JPH10110761A - Shock absorber for heavy load - Google Patents

Shock absorber for heavy load

Info

Publication number
JPH10110761A
JPH10110761A JP35191196A JP35191196A JPH10110761A JP H10110761 A JPH10110761 A JP H10110761A JP 35191196 A JP35191196 A JP 35191196A JP 35191196 A JP35191196 A JP 35191196A JP H10110761 A JPH10110761 A JP H10110761A
Authority
JP
Japan
Prior art keywords
load
shock absorber
shaped metal
heavy
buffer container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35191196A
Other languages
Japanese (ja)
Inventor
Tsukasa Ide
司 井手
Hiroshi Ide
博司 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35191196A priority Critical patent/JPH10110761A/en
Publication of JPH10110761A publication Critical patent/JPH10110761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Control And Safety Of Cranes (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shock absorber to exert a restoration force both in a compression direction and a tension direction and increase a damping force, and perform movement in a vertical direction, a horizontal direction, and an oblique direction, and absorb a shock due to displacement and avoid a rapid load. SOLUTION: Structure is formed such that universal joints 7 and 8 are arranged at the upper and lower ends of a buffering metal fitting 2 and support plates 9 and 10 to support a load are mounted on the tips of the respective universal joints 7 and 8, and a mechanism is such that a rubber body 5 is properly compressed by a pair of U-shaped metal fittings 3 and 4. Further, A contact part 6 is arranged in a manner to protrude downward from the compression plate 19 of the U-shaped metal fitting 3 slid over the lower two ends of the U-shaped metal fitting 3. A pair of U-shaped metal fittings 3 and 4 making contact with the internal part of the U-shaped metal fitting 4 are supported. In this case. The U-shaped metal fitting 3, the compression plate 19, and the contact part 6 are integrally manufactured. Further, the inner side of a buffering container 2 is coated with silicone oil but wear resistance resin may be applied or a resin plate and a metallic plate may be arranged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クレーン等の吊
具、クレーン等による着地、重荷重荷物の壁面への緩
衝、または建造物、高層ビルあるいは鉄塔等の基礎や耐
震装置、コンピュータ室の床面の防振、耐震装置、さら
には車両のサスペンション装置、列車の連結部、岸壁の
防げん装置等において、圧縮・引張の荷重が作用する箇
所で使用される重荷重用緩衝装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hanging tool such as a crane, landing by a crane, buffering of a heavy load on a wall, a foundation of a building, a high-rise building or a steel tower, an earthquake-resistant device, and a floor of a computer room. The present invention relates to a heavy-load shock absorber used at a place where a compressive / tensile load is applied, such as a surface vibration proofing device, a seismic proofing device, a vehicle suspension device, a train connecting portion, a quay protection device, and the like.

【0002】[0002]

【従来の技術】従来の緩衝装置は、荷重が作用し離反す
る金具間に荷重と変位が比例するスプリング、ゴム弾性
体を介在させることによって緩衝するものが一般的であ
る。
2. Description of the Related Art In general, a conventional shock absorber absorbs a shock by interposing a spring or a rubber elastic body, whose load and displacement are proportional to each other, between metal fittings on which a load acts and separates.

【0003】[0003]

【発明が解決しようとする課題】従来の緩衝装置では、
荷重とスプリング、弾性体の変位量とが比例関係にあ
り、小さな力で初期的に大きな変位が望まれている緩衝
装置、例えばクレーン等の吊具、クレーン等による着
地、重荷重荷物の壁面への緩衝、建造物、高層ビルある
いは鉄塔等の基礎や耐震装置、コンピュータ室の床面の
防振、耐震装置、船舶等の係留用ロープ、アンカー等に
おいて、従来の比例関係のものでは緩衝が不十分とな
り、急激に重荷重が働いて衝撃を吸収できにくい場合が
あった。本発明が解決しようとする課題は、従来のこれ
らの問題点を解消し、重荷重による圧縮と引張を一体化
し、圧縮方向と引張方向の両方向に復元力が働き減衰力
を高めるとともに、垂直方向、水平方向および斜め方向
の移動を可能とし、しかも初期変位を大きくするばかり
でなく、変位による衝撃の吸収や急激な荷重を回避で
き、もって緩衝力、変位量を容易に変更できるという重
荷重緩衝装置を提供することにある。
SUMMARY OF THE INVENTION In a conventional shock absorber,
The load is proportional to the amount of displacement of the spring and the elastic body, and a large displacement is initially required with a small force, such as a shock absorber such as a crane or the like, a landing with a crane, etc. In the case of conventional proportional relations, there is no buffer for buildings, foundations such as buildings, high-rise buildings or steel towers, seismic devices, vibration isolation of computer room floors, seismic devices, mooring ropes, anchors for ships, etc. In some cases, the load became sufficient and a heavy load suddenly acted, making it difficult to absorb the impact. The problem to be solved by the present invention is to solve these conventional problems, to integrate compression and tension due to heavy load, to increase the damping force by applying a restoring force in both the compression direction and the tension direction, and to increase the vertical direction. Heavy load buffering that enables horizontal and diagonal movements, and not only increases initial displacement, but also avoids shock absorption and sudden load due to displacement, and can easily change buffering force and displacement. It is to provide a device.

【0004】[0004]

【課題を解決するための手段】かかる課題を解決した本
発明の構成は、 1) 荷重が作用し且つ離反自在な一対の金具からなる
緩衝容器の内部にゴム体を複数個介在させ、前記緩衝容
器の上端および下端に自在継手を設けるとともに、前記
自在継手に荷重を支持する支持板を水平に設けたことを
特徴とする重荷重用緩衝装置 2) 一方の金具の下端に圧縮方向又は引張方向の荷重
が作用する圧縮板を設けたことを特徴とする前記1)記
載の重荷重用緩衝装置 3) 緩衝容器の内部に荷重に対し圧縮方向又は引張方
向に作用するゴム体を複数段配列したことを特徴とする
前記1)又は2)記載の重荷重用緩衝装置 4) 支持板の一端を中央付近に集約し、支持板の他端
を所定間隔離して緩衝装置を複数個取り付けたことを特
徴とする前記1)、2)又は3)記載の重荷重用緩衝装
置 5) 緩衝容器の内側に樹脂プレートを配したことを特
徴とする前記1)〜4)記載の重荷重用緩衝装置 6) 緩衝容器の内側に金属プレートを配したことを特
徴とする前記1)〜4)記載の重荷重用緩衝装置 7) 緩衝容器の内側に油脂を塗布したことを特徴とす
る前記1)〜4)記載の重荷重用緩衝装置にある。
Means for solving the above problems are as follows: 1) A plurality of rubber bodies are interposed in a buffer container made of a pair of metal fittings on which a load is applied and which can be separated. A universal joint is provided at the upper and lower ends of the container, and a support plate for supporting a load is provided horizontally on the universal joint. 2) A heavy-load shock absorber is provided at the lower end of one of the fittings in a compression direction or a tension direction. The shock absorber for heavy load according to the above 1), wherein a compression plate on which a load acts is provided. 3) A plurality of rubber bodies acting in a compression direction or a tension direction with respect to the load are arranged inside the shock absorber container. The heavy-load shock absorber according to the above 1) or 2) 4) One end of the support plate is concentrated near the center, and the other end of the support plate is separated by a predetermined distance, and a plurality of shock absorbers are attached. 1) and 2 above Or 3) The heavy-load buffer device described in 3), 5) A resin plate is disposed inside the buffer container, and the heavy-load buffer device described in 1) to 4) above. 6) A metal plate is disposed inside the buffer container. 7) The heavy-load shock absorber according to any one of the above 1) to 4), wherein an oil or fat is applied to the inside of the shock absorber.

【0005】[0005]

【作用】本発明では、離反自在な一対の金具から形成さ
れる緩衝容器内にゴム体を複数個介在させ、緩衝容器に
自在継手を設けたことにより、重荷重による圧縮と引張
を一体化し且つ垂直方向、水平方向および斜め方向の移
動を可能とした。また、重荷重をかけた初期において
は、ゴム体と金具およびゴム体同士とが点的に接触し、
加圧面積が小さく接触部分に大きな局部応力が作用し、
小さい力で大きく圧縮され、初期において大きな変位を
生じる。荷重が大きくなれば加圧面積が大きくなり、圧
縮応力が小さくなり変位しにくくなる。また、衝撃エネ
ルギーの吸収力も増大する。このように、本発明では、
小さな力で大きな変位を得ることができ、この変位によ
って重荷重による急激な衝撃を緩和できるものとなる。
また、ゴム体の並べ方、ゴム体の数およびゴム体の直径
を変えることで、弾性定数、変位量を容易に変更でき
る。
According to the present invention, a plurality of rubber bodies are interposed in a buffer container formed of a pair of detachable metal fittings, and a universal joint is provided in the buffer container, so that compression and tension due to heavy load are integrated and Vertical, horizontal and diagonal movements are possible. In addition, in the initial stage of applying a heavy load, the rubber body and the metal fittings and the rubber body come into point contact with each other,
The pressure area is small and a large local stress acts on the contact area,
It is greatly compressed by a small force, and initially produces a large displacement. When the load increases, the pressurized area increases, the compressive stress decreases, and displacement becomes difficult. In addition, the absorbing power of impact energy also increases. Thus, in the present invention,
A large displacement can be obtained with a small force, and a sudden impact due to a heavy load can be reduced by this displacement.
Also, by changing the arrangement of the rubber bodies, the number of rubber bodies, and the diameter of the rubber bodies, the elastic constant and the amount of displacement can be easily changed.

【0006】[0006]

【発明の実施の形態】本発明に係る重荷重用緩衝装置
は、建造物、高層ビルあるいは鉄塔等の耐震装置の他、
コンピュータ室の床面の防振、耐震装置、クレーン等の
吊具、クレーン等による着地、重荷重荷物の壁面への緩
衝、船舶等の係留用ロープ、アンカー、タグ・ボートに
よる牽引用ロープの緩衝装置、車両のサスペンション、
列車の連結部、岸壁の防げん装置等に使用できる。本発
明に係る緩衝容器の内側のゴム体との接触面に、ゴムの
摩擦を低減するため、樹脂等をコーティングしたり、ナ
イロン系等の樹脂プレート、ステンレス、真鍮、鋼等の
金属プレート等を配したり、シリコン油等の潤滑油を注
入したり、グリースを注入する方法等がある。本発明に
係るゴム体は、合成ゴム、天然ゴム等で製作される。本
発明に係るゴム体の形状は、球形、立方体、楕円形等何
れであっても良い。本発明に係る緩衝容器の形状は、特
に限定されず四角柱、、三角柱等の多角形や円柱等何れ
であっても良い。とりわけ、緩衝容器の形状が四角柱の
時は球形のゴム体を、緩衝容器の形状が円柱の時は立方
体のゴム体を容器の内部にならべて使用することもでき
る。尚、ゴム体の形状については、緩衝容器に収納する
ゴム体の大きさによって、随時変更が可能である。本発
明に係るゴム体の緩衝容器内へのならべ方は、並列、直
列あるいは段数を問わないが、並列にならべると耐荷重
量を増加させ、また直列にならべるとストロークを大き
くすることができる。さらに、段数を増やすと緩衝効果
を増大させ、重荷重に耐える緩衝装置を得ることができ
る。本発明に係るゴム体の数、ゴム体の直径を変えるこ
とで、弾性定数、変位量を容易に変更できる。本発明に
係る重荷重用緩衝装置は、吊り下げ用としても、据え置
き用としても、また、壁面取り付け用としても用いられ
る。本発明に係る緩衝容器、自在継手および支持板は、
耐蝕性且つ強度の大きいステンレス性等で製作される。
BEST MODE FOR CARRYING OUT THE INVENTION The shock absorber for heavy loads according to the present invention can be used not only for seismic devices such as buildings, high-rise buildings or steel towers,
Vibration isolation of computer room floors, seismic devices, hanging equipment such as cranes, landing with cranes, buffering of heavy loads on the wall, mooring ropes for ships, anchoring, buffering of tow ropes by tugs and boats Equipment, vehicle suspension,
It can be used for train connections, quay protection devices, etc. On the contact surface with the rubber body inside the buffer container according to the present invention, in order to reduce rubber friction, a resin or the like is coated, a resin plate of nylon or the like, a metal plate of stainless steel, brass, steel or the like is used. Or lubricating oil such as silicone oil, or grease. The rubber body according to the present invention is made of synthetic rubber, natural rubber, or the like. The shape of the rubber body according to the present invention may be any of a sphere, a cube, an ellipse, and the like. The shape of the buffer container according to the present invention is not particularly limited, and may be any one of a polygon such as a quadrangular prism, a triangular prism, a cylinder, and the like. In particular, when the shape of the buffer container is a quadrangular prism, a spherical rubber body can be used, and when the shape of the buffer container is a column, a cubic rubber body can be used inside the container. The shape of the rubber body can be changed at any time depending on the size of the rubber body housed in the buffer container. The rubber bodies according to the present invention may be arranged in the buffer container in any of parallel, series or the number of stages. However, when arranged in parallel, the load capacity can be increased, and when arranged in series, the stroke can be increased. Further, when the number of stages is increased, the buffer effect is increased, and a buffer device that can withstand heavy loads can be obtained. The elastic constant and the amount of displacement can be easily changed by changing the number of rubber bodies and the diameter of the rubber bodies according to the present invention. The shock absorber for heavy loads according to the present invention is used for hanging, for stationary, and for wall mounting. The buffer container, the universal joint and the support plate according to the present invention,
It is made of stainless steel with high corrosion resistance and strength.

【0007】[0007]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。本実施例は、本発明の重荷重用緩衝装置をビルの耐
震装置として使用した例である。図1は本発明の第一の
実施例の正面図、図2は第一の実施例の側面図、図3は
図1のA−Aにおける断面図、図4は図1のB−Bにお
ける断面図、図5は図1のC−Cにおける断面図、図
6、図7は上部から荷重がかかっていない状態を示す説
明図、図8はコ字形金具を示す説明図、図9は緩衝装置
を単数配列した正面図、図10は二本組ユニットとして
使用する正面図、図11は二本組ユニットとして使用す
る平面図、図12は三本組ユニットとして使用する正面
図、図13は三本組ユニットとして使用する平面図であ
る。図中1は重荷重用緩衝装置としての耐震装置、2は
緩衝容器、3、4は緩衝容器2のコ字形金具、5は弾性
体であるゴム体、6はコ字形金具3に設けた接触部、7
は上端の自在継手、8は下端の自在継手、9は上端の支
持板、10は下端の支持板、11は建造物、12は基
礎、19は摺動するコ字形金具3の圧縮板、20はボル
トである。 第一実施例(図1〜図13参照) 本実施例は、四角柱のステンレス製の緩衝容器2を形成
する一対のコ字形金具3、4を互い違いに組み合わせ
て、緩衝容器2の内部に複数段球形のゴム体5を互いに
接触するように多数個並列にならべて挟み、緩衝金具2
の上端および下端にステンレス製の自在継手7、8を設
けるとともに、それぞれの自在継手7、8の先端に荷重
を支持するステンレス製の支持板9、10を取り付けた
構造であり、ゴム体5を一対のコ字形金具3、4で適度
に圧縮した機構になっている。また、コ字形金具3の下
方両端に摺動するコ字形金具3の圧縮板19より下方へ
突き出るように接触部6を設け、コ字形金具4の内部に
接触して一対のコ字形金具3、4を支持するようにして
いる。この時、コ字形金具3の圧縮板19および接触部
6は、一体に製作される。さらに、緩衝容器2の内側に
は、シリコン油を塗布してあるが、耐摩耗性の樹脂をコ
ーティングしたり、樹脂プレート、金属プレート等を配
したものもある。本実施例の耐震装置1は、ビルの基
礎、梁等に設置して使用するものである。図6、8に示
すように、荷重がかかっておらず、ゴム体5が圧縮され
ていない状態にある緩衝装置を使用される荷重の程度に
合わせて下記のように設定する。耐震装置1の緩衝容器
2内の一対のコ字形金具3、4間にゴム体5を少し圧縮
した状態で挟んでコ字形金具3の圧縮板19下方の下段
に設置し、一対のコ字形金具3、4間にゴム体5を少し
圧縮した状態で挟んでコ字形金具2の圧縮板19上方の
上段に設置する。緩衝容器2において伸縮性は一対のコ
字形金具3、4の間にならべて挟んだ複数のゴム体5の
弾性定数によって得るようになっている。すなわち、耐
震装置1における垂直方向の荷重に対しては緩衝容器2
内のゴム体5の弾性力により緩衝される。また、耐震装
置1における水平および斜め方向の荷重に対しては、緩
衝金具2に設けた自在継手7、8によって衝撃による移
動が許容される。すなわち、図1および図2に示すよう
に、上から重荷重がかかると支持板9で荷重を支持し、
支柱17および自在継手7を介してコ字形金具3がコ字
形金具4内を摺動し、一対のコ字形金具3、4間に挟ま
れた下段のゴム体5を圧縮して重荷重による急激な衝撃
を緩衝する。この時一対のコ字形金具3、4間に挟まれ
た上段のゴム体5は荷重に対し引張側に作用する。ま
た、下から重荷重がかかると支持板10で荷重を支持
し、支柱18および自在継手8を介して荷重がかかり一
対のコ字形金具3、4間に挟まれた上段のゴム体5を圧
縮して緩衝する。この時一対のコ字形金具3、4間に挟
まれた下段のゴム体5は荷重に対し引張側に作用する。
このように、ゴム体5を緩衝容器2内に複数段ならべた
ことにより上下方向の重荷重による圧縮と引張が一体と
なって緩衝作用が起こるようになっている。すなわち、
圧縮方向と引張方向の両方向に復元力が働き、減衰力が
高くなる。また、自在継手9、10の働きにより、水平
方向、斜め方向の移動が許容される。次に、図9に示す
ように、耐震装置1を床面に対して垂直に取り付けると
ともに、耐震装置1を側壁に対して垂直に取り付ける
と、垂直方向、水平方向の揺れに対応できる。また、水
平方向、斜め方向に揺れが生じる場合には、図10およ
び図11に示すように、耐震装置1を床面に対して設置
すると、水平、斜め方向の重荷重に対する衝撃を緩衝
し、横揺れの振動に対応できる。また、図12および図
13に示すように、耐震装置1を床面に対して三角錐に
連結すると一つのユニットとして一体化できる。しか
も、垂直方向、水平方向および斜め方向の揺れに対応で
き、かかる重荷重に対し衝撃を緩衝することができる。
さらに、耐震装置1を側壁に対して三角錐に配列して取
り付けると、主に水平方向の緩衝装置として使用でき
る。これは、岸壁の防げん材、倉庫の壁面等に利用でき
る。本実施例においては、緩衝容器2における伸縮性を
複数のゴム体5の弾性定数によって得ているので、特に
優れた非線形的伸縮特性を有している。また、ゴム体5
を並列に緩衝容器2内に複数個ならべたので、ゴム体5
の数が増えるに従い耐荷重量が増えることになる。さら
に、緩衝容器2内のゴム体5の数、ゴム体5の直径は、
必要な緩衝に応じて選択することができるが、重荷重に
耐える緩衝装置の場合、比較的小さなゴム体5を複数な
らべて使用すると緩衝効果が上がる。 第二実施例(図14、15参照) 図14は本発明の第二の実施例を示す緩衝容器の斜視
図、図15は第二の実施例の変形例を示す緩衝容器の斜
視図である。図中13は円柱形の緩衝容器、13a、1
3bは緩衝容器13のコ字形金具、14は円柱形の緩衝
容器、14a、14bは緩衝容器14のコ字形金具であ
る。重荷重用緩衝装置を設置する場所によっては、緩衝
容器2の形状が角柱より円柱の方が好ましい場合がある
ので、設置場所に応じて適宜形状を変更することができ
る。この場合、緩衝容器2内のゴム体5の形状は、立方
体等でも可能である。本実施例も同様に、円柱の緩衝容
器13が一対のコ字形金具13a、13bで形成され、
コ字形金具13a、13bを互い違いに組み合わせ、内
部にゴム体5を複数個挟み一対のコ字形金具13a、1
3bを摺動させ、重荷重による圧縮、引張を一体化し衝
撃を緩衝する。図15に示すような円柱の形状の緩衝容
器14も同様に作用し緩衝する。次に、スプリングとゴ
ム体5について荷重と変形量との関係をグラフにすると
図17のようになる。図中15は直線、16は曲線であ
る。スプリングは直線15であり比例関係にあるが、ゴ
ム体5は非線形的な曲線16であり、特に変形初期段階
ではなだらかな右上がり曲線となっている。すなわち、
変形初期段階では、小さな力で大きく変形することを示
している。また、ゴム体5を緩衝容器2内に並列になら
べたので、耐荷重量が増加し重荷重に十分耐えることが
できる。
Embodiments of the present invention will be described below with reference to the drawings. This embodiment is an example in which the heavy-load shock absorber of the present invention is used as a building earthquake-resistant device. 1 is a front view of a first embodiment of the present invention, FIG. 2 is a side view of the first embodiment, FIG. 3 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 5 is a cross-sectional view taken along the line CC of FIG. 1, FIGS. 6 and 7 are explanatory views showing a state where no load is applied from above, FIG. 8 is an explanatory view showing a U-shaped bracket, and FIG. FIG. 10 is a front view in which a single unit is arranged, FIG. 10 is a front view in which the device is used as a two-unit unit, FIG. 11 is a plan view in which the device is used as a two-unit unit, FIG. It is a top view used as a three-piece set unit. In the figure, reference numeral 1 denotes an earthquake-resistant device as a heavy-load shock absorber, 2 denotes a shock-absorbing container, 3 and 4 denote U-shaped brackets of the shock-absorbing container 2, 5 denotes a rubber body which is an elastic body, and 6 denotes a contact portion provided on the U-shaped bracket 3. , 7
Is a universal joint at an upper end, 8 is a universal joint at a lower end, 9 is a support plate at an upper end, 10 is a support plate at a lower end, 11 is a building, 12 is a foundation, 19 is a compression plate of a sliding U-shaped metal fitting 3, 20 Is a bolt. First Embodiment (see FIGS. 1 to 13) In this embodiment, a pair of U-shaped metal fittings 3 and 4 forming a rectangular pillar-shaped stainless steel buffer container 2 are alternately combined, and a plurality of A large number of corrugated rubber bodies 5 are arranged in parallel so as to be in contact with each other and sandwiched.
Are provided with stainless steel universal joints 7 and 8 at the upper end and the lower end thereof, and stainless steel supporting plates 9 and 10 for supporting loads are attached to the ends of the universal joints 7 and 8, respectively. The mechanism is appropriately compressed by a pair of U-shaped brackets 3 and 4. Further, a contact portion 6 is provided at both lower ends of the U-shaped metal fitting 3 so as to protrude downward from the compression plate 19 of the U-shaped metal fitting 3, and comes into contact with the inside of the U-shaped metal fitting 4 to form a pair of U-shaped metal fittings 3. 4 is supported. At this time, the compression plate 19 and the contact portion 6 of the U-shaped bracket 3 are integrally manufactured. Furthermore, although silicone oil is applied to the inside of the buffer container 2, there is a case in which a wear-resistant resin is coated, or a resin plate, a metal plate, or the like is provided. The earthquake-resistant device 1 of the present embodiment is used by being installed on a foundation, a beam or the like of a building. As shown in FIGS. 6 and 8, the shock absorber in which the load is not applied and the rubber body 5 is not compressed is set as follows according to the degree of the load to be used. The rubber body 5 is sandwiched between the pair of U-shaped fittings 3 and 4 in the shock-absorbing container 2 of the earthquake-resistant device 1 in a state of being slightly compressed, and is installed at a lower stage below the compression plate 19 of the U-shaped fitting 3 to form a pair of U-shaped fittings. The rubber body 5 is placed in the upper part of the U-shaped metal fitting 2 above the compression plate 19 with the rubber body 5 being slightly compressed between the third and fourth parts. The elasticity of the buffer container 2 is obtained by the elastic constants of a plurality of rubber members 5 sandwiched between a pair of U-shaped brackets 3 and 4. That is, for the vertical load on the seismic device 1, the shock absorber 2
It is buffered by the elastic force of the rubber member 5 inside. In addition, the universal joints 7 and 8 provided on the shock-absorbing fitting 2 allow the shock-resistant movement of the seismic device 1 with respect to horizontal and oblique loads. That is, as shown in FIGS. 1 and 2, when a heavy load is applied from above, the load is supported by the support plate 9,
The U-shaped bracket 3 slides in the U-shaped bracket 4 via the column 17 and the universal joint 7, compresses the lower rubber body 5 sandwiched between the pair of U-shaped brackets 3, 4, and suddenly generates a heavy load. Buffer shocks. At this time, the upper rubber body 5 sandwiched between the pair of U-shaped brackets 3 and 4 acts on the tensile side against the load. When a heavy load is applied from below, the load is supported by the support plate 10, the load is applied via the column 18 and the universal joint 8, and the upper rubber body 5 sandwiched between the pair of U-shaped brackets 3 and 4 is compressed. And buffer. At this time, the lower rubber body 5 sandwiched between the pair of U-shaped brackets 3, 4 acts on the tensile side against the load.
As described above, by arranging the rubber members 5 in the buffer container 2 in a plurality of stages, the compression and the tension due to the heavy load in the vertical direction are united to generate the buffering action. That is,
A restoring force acts in both the compression direction and the tension direction, and the damping force increases. The movement of the universal joints 9 and 10 allows horizontal and oblique movements. Next, as shown in FIG. 9, when the anti-seismic device 1 is attached vertically to the floor surface and the anti-seismic device 1 is installed vertically to the side wall, it is possible to cope with vertical and horizontal shaking. Further, in the case where horizontal and diagonal shaking occurs, as shown in FIGS. 10 and 11, when the anti-seismic device 1 is installed on the floor, the shock against the horizontal and diagonal heavy loads is buffered, It can respond to roll vibration. In addition, as shown in FIGS. 12 and 13, when the earthquake-resistant device 1 is connected to a floor with a triangular pyramid, it can be integrated as one unit. In addition, it is possible to cope with vertical, horizontal and oblique swings, and it is possible to buffer an impact against such a heavy load.
Further, when the seismic device 1 is arranged and attached in a triangular pyramid shape with respect to the side wall, it can be used mainly as a horizontal shock absorber. This can be used for fenders for quays, warehouse walls, etc. In the present embodiment, since the elasticity of the buffer container 2 is obtained by the elastic constants of the plurality of rubber bodies 5, it has particularly excellent non-linear elasticity. In addition, the rubber body 5
Are arranged in parallel in the buffer container 2, so that the rubber body 5
As the number increases, the load capacity increases. Further, the number of rubber bodies 5 in the buffer container 2 and the diameter of the rubber bodies 5 are
It can be selected according to the required cushioning. However, in the case of a cushioning device that can withstand a heavy load, the use of a plurality of relatively small rubber bodies 5 increases the cushioning effect. Second Embodiment (see FIGS. 14 and 15) FIG. 14 is a perspective view of a buffer container showing a second embodiment of the present invention, and FIG. 15 is a perspective view of a buffer container showing a modification of the second embodiment. . In the figure, 13 is a cylindrical buffer container, 13a, 1
3b is a U-shaped bracket of the buffer container 13, 14 is a columnar buffer container, and 14a and 14b are U-shaped brackets of the buffer container 14. Depending on the place where the shock absorber for heavy load is installed, the shape of the buffer container 2 may be more preferably a cylinder than a prism, so that the shape can be appropriately changed depending on the installation location. In this case, the shape of the rubber body 5 in the buffer container 2 may be a cube or the like. Similarly, in this embodiment, a cylindrical buffer container 13 is formed by a pair of U-shaped brackets 13a and 13b.
The U-shaped brackets 13a and 13b are alternately combined, and a pair of U-shaped brackets 13a and 1
3b is slid to integrate the compression and tension due to heavy load to buffer the impact. A cylinder-shaped buffer container 14 as shown in FIG. 15 acts and buffers similarly. Next, the relationship between the load and the deformation amount of the spring and the rubber body 5 is graphed as shown in FIG. In the figure, 15 is a straight line, and 16 is a curve. The spring is a straight line 15 and is in a proportional relationship, but the rubber body 5 is a non-linear curve 16, and particularly has a gentle upward curve in the initial stage of deformation. That is,
In the initial stage of deformation, it is shown that large deformation occurs with a small force. In addition, since the rubber members 5 are arranged in parallel in the buffer container 2, the load bearing capacity is increased, and it is possible to sufficiently withstand heavy loads.

【0008】[0008]

【発明の効果】以上により本発明によれば、重荷重によ
る圧縮と引張を一体化し、圧縮方向と引張方向の両方向
に復元力が働き減衰力を高めるとともに、垂直方向、水
平方向および斜め方向の移動を可能とする。また、緩衝
装置を上下、左右方向に設置し、あるいは円錐形に複数
個設置することにより、垂直、水平および斜め方向の重
荷重による衝撃を緩衝することができる。また小さな力
で大きな初期変位を得ることができ、よって初期の大き
な変位量で衝撃を緩衝することができる。また、ゴム体
の並べ方、ゴム体の増減およびゴム体の直径の変更によ
って、その弾性定数、変位量を容易に調整でき、目的に
応じた最適の緩衝のものを得ることができる。さらに、
緩衝容器の内側のゴム体との接触面を樹脂等でコーティ
ングしたり、金属プレート、樹脂プレートを配したり、
潤滑油を塗布したり、あるいはグリースを注入すること
によりゴムの摩擦を低減し緩衝の効果を上げることがで
きる。
As described above, according to the present invention, compression and tension due to heavy load are integrated, a restoring force acts in both the compression direction and the tension direction to increase the damping force, and the vertical, horizontal and oblique directions are increased. Enables movement. In addition, by installing the shock absorbers in the vertical and horizontal directions, or by installing a plurality of shock absorbers in a conical shape, it is possible to absorb shocks due to heavy loads in the vertical, horizontal and oblique directions. In addition, a large initial displacement can be obtained with a small force, so that an impact can be buffered with a large initial displacement. In addition, the elastic constant and the displacement can be easily adjusted by arranging the rubber bodies, increasing and decreasing the rubber bodies, and changing the diameter of the rubber bodies, so that an optimal buffer according to the purpose can be obtained. further,
The contact surface with the rubber body inside the buffer container is coated with resin etc., a metal plate, a resin plate is arranged,
By applying lubricating oil or injecting grease, the friction of rubber can be reduced and the buffering effect can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例の正面図である。FIG. 1 is a front view of a first embodiment of the present invention.

【図2】第一の実施例の側面図である。FIG. 2 is a side view of the first embodiment.

【図3】図1のA−Aにおける断面図である。FIG. 3 is a sectional view taken along line AA of FIG.

【図4】図1のB−Bににおける断面図である。FIG. 4 is a sectional view taken along line BB of FIG. 1;

【図5】図1のC−Cにおける断面図である。FIG. 5 is a sectional view taken along the line CC in FIG. 1;

【図6】上部から荷重がかかっていない状態を示す説明
図である。
FIG. 6 is an explanatory diagram showing a state where no load is applied from above.

【図7】上部から荷重がかかっていない状態を示す説明
図である。
FIG. 7 is an explanatory diagram showing a state where no load is applied from above.

【図8】コ字形金具を示す説明図である。FIG. 8 is an explanatory view showing a U-shaped bracket.

【図9】緩衝装置を単数配列した正面図である。FIG. 9 is a front view in which a single shock absorber is arranged.

【図10】二本組ユニットとして使用する正面図であ
る。
FIG. 10 is a front view used as a double-unit unit.

【図11】二本組ユニットとして使用する平面図であ
る。
FIG. 11 is a plan view used as a double unit.

【図12】三本組ユニットとして使用する正面図であ
る。
FIG. 12 is a front view used as a triple unit.

【図13】三本組ユニットとして使用する平面図であ
る。
FIG. 13 is a plan view used as a triple unit.

【図14】本発明の第二の実施例を示す緩衝容器の斜視
図である。
FIG. 14 is a perspective view of a buffer container showing a second embodiment of the present invention.

【図15】第二の実施例の変形例を示す緩衝容器の斜視
図である。
FIG. 15 is a perspective view of a buffer container showing a modification of the second embodiment.

【図16】図14のD−Dにおける断面図である。FIG. 16 is a sectional view taken along the line DD in FIG. 14;

【図17】スプリングおよびゴム体について荷重と変形
量との関係を示すグラフである。
FIG. 17 is a graph showing a relationship between a load and a deformation amount of a spring and a rubber body.

【符号の説明】[Explanation of symbols]

1 耐震装置 2 緩衝容器 3 コ字形金具 4 コ字形金具 5 ゴム体 6 接触部 7 自在継手 8 自在継手 9 支持板 10 支持板 11 建造物 11a 部材 12 基礎 12a 部材 13 円柱の緩衝容器 13a コ字形金具 13b コ字形金具 14 円柱の緩衝容器 14a コ字形金具 14b コ字形金具 15 直線 16 曲線 17 支柱 18 支柱 19 圧縮板 20 ボルト REFERENCE SIGNS LIST 1 Seismic device 2 Buffer container 3 U-shaped bracket 4 U-shaped bracket 5 Rubber body 6 Contact part 7 Universal joint 8 Universal joint 9 Support plate 10 Support plate 11 Building 11a Member 12 Foundation 12a Member 13 Cylindrical buffer container 13a U-shaped bracket 13b U-shaped bracket 14 Cylindrical buffer container 14a U-shaped bracket 14b U-shaped bracket 15 Straight line 16 Curve 17 Support 18 Support 19 Compression plate 20 Bolt

