) Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor
JP5448314B2 (en) Permanent magnet and permanent magnet rotating machine
JP2000175384A (en) Permanent magnet motor
JP7459155B2 (en) Rotating electric machine and its field element manufacturing method
JP2002017075A (en) Polarizing method of permanent magnet rotor and applied apparatus therewith

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees