JPH10110846A - Vessel switching type fluid element - Google Patents

Vessel switching type fluid element

Info

Publication number
JPH10110846A
JPH10110846A JP28342896A JP28342896A JPH10110846A JP H10110846 A JPH10110846 A JP H10110846A JP 28342896 A JP28342896 A JP 28342896A JP 28342896 A JP28342896 A JP 28342896A JP H10110846 A JPH10110846 A JP H10110846A
Authority
JP
Japan
Prior art keywords
pressure side
valve
side pipe
container
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28342896A
Other languages
Japanese (ja)
Inventor
Ippei Torigoe
一平 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28342896A priority Critical patent/JPH10110846A/en
Publication of JPH10110846A publication Critical patent/JPH10110846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a minute flow amount adjusting device by connecting a vessel to high and low pressure side pipe passages alternatively and intermittently by means of a valve which is intermittently opened and closed, and flowing fluid of a mean flow rate proportional to intermittent opening/closing frequency of the valve from the high pressure side pipe passage to the low pressure side pipe passage. SOLUTION: A control signal of a control circuit 7 is output to a valve 2. The control signal is adopted to intermittently connect a vessel 1 to a high pressure side pipe passage 3 with an intermittent opening/closing frequency, and connect the vessel 1 to a low pressure side pipe passage 4 with a phase shifted from the high pressure side by a specified rate. The vessel 1 is conected to the high pressure side pipe passage 3 through the valve 2. Gas is flowed from the high pressure side pipe passage 3 to the vessel 1 to equalize the pressure to a value P1 . The vessel 1 is then connected to the low pressure side pipe passage 4 to flow a part of the gas inside the vessel 1 to the low pressure side pipe passage 4 into the low pressure side pipe passage 4. The pressure thereinside is lowered to a value P2 . The gas of a mean flow rate is fed from the high pressure side pipe passage 3 to the low pressure side pipe passage 4 with one cycle of the opening and closing of the valve 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微小な流量を制御する
ための装置、とくに、容器を高圧側と低圧側に交互に接
続して、弁の開閉周波数に比例した平均流量の流体を、
容器を介して高圧側から低圧側へ汲みだす容器切替式流
体素子に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling a minute flow rate, and more particularly, to a method in which a container is alternately connected to a high pressure side and a low pressure side so that a fluid having an average flow rate proportional to the opening and closing frequency of a valve is provided.
The present invention relates to a container switching type fluid element that pumps from a high pressure side to a low pressure side via a container.

【0002】[0002]

【従来の技術】流量の調節をおこなうには、通常、調節
弁が用いられる。従来の調節弁は、いずれも、流体の流
路が可変となっていて、バルブプラグを動かすなどの機
械的な手段で流路断面積を調整して、流量を調節してい
る。微小流量の調節には、ニードルバルブが使用される
ことが多いが、やはり、ニードル型のバルブプラグを動
かして流路断面積を調整している。
2. Description of the Related Art To control the flow rate, a control valve is usually used. In all of the conventional control valves, the flow path of the fluid is variable, and the flow rate is adjusted by adjusting the cross-sectional area of the flow path by mechanical means such as moving a valve plug. A needle valve is often used to adjust the minute flow rate, but again, the cross-sectional area of the flow path is adjusted by moving a needle-type valve plug.

【0003】[0003]

【発明が解決しようとする課題】機械的に流路断面積を
変化させる従来の調節弁では、バルブプラグ等を移動さ
せるためのアクチュエーターやアクチュエーターの位置
決めをするためのポジショナー等を用いる。このため、
流量調節装置全体の構造は複雑となる。微小な流量の調
節を目的とする調節弁では、弁差圧が小さくなるため弁
本体は小型化が可能であるが、流路の隙間が微小になる
ため、工作や組立てに精度が要求され、また、弁制御に
も高い精度を要求される。このため、微小流量調節装置
全体では、やはり構造は複雑になり、価格も高くなる。
本発明の目的は、構造が単純な小型で低価格の微小流量
調節装置を実現することである。
A conventional control valve that mechanically changes the cross-sectional area of a flow passage uses an actuator for moving a valve plug or the like, a positioner for positioning the actuator, and the like. For this reason,
The structure of the entire flow control device becomes complicated. In a control valve for the purpose of fine flow adjustment, the valve body can be miniaturized because the differential pressure of the valve is small, but the gap between the flow passages is small, so precision is required for machining and assembly. High precision is also required for valve control. For this reason, the structure of the entire micro flow control device is still complicated and the price is high.
SUMMARY OF THE INVENTION An object of the present invention is to realize a small-sized and low-priced minute flow regulator having a simple structure.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明においては、間欠的に開閉する弁によって、
容器を高圧側管路と低圧側管路に交互に間欠的に接続
し、前記弁の間欠開閉周波数に比例する平均流量の流体
を、高圧側管路から低圧側管路へ流す。
In order to solve the above-mentioned problems, in the present invention, a valve that opens and closes intermittently is provided.
The container is alternately and intermittently connected to the high pressure side line and the low pressure side line, and a fluid having an average flow rate proportional to the intermittent opening / closing frequency of the valve flows from the high pressure side line to the low pressure side line.

【0005】[0005]

【作用】間欠的に開閉する弁を用いて容器を高圧側管路
と低圧側管路に交互に接続すると、容器によって流体が
高圧側から低圧側へ汲みだされる。弁の開閉の一周期に
汲みだされる流体の量は、高圧側と低圧側の流体の圧力
および温度と容器の容積とで決まる。このような流体素
子において、弁の開閉周期を変化させると、単位時間内
に容器によって汲みだす回数が変化するから、流体の平
均流量を調節することができる。すなわち、高圧側管路
と低圧側管路の間の等価的な流体抵抗を、弁の開閉周波
数によって変化させることができる。
When the container is alternately connected to the high-pressure side line and the low-pressure side line using a valve that opens and closes intermittently, fluid is pumped from the high-pressure side to the low-pressure side by the container. The amount of fluid pumped in one cycle of opening and closing of the valve is determined by the pressure and temperature of the fluid on the high and low pressure sides and the volume of the container. In such a fluid element, when the opening / closing cycle of the valve is changed, the number of times of pumping by the container per unit time changes, so that the average flow rate of the fluid can be adjusted. That is, the equivalent fluid resistance between the high-pressure side line and the low-pressure side line can be changed by the valve opening / closing frequency.

【0006】[0006]

【実施例】図1は、本発明の第一実施例である。図1に
おいて、1は容積V0 の容器、2は、高圧側管路3およ
び低圧側管路4ならびに容器1に接続された弁である。
5は高圧側管路に取り付けられた容積V1 の圧力溜、6
は低圧側管路に取り付けられた容積V2 の圧力溜であ
る。高圧側管路から低圧側管路へは容器1を介して気体
が流れており、圧力溜5、圧力溜6および容器1内には
気体が充満している。圧力溜5および圧力溜6の中の圧
力はそれぞれP1 およびP2 、それぞれの圧力溜の中の
温度は室温T0 に等しい。なお、圧力溜5および6は、
その容積が容器1の容積に較べてはるかに大きく作られ
ている。7は制御回路であり、弁2に対して制御信号を
出力している。弁2に対する制御信号は、図2に示すよ
うに、容器1と高圧側管路3とを周波数fで間欠的に接
続し、一方、容器1と低圧側管路4とを、高圧側とπだ
けずれた位相で間欠的に接続するような信号である。
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a container having a volume V 0 , and 2 denotes a valve connected to the high-pressure side pipe 3 and the low-pressure side pipe 4 and the container 1.
5 is a pressure reservoir having a volume V 1 attached to the high pressure side pipeline, 6
Is the pressure reservoir volume V 2 which is attached to the low pressure side pipe line. Gas flows from the high-pressure side line to the low-pressure side line via the container 1, and the pressure reservoir 5, the pressure reservoir 6, and the container 1 are filled with gas. The pressures in the pressure reservoirs 5 and 6 are P 1 and P 2 , respectively, and the temperature in each pressure reservoir is equal to room temperature T 0 . The pressure reservoirs 5 and 6 are
The volume is made much larger than the volume of the container 1. A control circuit 7 outputs a control signal to the valve 2. As shown in FIG. 2, the control signal for the valve 2 intermittently connects the container 1 and the high pressure side line 3 at a frequency f, while connecting the container 1 and the low pressure side line 4 to the high pressure side It is a signal that is connected intermittently with a phase shifted by only one.

【0007】弁2がこのように制御されたとき、容器1
内の圧力P0 は、図2のように、高圧側圧力溜5の圧力
1 と低圧側圧力溜6の圧力P2 が交番する矩形波信号
となる。容器1が高圧側管路3に接続されると、容器1
には高圧側管路から気体が流入し、圧力はP1 に等しく
なる。このときの容器1内の気体の状態方程式を考える
と、
When valve 2 is controlled in this way, container 1
The pressure P of the inner 0, as in FIG. 2, a rectangular wave signal pressure P 1 and the pressure P 2 of the low-pressure side pressure reservoir 6 of the high-pressure side pressure reservoir 5 alternates. When the container 1 is connected to the high pressure line 3, the container 1
Gas flows from the high-pressure side pipe line in the pressure is equal to P 1. Considering the equation of state of the gas in the container 1 at this time,

【0008】[0008]

【数1】 (Equation 1)

【0009】である。ここで、M1 は容器1内の気体の
質量、Rは気体定数、mは気体の分子量である。次に、
容器1が低圧側管路4に接続されると、容器1内の気体
の一部は低圧側管路に流出し、圧力がP2 に下がる。こ
のときの容器1内の気体の状態方程式は、容器1内の気
体の質量をM2 として、
[0009] Here, M 1 is the mass of the gas in the container 1, R is the gas constant, m is the molecular weight of the gas. next,
When the container 1 is connected to the low pressure side pipe 4, a portion of the gas in the container 1 flows to the low pressure side pipe, the pressure drops to P 2. The equation of state of the gas in the container 1 at this time is as follows, where the mass of the gas in the container 1 is M 2 .

【0010】[0010]

【数2】 (Equation 2)

【0011】となる。すなわち、容器1が弁2によって
高圧側管路3と低圧側管路4に交互に接続されることに
より、弁開閉の一周期τについて質量(M1 −M2 )だ
けの気体が、高圧側から低圧側へ汲みだされることにな
る。このように、容器1には、弁2の開閉の一周期ごと
に間欠的に気体が流入・流出するが、管路に圧力溜が設
置されているため、間欠的な流れは平滑され、高圧側圧
力溜5へ流入する流れおよび低圧側圧力溜6から流出す
る流れは、どちらもほぼ定常流となる。そして、その単
位時間当たりの質量流量Qはf(M1 −M2 )に等し
い。従って、弁2の開閉周波数fを変えることで、質量
流量Qを調節することができる。また、数1および数2
から分かるように、M1 およびM2 は容器1の容積V0
に比例するから、容積の異なる容器を使うことで、様々
の流量レンジの調節弁を実現することができる。
## EQU1 ## That is, since the container 1 is alternately connected to the high-pressure side line 3 and the low-pressure side line 4 by the valve 2 , gas of only mass (M 1 −M 2 ) is generated for one cycle τ of valve opening and closing. From the low pressure side. As described above, the gas flows in and out of the container 1 intermittently every one cycle of opening and closing of the valve 2. However, since the pressure reservoir is installed in the pipeline, the intermittent flow is smoothed, The flow flowing into the side pressure reservoir 5 and the flow flowing out of the low pressure side pressure reservoir 6 are almost steady flows. Then, the mass flow rate Q per unit time is equal to f (M 1 −M 2 ). Therefore, the mass flow rate Q can be adjusted by changing the opening / closing frequency f of the valve 2. Equation 1 and Equation 2
As can be seen, M 1 and M 2 are the volumes V 0 of container 1
Therefore, by using containers having different capacities, control valves having various flow ranges can be realized.

【0012】なお、実際には、弁2が切替わった後、容
器1内の圧力は、過渡状態を経て定常状態に達する。こ
のため、容器1内の圧力波形は、詳細に見れば図2に示
した矩形波形とは異なり、図3に示すように、弁の切り
替わった直後に過渡応答波形が現れたのちにP1 または
2 に収束する波形となる。一般に管路中の気体はイナ
ータンスを持っているから、弁が開いた瞬間に容器1へ
流入あるいは流出することはできない。管路のイナータ
ンスが大きいと、過渡状態の持続時間は長くなり、過渡
応答が収束するまでに長い時間がかかる。本実施例で
は、圧力溜5および6を設置し、圧力溜と容器1の間を
短く接続することで、圧力溜と容器1の間の管路のイナ
ータンスを小さくし、過渡状態の持続期間が短くなるよ
うにしている。すなわち、本実施例の圧力溜5および6
は、前記のように間欠的な流れを平均する平滑コンデン
サーの役割とともに、過渡応答を改善するバイパスコン
デンサーの役割を果たしている。本実施例においては、
弁2の開いている期間τ1 を過渡状態の持続時間より十
分に長くなるように設定しているので、弁2の開いてい
る期間内に、容器1内の気体の状態は、数1または数2
で示される状態に達する。従って、弁の切り替わった直
後に過渡状態の期間が存在しても、容器1によって汲み
だされる気体の質量は影響を受けない。
Incidentally, in practice, after the valve 2 is switched, the pressure in the container 1 reaches a steady state through a transient state. Therefore, the pressure waveform in the container 1, unlike the rectangular waveform shown in FIG. 2 when viewed in detail, as shown in FIG. 3, P 1 or after the transient response waveform appeared immediately after switching of the valve a waveform to converge to P 2. Generally, the gas in the pipeline has inertance and cannot flow into or out of the container 1 at the moment when the valve is opened. If the inertance of the pipeline is large, the duration of the transient is long, and it takes a long time for the transient response to converge. In this embodiment, the pressure reservoirs 5 and 6 are installed, and the connection between the pressure reservoir and the container 1 is short-circuited, so that the inertance of the pipeline between the pressure reservoir and the container 1 is reduced, and the duration of the transient state is reduced. I try to be shorter. That is, the pressure reservoirs 5 and 6 of this embodiment
Plays a role of a smoothing capacitor for averaging intermittent flow as described above and a role of a bypass capacitor for improving transient response. In this embodiment,
Since the period τ 1 during which the valve 2 is open is set to be sufficiently longer than the duration of the transient state, the state of the gas in the container 1 during the period during which the valve 2 is open becomes Number 2
The state indicated by is reached. Therefore, even if there is a transient period immediately after the switching of the valve, the mass of gas pumped by the container 1 is not affected.

【0013】(第二実施例)図4は、気体の微小流量測
定に応用した本発明の第二実施例である。図4におい
て、1は容積V0 の容器である。11は、高圧側管路3
と容器1を間欠的に接続する弁、12は、低圧側管路4
と容器1を間欠的に接続する弁である。5は、高圧側管
路3に取り付けられた容積V1 の圧力溜、6は、高圧側
管路4に取り付けられた容積V2 の圧力溜である. 圧力
溜5および6の中の気体の圧力はそれぞれP1 およびP
2 、また温度はそれぞれT1 およびT2 である。13
は、容器1内の気体の温度を測定する温度計、14は、
容器1内の圧力を検出している圧力計である。15は、
信号処理装置で、高圧側の弁11および低圧側の弁12
に制御信号を出力するとともに、温度計13および圧力
計14からの信号を受けて、流量を計算して、指示計器
16に出力している。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention applied to measurement of a minute flow rate of gas. 4, 1 is a container volume V 0. 11 is a high pressure side line 3
A valve for intermittently connecting the container and the container 1, 12 is a low-pressure side line 4.
And a valve for connecting the container 1 intermittently. 5, the pressure reservoir volume V 1 which is mounted on the high pressure side conduit 3, 6 is a pressure reservoir volume V 2 which is mounted on the high pressure side conduit 4. Of gas in the pressure reservoir 5 and 6 Pressure is P 1 and P respectively
2 and the temperatures are T 1 and T 2 respectively. 13
Is a thermometer that measures the temperature of the gas in the container 1, and 14 is
This is a pressure gauge that detects the pressure in the container 1. 15 is
In the signal processing device, a high pressure side valve 11 and a low pressure side valve 12
In addition to receiving a control signal from the thermometer 13 and the pressure gauge 14, it calculates a flow rate and outputs it to the indicating instrument 16.

【0014】信号処理装置15から弁11および12に
加えられる制御信号VC11およびVC12は、図5に示す
ような信号である。このような弁制御により、容器1は
高圧側管路3と低圧側管路4に交互に接続されるので、
圧力計14の出力は、図5のように、P1 とP2 の間を
交番する周期τの矩形波信号となる。また、本実施例で
は、圧力溜中の気体の温度が室温に平衡していない場合
を想定しており、この場合、温度計13の出力も、高圧
側の温度T1 と低圧側の温度T2 の間を交番する周期τ
の矩形波信号となる。容器1が高圧側管路3と接続され
ている期間の、容器1内の気体の状態方程式は、容器内
の気体の質量をM1 として
[0014] The signal processing apparatus control signal VC 11 and VC 12 15 applied to the valve 11 and 12 is a signal as shown in FIG. By such valve control, the container 1 is alternately connected to the high-pressure side line 3 and the low-pressure side line 4,
The output of the pressure gauge 14 is a rectangular wave signal having a period τ alternating between P 1 and P 2 as shown in FIG. Further, in the present embodiment assumes the case where the temperature of the gas in the pressure reservoir is not in equilibrium to room temperature, in this case, the output of the thermometer 13 also, the temperature T of the temperature T 1 of the low-pressure side of the high-pressure side Period τ alternating between 2
Of the square wave signal. The equation of state of the gas in the container 1 during the period in which the container 1 is connected to the high-pressure-side pipe 3 is as follows, with the mass of the gas in the container being M 1.

【0015】[0015]

【数3】 (Equation 3)

【0016】である。一方、容器1が低圧側管路4と接
続されている期間の、容器1内の気体の状態方程式は、
容器内の気体の質量をM2 として
## EQU1 ## On the other hand, the equation of state of the gas in the container 1 during the period in which the container 1 is connected to the low-pressure side pipeline 4 is as follows:
Let the mass of the gas in the container be M 2

【0017】[0017]

【数4】 (Equation 4)

【0018】である。高圧側管路3と接続された期間に
は容器1内へ気体が流入し、容器1が低圧側管路4に接
続された期間には気体は低圧管路側へ流出する。その量
は、弁開閉の一周期τごとに(M1 −M2 )であり、単
位時間当たりの平均質量流量Qはf(M1 −M2 )であ
る。(M1 −M2 )は、数3および数4より
## EQU1 ## The gas flows into the container 1 during the period when the container 1 is connected to the high-pressure line 3, and flows out toward the low-pressure line when the container 1 is connected to the low-pressure line 4. The amount is (M 1 -M 2 ) for each cycle τ of valve opening and closing, and the average mass flow rate Q per unit time is f (M 1 -M 2 ). (M 1 −M 2 ) is obtained from Equations 3 and 4.

【0019】[0019]

【数5】 (Equation 5)

【0020】となる。今、弁開閉周波数fと数5のm、
R、V0 は既知であるから、質量流量Qは、圧力計14
および温度計13の出力から計算することが出来る。な
お、本実施例においても、実際には、弁が切替わった
後、容器1内の気体の状態は、過渡状態を経て定常状態
に達する。本実施例では、管路に圧力溜5および6を設
置して過渡応答の持続時間を短くした上で、容器1が高
圧側管路3または低圧側管路4に接続されている期間τ
1 が、過渡応答の持続時間より十分に長くなるように制
御信号を設定している。
## EQU1 ## Now, the valve opening / closing frequency f and the number 5 m,
Since R and V 0 are known, the mass flow rate Q
And the output of the thermometer 13. In addition, also in this embodiment, actually, after the valve is switched, the state of the gas in the container 1 reaches a steady state through a transient state. In this embodiment, the pressure reservoirs 5 and 6 are installed in the pipeline to shorten the duration of the transient response, and the period τ when the container 1 is connected to the high-pressure pipeline 3 or the low-pressure pipeline 4 is set.
1 sets the control signal to be sufficiently longer than the duration of the transient response.

【0021】本実施例では、容器1に圧力計14および
温度計13を取り付けて、容器1内の圧力および温度を
測定しているが、高圧側管路3または低圧側管路4に接
続されている期間の容器1内の圧力および温度を測定す
ることが目的であるから、圧力計および温度計は二つの
圧力溜に取り付けてあっても構わない。この場合、容器
1に取り付ける場合の倍の数の圧力計と温度計が必要で
あるが、逆に、圧力計および温度計に要求される応答速
度の点では、容器1に取り付ける場合よりもずっと遅い
物でよい。また、本実施例では、高圧側管路3と容器1
を断続するための高圧側の弁11と、低圧側管路4と容
器1を断続するための低圧側の弁12の二つの弁を用い
ているが、三つのポートを持った一つの弁を用いて、容
器1を高圧側管路と低圧側管路に交互に接続しても構わ
ないことは言うまでもない。
In this embodiment, a pressure gauge 14 and a thermometer 13 are attached to the vessel 1 to measure the pressure and temperature in the vessel 1. However, the pressure gauge 14 and the thermometer 13 are connected to the high-pressure pipe 3 or the low-pressure pipe 4. Since the purpose is to measure the pressure and temperature in the container 1 during a certain period, the pressure gauge and the thermometer may be attached to two pressure reservoirs. In this case, twice as many pressure gauges and thermometers as required when mounted on the vessel 1 are required, but conversely, the response speed required for the pressure gauge and the thermometer is much higher than when mounted on the vessel 1. A slow one is fine. In the present embodiment, the high-pressure side pipe 3 and the container 1
And a low-pressure side valve 12 for connecting and disconnecting the low-pressure side line 4 and the container 1 are used, but one valve having three ports is used. It goes without saying that the container 1 may be connected to the high-pressure side line and the low-pressure side line alternately.

【0022】第一実施例および第二実施例において、容
器1について見ると気体は間欠的に流入・流出している
が、管路中に設置された圧力溜の働きにより、高圧側圧
力溜5に流入する流れ、および低圧側圧力溜から流出す
る流れは、ともに定常流となる。従って、管路の流量調
節や流量測定に本発明の流体素子を用いることによっ
て、管路の流れに非定常成分が発生するということは無
い。管路中の流れが間欠的となっても支障がなく、ま
た、圧力溜がなくても、過渡応答の持続時間が弁の接続
時間τ1 に比べて十分に小さい場合には、圧力溜5また
は6は必ずしも設置する必要はない。
In the first embodiment and the second embodiment, the gas is intermittently flowing in and out of the container 1, but the high pressure side pressure reservoir 5 is operated by the pressure reservoir installed in the pipeline. The flow flowing into the tank and the flow flowing out of the low pressure side pressure reservoir are both steady flows. Therefore, by using the fluid element of the present invention for flow rate adjustment and flow rate measurement of a pipeline, an unsteady component does not occur in the flow of the pipeline. If there is no problem even if the flow in the pipeline becomes intermittent, and if the duration of the transient response is sufficiently smaller than the valve connection time τ 1 without the pressure reservoir, the pressure reservoir 5 Or 6 need not necessarily be installed.

【0023】[0023]

【発明の効果】本発明の流体素子は、間欠的に開閉する
弁を用いて容器を高圧側管路と低圧側管路に交互に接続
し、容器によって流体を高圧側から低圧側に汲みだす構
造を有している。流量の調節は、弁の開閉周波数を変え
ることで行い、従来の調節弁と異なって、バルブプラグ
等の位置を精密に制御する必要が無い。このため、流量
調節装置の構造は従来に比べて格段に単純化され、小型
化、低価格化が可能になる。微小な流量の制御に適用す
る場合は、弁は小さな差圧の下で単純な開閉動作をする
だけなので、シリコン微細加工技術を用いて作製された
ような非常に小型の弁でも使用できる。構造が単純で、
小型、低価格の流量調節装置を実現できることが本発明
の固有の効果である。
According to the fluid element of the present invention, the container is alternately connected to the high-pressure side line and the low-pressure side line by using a valve that opens and closes intermittently, and the fluid is pumped from the high-pressure side to the low-pressure side by the container. It has a structure. The flow rate is adjusted by changing the opening / closing frequency of the valve, and unlike the conventional control valve, there is no need to precisely control the position of a valve plug or the like. For this reason, the structure of the flow control device is significantly simplified as compared with the conventional one, and it is possible to reduce the size and cost. When applied to control of a minute flow rate, the valve simply performs an opening and closing operation under a small differential pressure, so that a very small valve such as one manufactured using silicon micromachining technology can be used. The structure is simple,
It is an inherent effect of the present invention that a small, low-cost flow control device can be realized.

【0024】また、本発明の流体素子を流量の測定に適
用した場合には、通常の流量計の測定範囲の下限以下の
微小な流量を、簡便かつ高精度に測定することができ
る。構造が単純で、低価格な微小流量測定装置を実現で
きることも、本発明の効果である。
When the fluid element of the present invention is applied to the measurement of a flow rate, a minute flow rate equal to or less than the lower limit of the measurement range of an ordinary flow meter can be measured simply and accurately. It is also an advantage of the present invention that a low-cost minute flow rate measuring device having a simple structure can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例である。FIG. 1 is a first embodiment of the present invention.