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 荷重が作用し且つ離反自在な一対の金具
からなる緩衝容器の内部にゴム体を複数個介在させ、前
記緩衝容器の上端および下端に自在継手を設けるととも
に、前記自在継手に荷重を支持する支持板を水平に設け
たことを特徴とする重荷重用緩衝装置。
1. A plurality of rubber bodies are interposed in a buffer container made of a pair of metal fittings capable of applying a load and detachable from each other, a universal joint is provided at an upper end and a lower end of the buffer container, and a load is applied to the universal joint. A shock absorber for heavy loads, characterized in that a support plate for supporting the shock absorber is provided horizontally.
【請求項2】 一方の金具の下端に圧縮方向又は引張方
向の荷重が作用する圧縮板を設けたことを特徴とする請
求項1記載の重荷重用緩衝装置。
2. The shock absorber for heavy loads according to claim 1, wherein a compression plate on which a load in a compression direction or a tension direction acts is provided at a lower end of one of the metal fittings.
【請求項3】 緩衝容器の内部に荷重に対し圧縮方向又
は引張方向に作用するゴム体を複数段配列したことを特
徴とする請求項1又は2記載の重荷重用緩衝装置。
3. The heavy-load shock absorber according to claim 1, wherein a plurality of rubber members acting in a compression direction or a tension direction with respect to a load are arranged in a plurality of stages inside the buffer container.
【請求項4】 支持板の一端を中央付近に集約し、支持
板の他端を所定間隔離して緩衝装置を複数個取り付けた
ことを特徴とする請求項1、2又は3記載の重荷重用緩
衝装置。
4. The heavy load buffer according to claim 1, wherein one end of the support plate is concentrated near the center, and a plurality of shock absorbers are mounted with the other end of the support plate separated by a predetermined distance. apparatus.
【請求項5】 緩衝容器の内側に樹脂プレートを配した
ことを特徴とする請求項1〜4記載の重荷重用緩衝装
置。
5. The shock absorber for heavy loads according to claim 1, wherein a resin plate is provided inside the shock absorber.
【請求項6】 緩衝容器の内側に金属プレートを配した
ことを特徴とする請求項1〜4記載の重荷重用緩衝装
置。
6. The shock absorber for heavy loads according to claim 1, wherein a metal plate is arranged inside the shock absorber.
【請求項7】 緩衝容器の内側に油脂を塗布したことを
特徴とする請求項1〜4記載の重荷重用緩衝装置。
7. The shock absorber for heavy loads according to claim 1, wherein an oil or fat is applied to the inside of the shock absorber.
JP35191196A 1996-08-10 1996-12-10 Shock absorber for heavy load Pending JPH10110761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35191196A JPH10110761A (en) 1996-08-10 1996-12-10 Shock absorber for heavy load

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-227902 1996-08-10
JP22790296 1996-08-10
JP35191196A JPH10110761A (en) 1996-08-10 1996-12-10 Shock absorber for heavy load

Publications (1)

Publication Number Publication Date
JPH10110761A true JPH10110761A (en) 1998-04-28

Family

ID=26527943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35191196A Pending JPH10110761A (en) 1996-08-10 1996-12-10 Shock absorber for heavy load

Country Status (1)

Country Link
JP (1) JPH10110761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011883A (en) * 2001-06-29 2003-01-15 Nippon Steel Corp Float mooring device having nonlinear reaction characteristic
JP2011178277A (en) * 2010-03-01 2011-09-15 Japan Steel Works Ltd:The Shock absorber for railroad vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011883A (en) * 2001-06-29 2003-01-15 Nippon Steel Corp Float mooring device having nonlinear reaction characteristic
JP2011178277A (en) * 2010-03-01 2011-09-15 Japan Steel Works Ltd:The Shock absorber for railroad vehicle

Similar Documents

Publication Publication Date Title
EP0072869A1 (en) Suspension device
JP5079766B2 (en) Isolation platform
CN107604810A (en) A kind of Self-resetting friction pendulum three-dimensional shock damping and insulation bearing
US7254921B2 (en) Rocking hinge bearing system for isolating structures from dynamic/seismic loads
SK286842B6 (en) Method of protecting buildings and objects from dynamic forces caused by acceleration foundation plate, for instance due to earthquake and apparatus for making the same
US11002032B2 (en) Self-centring and energy-dissipating seismic isolation device and system of the elastomeric-frictional type
CN111827098B (en) Trigger type limited negative stiffness high-strength spring damping support
CN210565943U (en) Shock insulation limiter for ship power system
AU2021102479A4 (en) Shape memory alloy-based vibration isolation and attenuation support
JPH01322061A (en) Earthquake isolating device
Constantinou et al. Experimental and theoretical study of a sliding isolation system for bridges
JPH10110761A (en) Shock absorber for heavy load
CN2581320Y (en) Fixed guide tube support type marine platform vibration isolating device
WO2017077482A1 (en) Elastic foundation
JP5285821B1 (en) Isolation structure
US6108986A (en) Earthquake-resistant load-bearing system
JP3866175B2 (en) Articulated bridge protection device
CN106835952A (en) A kind of combined anti-seismic system and combined anti-seismic bridge
JP2937912B2 (en) Seismic isolation device
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
US20220106804A1 (en) Kinematic seismic isolation device
JPH04343982A (en) Dynamic vibration reducer
KR100549373B1 (en) Bearing for diminishing a vibration of a perpendicular direction in a structure
JP2003097642A (en) Vertical quake-absorbing equipment
CN217324968U (en) Omnidirectional energy-consumption type beam falling prevention device