JPH10106520A - Storage battery power supply device - Google Patents

Storage battery power supply device

Info

Publication number
JPH10106520A
JPH10106520A JP25424296A JP25424296A JPH10106520A JP H10106520 A JPH10106520 A JP H10106520A JP 25424296 A JP25424296 A JP 25424296A JP 25424296 A JP25424296 A JP 25424296A JP H10106520 A JPH10106520 A JP H10106520A
Authority
JP
Japan
Prior art keywords
storage battery
power supply
supply device
battery power
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25424296A
Other languages
Japanese (ja)
Inventor
Fumihiko Yoshii
史彦 吉井
Manabu Kakino
学 垣野
Munehisa Ikoma
宗久 生駒
Takao Matsunami
隆夫 松浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25424296A priority Critical patent/JPH10106520A/en
Publication of JPH10106520A publication Critical patent/JPH10106520A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery power supply device which permits establishing a uniform temp. distribution by suppressing a temp. rise in the case the storage battery power supply device consists of a stack of a plurality of storage batteries for a certain specific power quantity. SOLUTION: Each storage battery 2 formed in a circular column is accommodated in a case 3 formed in an octangular cylinder, and a specified number of such cylindrical cases 3 are coupled together so that an intended storage battery power supply device is accomplished. A coolant flow space A is formed between each battery 2 and case 3 and a coolant flow space B is formed at the angles of each cylindrical case 3, and therefore, if a coolant is sent flowing there, the heat emitted by the batteries 2 is conducted from the contacting parts to the cases 3, and the batteries 2 and cases 3 are cooled by the coolant. A vent 5 is furnished understream the coolant flow path in each case 3, and if the side understream of the space B is held shut, the coolant flows into the cases 3 from the vents 5, so that cooling of the batteries 2 positioned understream is promoted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の単電池を組
み合わせて所定電力量を得る蓄電池電源装置に関し、特
に集合体となる蓄電池の温度上昇を抑える放熱構造を備
えた蓄電池電源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery power supply device for obtaining a predetermined amount of power by combining a plurality of cells, and more particularly to a storage battery power supply device having a heat radiation structure for suppressing a rise in temperature of a storage battery as an assembly. is there.

【0002】[0002]

【従来の技術】多数の単電池を接続して所定電圧、所定
電力量の蓄電池電源装置を構成するとき、多数個の単電
池が密集配置されることになるため、個々の単電池の発
熱やジュール熱等により電源装置が温度上昇する。そこ
で、電池の配列間に空気等の冷媒を流通させて、電池の
温度上昇を抑制することは従来から実施されてきた。
2. Description of the Related Art When a large number of cells are connected to form a storage battery power supply having a predetermined voltage and a predetermined amount of power, a large number of cells are densely arranged. The temperature of the power supply rises due to Joule heat or the like. Therefore, it has been conventionally practiced to circulate a refrigerant such as air between the arrangements of batteries to suppress a rise in the temperature of the batteries.

【0003】[0003]

【発明が解決しようとする課題】しかし、複数列に配置
された電池の間に冷媒を流通させたとき、冷媒流通方向
の下流側に位置する電池は、上流側の電池で温度上昇し
た冷媒により冷却されることになるため冷却効率が低
く、下流側の電池の温度は上流側の電池に比べて高くな
る。また、集積された中央部に位置する電池ほど周囲の
電池からの伝熱を受ける度合いが大きく、温度上昇が激
しくなる。
However, when the refrigerant is circulated between the batteries arranged in a plurality of rows, the batteries located on the downstream side in the direction of the refrigerant flow are caused by the refrigerant whose temperature has been raised by the batteries on the upstream side. Since cooling is performed, the cooling efficiency is low, and the temperature of the downstream battery is higher than that of the upstream battery. In addition, the degree of heat transfer from the surrounding batteries is greater in the battery located in the central portion where the battery is integrated, and the temperature rise becomes more severe.

【0004】このように、集積された電池間の温度格差
が大きくなると、電池性能にも格差が生じやすく、充放
電制御にも障害をもたらし蓄電池電源装置としての信頼
性を低下させることになる。
[0004] As described above, when the temperature difference between the integrated batteries becomes large, a difference in the battery performance is apt to occur, and the charge / discharge control is impaired, so that the reliability as the storage battery power supply device is reduced.

【0005】本発明は、上記のごとき放熱性のばらつき
に伴う蓄電池電源装置の性能低下を抑制すべく、集積さ
れた電池個々の放熱性を向上させる放熱構造を備えた蓄
電池電源装置を提供することを目的とする。
An object of the present invention is to provide a storage battery power supply device having a heat dissipation structure for improving the heat dissipation of each integrated battery in order to suppress the performance degradation of the storage battery power supply device due to the above-mentioned variation in heat dissipation. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明に係る蓄電池電源
装置は、単電池もしくは単電池の集合体を所要数集積し
て所定電力量を得る蓄電池電源装置において、断面外形
形状が長さ方向に一定の柱状に形成された前記単電池も
しくは単電池の集合体を、その外周面が部分的に内接す
る筒状体内に収容し、この筒状体を任意方向に連結する
と共に、前記筒状体内に形成される空間及び/又は筒状
体を相互に連結させたときに生じる空間に冷媒を強制流
通させることを特徴とする。
SUMMARY OF THE INVENTION A storage battery power supply according to the present invention is a storage battery power supply that obtains a predetermined amount of electric power by integrating a required number of cells or a collection of cells in a longitudinal direction. The unit cell or the assembly of unit cells formed in a fixed columnar shape is housed in a cylindrical body whose outer peripheral surface is partially inscribed, and the cylindrical body is connected in an arbitrary direction, and the cylindrical body is The refrigerant is forcibly circulated in a space formed when the space is formed and / or when a cylindrical body is connected to each other.

【0007】上記筒状体は、相互に連結させる連結部が
外面に形成され、任意位置に内部と外部とを連通する開
口部が形成され、熱伝導性に優れた材料で形成すること
ができる。
[0007] The cylindrical body has a connecting portion to be connected to each other formed on an outer surface, an opening for communicating the inside and the outside at an arbitrary position, and can be formed of a material having excellent heat conductivity. .

【0008】上記構成によれば、断面外形形状が長さ方
向に一定の柱状に形成された前記単電池もしくは単電池
の集合体を、その外周面が部分的に内接する筒状体内に
収容し、この筒状体を連結部により任意方向に連結する
と、単電池もしくは単電池の集合体と筒状体との間及び
/又は筒状体間に形成される空間が生じるので、この空
間に冷媒を流通させる。単電池もしくは単電池の集合体
からの放熱は、筒状体との間を流れる冷媒により直接的
に冷却されるのと、熱伝導性のよい筒状体に伝熱した熱
が筒状体の内外を流れる冷媒により間接的に冷却される
のと、2通りに行われることになる。筒状体は互いに連
結されて全体としても放熱し、多数に形成された冷媒流
路で冷却されるので、部分的な温度格差は抑制される。
また、筒状体に、その内外を連通する開口部を要所に設
けると、冷媒の流路が増し、冷媒の流速の変化も生じる
ので、より効果的な冷却を実施することができる。
According to the above construction, the unit cell or the assembly of unit cells, whose cross-sectional outer shape is formed in a constant column shape in the length direction, is housed in a cylindrical body whose outer peripheral surface is partially inscribed. When the cylindrical body is connected in any direction by the connecting portion, a space is formed between the unit cells or the aggregate of the unit cells and the cylindrical body and / or a space formed between the cylindrical bodies. Is distributed. The heat radiated from the single cell or the aggregate of the single cells is directly cooled by the refrigerant flowing between the single cell and the cylindrical body, and the heat transferred to the cylindrical body having good thermal conductivity is generated by the heat of the cylindrical body. Indirect cooling by the refrigerant flowing inside and outside is performed in two ways. The tubular bodies are connected to each other and dissipate heat as a whole, and are cooled by a large number of formed refrigerant channels, so that a partial temperature difference is suppressed.
Further, when an opening communicating the inside and outside of the tubular body is provided at a key point, the flow path of the coolant increases and the flow speed of the coolant changes, so that more effective cooling can be performed.

【0009】[0009]

【発明の実施の形態】以下、添付図面を参照して本発明
の一実施形態について説明し、本発明の理解に供する。
尚、以下の実施形態は本発明を具体化した一例であっ
て、本発明の技術的範囲を限定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiments are examples embodying the present invention and do not limit the technical scope of the present invention.

【0010】図1は、本実施形態に係る蓄電池電源装置
1の構成を示す斜視図である。蓄電池2を挿入した筒状
ケース(筒状体)3を4個連結した状態を示している
が、同じ構成を図示右方向及び下方向に連続して、所要
数の蓄電池2を収容した筒状ケース3が連結される。
又、ここで示す蓄電池2は、複数の単電池を直列接続し
た単電池の集合体として構成されている。電気的な接続
構成は省略しているが、連結した蓄電池2、2……を接
続することによって、所定の出力電圧と電力量が得られ
るよう構成される。
FIG. 1 is a perspective view showing the configuration of a storage battery power supply device 1 according to this embodiment. The figure shows a state in which four cylindrical cases (cylindrical bodies) 3 into which the storage batteries 2 are inserted are connected, and the same configuration is continuously formed in the rightward and downward directions in the drawing to form a cylindrical shape in which a required number of storage batteries 2 are accommodated. Case 3 is connected.
The storage battery 2 shown here is configured as an aggregate of unit cells in which a plurality of unit cells are connected in series. Although an electrical connection configuration is omitted, a predetermined output voltage and a predetermined amount of power can be obtained by connecting the connected storage batteries 2, 2,....

【0011】図1において、蓄電池2は円柱形に形成さ
れており、筒状ケース3は断面形状8角形の筒に形成さ
れているので、筒状ケース3内に蓄電池2を挿入する
と、蓄電池2は円周部の長さ方向の4箇所で筒状ケース
3の内面に接し、その他の部分では筒状ケース3の内部
に空間Aを形成する。また、筒状ケース3、3……は互
いに連結し合ったとき、角部に空間Bが形成される。こ
の空間Bは、蓄電池2を収容した筒状ケース3を複数個
連結し、これを収納ケース4内に収めて蓄電池電源装置
1を構成したとき、個々の筒状ケース3の角部にも形成
させることができる。これらの空間A及び空間Bに冷媒
としての空気を流通させることにより、効果的に冷却を
行うことができる。
In FIG. 1, the storage battery 2 is formed in a cylindrical shape, and the cylindrical case 3 is formed in an octagonal cross-sectional shape. When the storage battery 2 is inserted into the cylindrical case 3, Are in contact with the inner surface of the cylindrical case 3 at four locations in the longitudinal direction of the circumferential portion, and form a space A inside the cylindrical case 3 at other portions. When the cylindrical cases 3, 3, ... are connected to each other, a space B is formed at a corner. This space B is also formed at the corners of the individual cylindrical cases 3 when a plurality of cylindrical cases 3 accommodating the storage batteries 2 are connected and stored in the storage case 4 to constitute the storage battery power supply device 1. Can be done. By allowing air as a refrigerant to flow through these spaces A and B, cooling can be performed effectively.

【0012】前記筒状ケース3は、アルミニウム等の熱
伝導性のよい材料で形成されているので、蓄電池2から
直接、間接的に熱を奪うと共に、連結された相互間で熱
伝導させるので、蓄電池電源装置1として多数集積させ
たときにも、全体の温度の均一化を促進する。
Since the cylindrical case 3 is made of a material having good heat conductivity such as aluminum, it directly and indirectly removes heat from the storage battery 2 and conducts heat between the connected batteries. Even when a large number of storage battery power supplies 1 are integrated, uniformization of the entire temperature is promoted.

【0013】また、筒状ケース3には、図1に示すよう
に、通気孔(開口部)5を設けることができる。この通
気孔5は、図示するように8角形に形成された筒状ケー
ス3の空間Bに接する狭い辺の奥側に開設することによ
り、図1に示す蓄電池電源装置1の手前側を冷媒の入口
に設定し、図2に示すように、奥側を遮蔽板6により空
間Bに相当する位置の通気を遮蔽すると、空間Aを流通
した空気は蓄電池2を冷却して奥側に抜け、空間Bから
入った空気は前記通気孔5から空間Aに入って奥側に抜
ける。蓄電池2は複数個の単電池を連結して構成されて
いるので、空気流通の下流側は冷却効率が低下して温度
上昇が大きくなるが、通気孔5から侵入する空気は下流
側の単電池を冷却することになるので、冷却による温度
の均一化を図ることができる。
Further, as shown in FIG. 1, a ventilation hole (opening) 5 can be provided in the cylindrical case 3. The vent hole 5 is formed in the back side of the narrow side in contact with the space B of the cylindrical case 3 formed in an octagon as shown in the figure, so that the front side of the storage battery power supply device 1 shown in FIG. When it is set at the entrance and the ventilation at the position corresponding to the space B is blocked by the shielding plate 6 on the back side as shown in FIG. 2, the air flowing through the space A cools the storage battery 2 and escapes to the back side, The air entering from B enters the space A from the ventilation hole 5 and escapes to the back side. Since the storage battery 2 is formed by connecting a plurality of unit cells, the cooling efficiency is reduced and the temperature rise is increased on the downstream side of the air circulation. Is cooled, so that the temperature can be made uniform by cooling.

【0014】尚、前記遮蔽板6は、図1に示すように筒
状ケース3の一端に遮蔽板6を形成しておき、筒状ケー
ス3を連結したとき、隣接間で互いに当接し、空間Bの
冷媒流通の下流側を遮蔽する。この遮蔽板6は、所要数
に集積される筒状ケース3に別途取り付けるようにして
もよい。
The shielding plate 6 has a shielding plate 6 formed at one end of the cylindrical case 3 as shown in FIG. The downstream side of the refrigerant flow of B is shielded. The shielding plates 6 may be separately attached to the required number of cylindrical cases 3 to be integrated.

【0015】次に、筒状ケース3の連結構造について説
明する。図3及び図4に連結構造の例を断面図として示
す。
Next, the connection structure of the cylindrical case 3 will be described. 3 and 4 show examples of the connection structure as cross-sectional views.

【0016】図3に示す連結構造は、8角形に形成され
た筒状ケース3aの2辺に凹部7、他の2辺に凸部8を
形成し、隣り合う筒状ケース3aの凹部7と凸部8とを
嵌め合わせることによって、筒状ケース3a、3a……
が互いに連結される。
The connecting structure shown in FIG. 3 is such that a concave portion 7 is formed on two sides of a cylindrical case 3a formed in an octagon, and a convex portion 8 is formed on the other two sides. The cylindrical case 3a, 3a,...
Are connected to each other.

【0017】図4に示す連結構造は、8角形に形成され
た筒状ケース3bの4辺に全て凹部7を形成したもの
で、連結は別ピースとなる連結部材9の両端を隣り合う
間の筒状ケース3b、3bの凹部7、7間に嵌め込むこ
とによりなされる。この連結部材9は、同図(b)に示
すように、長さを変えて連結間隔を変化できるように形
成することができ、多数集積した筒状ケース3bの周囲
に冷媒流通の空間を形成することもできる。
The connecting structure shown in FIG. 4 is one in which concave portions 7 are formed on all four sides of a cylindrical case 3b formed in an octagon, and the connection is made by connecting both ends of a connecting member 9 which is a separate piece. This is performed by fitting between the concave portions 7, 7 of the cylindrical cases 3b, 3b. The connecting member 9 can be formed so that the connecting interval can be changed by changing the length, as shown in FIG. 3B, and a space for refrigerant circulation is formed around the cylindrical case 3b in which many are integrated. You can also.

【0018】上記例に示したように、筒状ケース3は上
下左右に自由に連結できるので、蓄電池電源装置1とし
て所望される出力電圧、電力量に応じ、あるいは蓄電池
電源装置1を搭載するスペースに応じて、自在に集積数
を変化させ、集積形状を変化させることができる。図5
は比較的小容量の蓄電池電源装置1を構成した例で、横
並列に1段積みにした構成である。図6は縦横に4列づ
つに集積した例、図7は変形4段積みにした例である。
このように、集積数や集積形状は自在に変化させ得るの
で、例えば、電気自動車の駆動電源として利用する場合
のように、搭載スペースに制約を受ける場合でも、充分
に対応させることができる。
As shown in the above example, since the cylindrical case 3 can be freely connected in the up, down, left and right directions, the space according to the output voltage and the amount of power desired for the storage battery power supply 1 or the space in which the storage battery power supply 1 is mounted. , The number of accumulations can be freely changed, and the accumulation shape can be changed. FIG.
Is an example in which a relatively small-capacity storage battery power supply device 1 is configured, and has a configuration in which the storage battery power supply devices 1 are stacked in a horizontal parallel manner. FIG. 6 shows an example in which four columns are stacked vertically and horizontally, and FIG. 7 shows an example in which a modified four-stage stack is used.
As described above, since the number of accumulations and the shape of the accumulation can be freely changed, even when the mounting space is restricted, for example, when used as a driving power source of an electric vehicle, it is possible to sufficiently cope with the situation.

【0019】尚、筒状ケース3は、以上説明したような
8角形でなく、図8に示すように4角形に形成すること
も、あるいは、蓄電池2が円柱形状でなく角柱形状であ
る場合には、円筒形に形成すれば、上記構成と同様に蓄
電池2と筒状ケース3とを部分的に接触させ、周囲に冷
媒通路を形成する形態を実現することができる。図8に
示す4角形の筒に形成した筒状ケース3cの場合は、蓄
電池2の周囲に冷媒通路を広く形成することができ、こ
こを流通させる冷媒により蓄電池2と筒状ケース3cと
を冷却させることになる。また、集積した複数の筒状ケ
ース3cを収納する収納ケースとの間に間隔を設けて、
その間隔部分に冷媒を流通させることもできる。
The cylindrical case 3 may be formed not in the octagon as described above but in a quadrangle as shown in FIG. 8, or when the storage battery 2 has a prismatic shape instead of a cylindrical shape. If it is formed in a cylindrical shape, it is possible to realize a form in which the storage battery 2 and the cylindrical case 3 are partially brought into contact with each other to form a refrigerant passage around the same as in the above configuration. In the case of the cylindrical case 3c formed in a quadrangular cylinder shown in FIG. 8, a refrigerant passage can be formed widely around the storage battery 2, and the storage battery 2 and the cylindrical case 3c are cooled by the refrigerant flowing therethrough. Will be. In addition, an interval is provided between the storage case that stores the plurality of cylindrical cases 3c that have been accumulated,
A coolant can be circulated in the space.

【0020】以上説明した筒状ケース3、3a、3b、
3cは、アルミニウム等の熱伝導性に優れた材料により
形成されるので、収容した蓄電池2の発熱を奪い、相互
間の熱伝導により外部に放熱するので、温度分布の均一
化はより促進される。
The above described cylindrical cases 3, 3a, 3b,
3c is made of a material having excellent thermal conductivity such as aluminum, so that the stored battery 2 is deprived of heat and radiated to the outside by heat conduction between the batteries, so that the temperature distribution is more uniform. .

【0021】[0021]

【実施例】図1に示す実施形態により単電池を6個直列
接続した蓄電池2を42個集積した蓄電池電源装置1を
構成し、図9に示す比較例とする蓄電池電源装置10と
ともに、使用時の温度分布について以下の検証を実施し
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiment shown in FIG. 1 constitutes a storage battery power supply device 1 in which 42 storage batteries 2 in which six unit cells are connected in series are integrated and used together with a storage battery power supply device 10 as a comparative example shown in FIG. The following verification was carried out for the temperature distribution of.

【0022】比較例とする蓄電池電源装置10の概略構
成を説明する。図9に示すように、本実施例と同様に、
6個の単電池を直列接続した蓄電池2を横並列で5段積
みにして42個を集積したもので、3mm厚のポリプロ
ピレン製の蓄電池保持部材11で各積層段の蓄電池2を
保持している。
A schematic configuration of a storage battery power supply device 10 as a comparative example will be described. As shown in FIG. 9, similar to the present embodiment,
The storage batteries 2 in which six unit cells are connected in series are stacked in five rows in a horizontal parallel manner and 42 batteries are integrated, and the storage batteries 2 in each stacked stage are held by a storage battery holding member 11 made of polypropylene having a thickness of 3 mm. .

【0023】温度分布測定の条件は、環境温度24℃
で、各蓄電池電源装置1及び10の蓄電池群を1Ahで
充電しながら、単電池の表面温度が50℃に達した時点
でファンを作動させ、蓄電池2の長さ方向に3リットル
/cm2 の空気を流通させた。
The conditions for measuring the temperature distribution are as follows: an ambient temperature of 24 ° C.
Then, while charging the storage battery group of each of the storage battery power supplies 1 and 10 at 1 Ah, when the surface temperature of the unit cell reached 50 ° C., the fan was operated, and 3 liter / cm 2 in the length direction of the storage battery 2 was used. Air was circulated.

【0024】温度測定は、ファン作動開始から2時間後
の単電池の表面温度を測定した。測定は、集積された最
外列より2層目の蓄電池列に対して実施し、長さ370
mmの蓄電池2に対して、空気流通の上流端から50m
m(点1)、170mm(点2)、260mm(点
3)、及び340mm(点4)の各位置での温度を熱電
対を用いて測定した。
In the temperature measurement, the surface temperature of the cell was measured two hours after the start of the operation of the fan. The measurement is performed on the battery row of the second layer from the integrated outermost row, and has a length of 370
50 m from the upstream end of the air flow
The temperature at each position of m (point 1), 170 mm (point 2), 260 mm (point 3), and 340 mm (point 4) was measured using a thermocouple.

【0025】上記温度分布測定結果は、表1及び図10
に示す通りである。
The results of the temperature distribution measurement are shown in Table 1 and FIG.
As shown in FIG.

【0026】[0026]

【表1】 [Table 1]

【0027】表1及び図10からわかるように、比較例
の蓄電池電源装置10では、空気流通下流側の単電池の
表面温度が40℃を超え、上流下流間で約9℃の温度差
が生じているのに対して、実施例の蓄電池電源装置1で
は、約4℃の温度差内にまで抑制されている。空気流通
の最上流側の単電池の温度が低いのは当然のこととして
も、下流側に至っても大きな温度上昇がなく、効果的に
冷却がなされ、単電池間の温度差が少ないことが実証さ
れた。
As can be seen from Table 1 and FIG. 10, in the battery power supply device 10 of the comparative example, the surface temperature of the unit cells on the downstream side of the air flow exceeds 40 ° C., and a temperature difference of about 9 ° C. occurs between the upstream and downstream sides. On the other hand, in the storage battery power supply device 1 of the embodiment, the temperature difference is suppressed to within about 4 ° C. Naturally, the temperature of the cell at the most upstream side of the air circulation is low, but there is no significant temperature rise even downstream, the cooling is effective, and the temperature difference between the cells is demonstrated to be small Was done.

【0028】[0028]

【発明の効果】以上の説明の通り本発明によれば、断面
外形形状が長さ方向に一定の柱状に形成された前記単電
池もしくは単電池の集合体を、その外周面が部分的に内
接する筒状体内に収容し、この筒状体を連結部により任
意方向に連結すると、単電池もしくは単電池の集合体と
筒状体との間及び/又は筒状体間に形成される空間が生
じるので、この空間に冷媒を流通させる。単電池もしく
は単電池の集合体からの放熱は、筒状体との間を流れる
冷媒により直接的に冷却されるのと、熱伝導性のよい筒
状体に伝熱した熱が筒状体の内外を流れる冷媒により間
接的に冷却されるのと、2通りに行われることになる。
筒状体は互いに連結されて全体としても放熱し、多数に
形成された冷媒流路で冷却されるので、部分的な温度格
差は抑制される。また、筒状体に、その内外を連通する
開口部を要所に設けると、冷媒の流路が増し、冷媒の流
速の変化も生じるので、より効果的な冷却を実施するこ
とができる。
According to the present invention, as described above, according to the present invention, the single cell or the assembly of single cells whose cross-sectional outer shape is formed in a columnar shape in the length direction is formed by partially fixing the outer peripheral surface to the inside. When the cylindrical body is housed in the cylindrical body in contact with the cylindrical body and connected in an arbitrary direction by a connecting portion, a space formed between the cylindrical body or the unit cell and the cylindrical body and / or between the cylindrical bodies is formed. As a result, the refrigerant is circulated through this space. The heat radiated from the single cell or the aggregate of the single cells is directly cooled by the refrigerant flowing between the single cell and the cylindrical body, and the heat transferred to the cylindrical body having good thermal conductivity is generated by the heat of the cylindrical body. Indirect cooling by the refrigerant flowing inside and outside is performed in two ways.
The tubular bodies are connected to each other and dissipate heat as a whole, and are cooled by a large number of formed refrigerant channels, so that a partial temperature difference is suppressed. Further, when an opening communicating the inside and outside of the tubular body is provided at a key point, the flow path of the coolant increases and the flow speed of the coolant changes, so that more effective cooling can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る蓄電池電源装置の構
成を示す斜視図である。
FIG. 1 is a perspective view illustrating a configuration of a storage battery power supply device according to an embodiment of the present invention.

【図2】図1に示す構成の後方部分の構成例を説明する
平面図である。
FIG. 2 is a plan view illustrating a configuration example of a rear portion of the configuration illustrated in FIG. 1;

【図3】筒状ケースの連結構造の例を示す断面図であ
る。
FIG. 3 is a cross-sectional view illustrating an example of a connection structure of a cylindrical case.

【図4】筒状ケースの連結構造の例を示す断面図(a)
と連結部材の形状例を示す断面図(b)である。
FIG. 4 is a sectional view showing an example of a connection structure of a cylindrical case (a).
FIG. 4B is a cross-sectional view illustrating an example of the shape of a connecting member.

【図5】筒状ケースに収容した蓄電池の集積構造例を示
す斜視図である。
FIG. 5 is a perspective view showing an example of an integrated structure of storage batteries housed in a cylindrical case.

【図6】筒状ケースに収容した蓄電池の集積構造例を示
す斜視図である。
FIG. 6 is a perspective view showing an example of an integrated structure of storage batteries housed in a cylindrical case.

【図7】筒状ケースに収容した蓄電池の集積構造例を示
す斜視図である。
FIG. 7 is a perspective view showing an example of an integrated structure of storage batteries housed in a cylindrical case.

【図8】筒状ケースの変形例を示す斜視図である。FIG. 8 is a perspective view showing a modification of the cylindrical case.

【図9】温度分布測定の比較例とした蓄電池電源装置の
構成を示す正面図である。
FIG. 9 is a front view showing a configuration of a storage battery power supply device as a comparative example of temperature distribution measurement.

【図10】温度分布測定の結果を示す温度グラフであ
る。
FIG. 10 is a temperature graph showing a result of temperature distribution measurement.

【符号の説明】[Explanation of symbols]

1 蓄電池電源装置 2 蓄電池 3、3a、3b 筒状ケース 5 通気孔 7 凹部 8 凸部 A、B 冷媒流通空間 DESCRIPTION OF SYMBOLS 1 Storage battery power supply 2 Storage battery 3, 3a, 3b Cylindrical case 5 Vent hole 7 Concave part 8 Convex part A, B Refrigerant circulation space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浪 隆夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takao Matsunami 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単電池もしくは単電池の集合体を所要数
集積して所定電力量を得る蓄電池電源装置において、 断面外形形状が長さ方向に一定の柱状に形成された前記
単電池もしくは単電池の集合体を、その外周面が部分的
に内接する筒状体内に収容し、この筒状体を任意方向に
連結すると共に、前記筒状体内に形成される空間及び/
又は筒状体を相互に連結させたときに生じる空間に冷媒
を強制流通させることを特徴とする蓄電池電源装置。
1. A storage battery power supply device for obtaining a predetermined amount of electric power by integrating a required number of unit cells or a group of unit cells, wherein the unit cell or unit cell is formed in a columnar shape having a constant cross-sectional outer shape in a length direction. Is accommodated in a cylindrical body whose outer peripheral surface is partially inscribed, the cylindrical bodies are connected in an arbitrary direction, and a space formed in the cylindrical body and / or
Alternatively, a storage battery power supply device for forcibly circulating a refrigerant in a space generated when the cylindrical bodies are connected to each other.
【請求項2】 筒状体の外面に、筒状体を相互に連結さ
せる連結部を形成したことを特徴とする請求項1記載の
蓄電池電源装置。
2. The storage battery power supply device according to claim 1, wherein a connecting portion for connecting the cylindrical bodies to each other is formed on an outer surface of the cylindrical body.
【請求項3】 筒状体の任意位置に、内部と外部とを連
通する開口部を形成したことを特徴とする請求項1記載
の蓄電池電源装置。
3. The storage battery power supply device according to claim 1, wherein an opening communicating between the inside and the outside is formed at an arbitrary position of the tubular body.
【請求項4】 筒状体が熱伝導性に優れた材料で形成さ
れてなることを特徴とする請求項1記載の蓄電池電源装
置。
4. The storage battery power supply device according to claim 1, wherein the tubular body is formed of a material having excellent heat conductivity.
JP25424296A 1996-09-26 1996-09-26 Storage battery power supply device Pending JPH10106520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25424296A JPH10106520A (en) 1996-09-26 1996-09-26 Storage battery power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25424296A JPH10106520A (en) 1996-09-26 1996-09-26 Storage battery power supply device

Publications (1)

Publication Number Publication Date
JPH10106520A true JPH10106520A (en) 1998-04-24

Family

ID=17262257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25424296A Pending JPH10106520A (en) 1996-09-26 1996-09-26 Storage battery power supply device

Country Status (1)

Country Link
JP (1) JPH10106520A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255859A (en) * 1997-03-07 1998-09-25 Toyota Motor Corp Battery assembly
WO1999036972A1 (en) * 1998-01-19 1999-07-22 Johnson Controls Technology Company Battery case for thin metal film cells
WO2000014822A1 (en) * 1998-09-03 2000-03-16 Matsushita Electric Industrial Co., Ltd. Method and apparatus for temperature control of integrated battery
JP2001118553A (en) * 1999-10-14 2001-04-27 Honda Motor Co Ltd Structure for housing battery cell
JP2001203004A (en) * 1999-11-11 2001-07-27 Makita Corp Battery pack
JP2001256940A (en) * 2000-03-08 2001-09-21 Sanyo Electric Co Ltd Battery pack
WO2002009210A2 (en) * 2000-07-21 2002-01-31 Johnson Controls Technology Company Battery case for thin metal film cells
JP2002141114A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Assembled battery
JP2003308888A (en) * 2002-04-12 2003-10-31 Honda Motor Co Ltd Battery box
JP2005038678A (en) * 2003-07-18 2005-02-10 Honda Motor Co Ltd Battery type power source device and battery module
JP2005085767A (en) * 2003-09-09 2005-03-31 Samsung Sdi Co Ltd Battery pack
JP2007005288A (en) * 2005-05-23 2007-01-11 Matsushita Electric Ind Co Ltd Battery module and its manufacturing method
JP2007207523A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Battery pack
JP2008258156A (en) * 2007-03-15 2008-10-23 Matsushita Electric Ind Co Ltd Battery module
JP2009518805A (en) * 2005-12-08 2009-05-07 エルジー・ケム・リミテッド Assemblyable spacer for battery module production
KR20100036992A (en) * 2008-09-30 2010-04-08 센스 에너지-테크 컴퍼니 리미티드 Battery connection device
JP2010177203A (en) * 2005-05-23 2010-08-12 Panasonic Corp Battery module and method of manufacturing the same
JP2010225337A (en) * 2009-03-21 2010-10-07 Sanyo Electric Co Ltd Battery pack
JP2011171175A (en) * 2010-02-19 2011-09-01 Toshiba Corp Secondary-battery module
CN102208580A (en) * 2011-04-26 2011-10-05 广州市云通磁电有限公司 Power cell combination device with honeycomb structure and manufacturing method thereof
JP2012049536A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Supercapacitor module
JP2013196810A (en) * 2012-03-16 2013-09-30 Panasonic Corp Battery module
WO2014068947A1 (en) * 2012-10-31 2014-05-08 三洋電機株式会社 Battery module
JPWO2014049653A1 (en) * 2012-09-27 2016-08-18 三洋電機株式会社 Battery block
DE102017005400A1 (en) * 2017-06-02 2018-12-06 Audi Ag Energy storage arrangement and motor vehicle
US10347954B2 (en) 2013-10-30 2019-07-09 Husqvarna Ab Flexible battery cell retainer
WO2019139097A1 (en) * 2018-01-10 2019-07-18 藤森工業株式会社 Battery pack and electric device
CN110036503A (en) * 2016-12-07 2019-07-19 奥迪股份公司 Accumulating system
JP2019186451A (en) * 2018-04-13 2019-10-24 日本ケミコン株式会社 Power storage device module and power storage device holder
JP2020166992A (en) * 2019-03-28 2020-10-08 三洋電機株式会社 Battery pack
WO2021241216A1 (en) * 2020-05-27 2021-12-02 三洋電機株式会社 Battery accommodation tray
CN115395164A (en) * 2022-09-16 2022-11-25 新疆赛创新能源有限公司 Single battery, battery pack and battery pack

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255859A (en) * 1997-03-07 1998-09-25 Toyota Motor Corp Battery assembly
WO1999036972A1 (en) * 1998-01-19 1999-07-22 Johnson Controls Technology Company Battery case for thin metal film cells
US6448741B1 (en) 1998-09-03 2002-09-10 Matsushita Electric Industrial Co., Ltd. Temperature control method and structure for a battery pack
WO2000014822A1 (en) * 1998-09-03 2000-03-16 Matsushita Electric Industrial Co., Ltd. Method and apparatus for temperature control of integrated battery
JP2001118553A (en) * 1999-10-14 2001-04-27 Honda Motor Co Ltd Structure for housing battery cell
JP4563532B2 (en) * 1999-10-14 2010-10-13 本田技研工業株式会社 Battery cell storage structure
JP2001203004A (en) * 1999-11-11 2001-07-27 Makita Corp Battery pack
JP2001256940A (en) * 2000-03-08 2001-09-21 Sanyo Electric Co Ltd Battery pack
WO2002009210A3 (en) * 2000-07-21 2002-07-18 Johnson Controls Tech Co Battery case for thin metal film cells
WO2002009210A2 (en) * 2000-07-21 2002-01-31 Johnson Controls Technology Company Battery case for thin metal film cells
JP2002141114A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Assembled battery
JP2003308888A (en) * 2002-04-12 2003-10-31 Honda Motor Co Ltd Battery box
JP4498659B2 (en) * 2002-04-12 2010-07-07 本田技研工業株式会社 Battery box
JP2005038678A (en) * 2003-07-18 2005-02-10 Honda Motor Co Ltd Battery type power source device and battery module
JP4675555B2 (en) * 2003-07-18 2011-04-27 本田技研工業株式会社 Battery powered power supply
JP4484640B2 (en) * 2003-09-09 2010-06-16 三星エスディアイ株式会社 Battery pack
JP2005085767A (en) * 2003-09-09 2005-03-31 Samsung Sdi Co Ltd Battery pack
US7642005B2 (en) 2003-09-09 2010-01-05 Samsung Sdi Co., Ltd. Battery pack
JP2010177203A (en) * 2005-05-23 2010-08-12 Panasonic Corp Battery module and method of manufacturing the same
JP2010177204A (en) * 2005-05-23 2010-08-12 Panasonic Corp Battery module and method of manufacturing the same
JP2007005288A (en) * 2005-05-23 2007-01-11 Matsushita Electric Ind Co Ltd Battery module and its manufacturing method
JP2009518805A (en) * 2005-12-08 2009-05-07 エルジー・ケム・リミテッド Assemblyable spacer for battery module production
JP2007207523A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Battery pack
JP2008258156A (en) * 2007-03-15 2008-10-23 Matsushita Electric Ind Co Ltd Battery module
JP2010086965A (en) * 2008-09-30 2010-04-15 Cens Energy-Tech Co Ltd Battery connection device
KR20100036992A (en) * 2008-09-30 2010-04-08 센스 에너지-테크 컴퍼니 리미티드 Battery connection device
JP2010225337A (en) * 2009-03-21 2010-10-07 Sanyo Electric Co Ltd Battery pack
JP2011171175A (en) * 2010-02-19 2011-09-01 Toshiba Corp Secondary-battery module
JP2012049536A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Supercapacitor module
KR101138504B1 (en) * 2010-08-27 2012-04-25 삼성전기주식회사 Supercapacitor module
CN102208580A (en) * 2011-04-26 2011-10-05 广州市云通磁电有限公司 Power cell combination device with honeycomb structure and manufacturing method thereof
JP2013196810A (en) * 2012-03-16 2013-09-30 Panasonic Corp Battery module
JPWO2014049653A1 (en) * 2012-09-27 2016-08-18 三洋電機株式会社 Battery block
US10099572B2 (en) 2012-09-27 2018-10-16 Sanyo Electric Co., Ltd. Battery block with external guiding member receiving a rail
WO2014068947A1 (en) * 2012-10-31 2014-05-08 三洋電機株式会社 Battery module
US10347954B2 (en) 2013-10-30 2019-07-09 Husqvarna Ab Flexible battery cell retainer
CN110036503A (en) * 2016-12-07 2019-07-19 奥迪股份公司 Accumulating system
DE102017005400A1 (en) * 2017-06-02 2018-12-06 Audi Ag Energy storage arrangement and motor vehicle
WO2019139097A1 (en) * 2018-01-10 2019-07-18 藤森工業株式会社 Battery pack and electric device
JPWO2019139097A1 (en) * 2018-01-10 2020-12-24 藤森工業株式会社 Batteries and electric devices
JP2019186451A (en) * 2018-04-13 2019-10-24 日本ケミコン株式会社 Power storage device module and power storage device holder
JP2020166992A (en) * 2019-03-28 2020-10-08 三洋電機株式会社 Battery pack
WO2021241216A1 (en) * 2020-05-27 2021-12-02 三洋電機株式会社 Battery accommodation tray
CN115395164A (en) * 2022-09-16 2022-11-25 新疆赛创新能源有限公司 Single battery, battery pack and battery pack
CN115395164B (en) * 2022-09-16 2023-09-15 新疆赛创新能源有限公司 Single battery, battery pack and battery pack

Similar Documents

Publication Publication Date Title
JPH10106520A (en) Storage battery power supply device
KR100658626B1 (en) Secondary battery module
KR101428383B1 (en) Device for cooling battery module of vehicle
US8030886B2 (en) Thermal management of batteries using synthetic jets
JP3432079B2 (en) Power supply device and heat dissipation method thereof
JP4440553B2 (en) Battery pack cooling device
EP2405528B1 (en) Battery module
JP4504936B2 (en) Battery module
US11509008B2 (en) Heat exchanger with thermoelectric module and system for managing heat of battery including same
KR100696694B1 (en) Secondary battery module
US20060214633A1 (en) Rechargeable battery module
JP2008258027A (en) Collective battery
US20110217587A1 (en) Battery pack having improved heat dissipation and mounting structure and battery pack assembly including the same
US11830993B2 (en) Battery pack having heat dissipation assembly to assist heat dissipation
JP2008047301A (en) Battery pack
JP2006156404A (en) Secondary battery module
JP2012221801A (en) Battery pack
JP2000021456A (en) Secondary battery
JP4086490B2 (en) Power supply
JP4534268B2 (en) Battery cooling plate and battery system
KR100709180B1 (en) Secondary battery module
JP2005353480A (en) Power source device for vehicle
JPWO2011149076A1 (en) Battery module
JP6527728B2 (en) Heat dissipation mechanism in power storage device using secondary battery cell
JP2000182582A (en) Battery pack