【図2】第一実施例における信号の波形図である。FIG. 2 is a waveform diagram of a signal in the first embodiment.

【図3】圧力波形の詳細図である。FIG. 3 is a detailed view of a pressure waveform.

【図4】本発明の第二実施例である。FIG. 4 is a second embodiment of the present invention.

【図5】第二実施例における信号の波形図である。FIG. 5 is a waveform diagram of a signal in the second embodiment.

【符号の説明】[Explanation of symbols]

1 容器 2 弁 3 高圧側管路 4 低圧側管路 5、6 圧力溜 7 制御回路 11、12 弁 13 温度計 14 圧力計 15 信号処理装置 16 指示計器 DESCRIPTION OF SYMBOLS 1 Container 2 Valve 3 High-pressure side line 4 Low-pressure side line 5, 6 Pressure reservoir 7 Control circuit 11, 12 Valve 13 Thermometer 14 Pressure gauge 15 Signal processing device 16 Indicator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 容器(1)と、上記容器を高圧側管路
(3)と低圧側管路(4)に交互に間欠的に接続する弁
(2)とを有し、前記弁の間欠開閉周波数に比例する平
均流量の流体を、前記容器を介して高圧側管路から低圧
側管路へ流すことを特徴とする容器切替式流体素子。
1. A container (1) and a valve (2) for intermittently connecting the container to a high-pressure line (3) and a low-pressure line (4) intermittently. A container switching type fluid element, wherein a fluid having an average flow rate proportional to an opening / closing frequency is caused to flow from a high pressure side pipe to a low pressure side pipe through the container.
JP28342896A 1996-10-03 1996-10-03 Vessel switching type fluid element Pending JPH10110846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28342896A JPH10110846A (en) 1996-10-03 1996-10-03 Vessel switching type fluid element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28342896A JPH10110846A (en) 1996-10-03 1996-10-03 Vessel switching type fluid element

Publications (1)

Publication Number Publication Date
JPH10110846A true JPH10110846A (en) 1998-04-28

Family

ID=17665412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28342896A Pending JPH10110846A (en) 1996-10-03 1996-10-03 Vessel switching type fluid element

Country Status (1)

Country Link
JP (1) JPH10110846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009110A1 (en) * 2018-07-03 2020-01-09 住友重機械工業株式会社 Compressor for ultra-low-temperature freezer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009110A1 (en) * 2018-07-03 2020-01-09 住友重機械工業株式会社 Compressor for ultra-low-temperature freezer

Similar Documents

Publication Publication Date Title
US4826482A (en) Enhanced pressure measurement flow control system
US5684245A (en) Apparatus for mass flow measurement of a gas
US7674375B2 (en) Closed loop flow control of a HPLC constant flow pump to enable low-flow operation
US4624625A (en) High pressure metering pump
CN107976223B (en) A kind of high-precision leakage amount detector
US20110137580A1 (en) Flow measurement method and device
MX2013013690A (en) Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter.
WO2019152089A1 (en) Mass flow controller with absolute and differential pressure transducer
US6484573B2 (en) Monitoring equipment for monitoring the performance of an engine fuel injector valve
EP0670476B1 (en) A fluid sensor
US6532809B2 (en) Monitoring equipment
CN109781445B (en) Method for determining flow area of thermostatic expansion valve
JPH10110846A (en) Vessel switching type fluid element
JP4753251B2 (en) Gas flow meter and gas flow control device
JP2022524943A (en) A measuring system that measures mass flow rate, density, temperature and / or flow velocity
CN212455056U (en) Hydraulic high-frequency flow signal generating device
US6263741B1 (en) Micromechanically produced flow-restriction device
JP3877099B2 (en) Vibration measuring device
US11959788B2 (en) Wide range flow measuring device having two Coriolis meters arranged in series and a bypass line to bypass the second Coriolis meter
JP3017567B2 (en) Fluidic flow meter
JPS6370119A (en) Flow rate measuring apparatus
CN111852993B (en) Hydraulic high-frequency flow signal generating device
KR200319312Y1 (en) Flow detect system
SU842480A1 (en) Device for measuring viscosity
JPH06221885A (en) Eddy flowmeter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050323

A521 Written amendment

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20050606

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20050819

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A977 Report on retrieval

Effective date: 20060120

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060302

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A02 Decision of refusal

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A02