JPH1010234A - Radioactivity measuring system - Google Patents

Radioactivity measuring system

Info

Publication number
JPH1010234A
JPH1010234A JP16410896A JP16410896A JPH1010234A JP H1010234 A JPH1010234 A JP H1010234A JP 16410896 A JP16410896 A JP 16410896A JP 16410896 A JP16410896 A JP 16410896A JP H1010234 A JPH1010234 A JP H1010234A
Authority
JP
Japan
Prior art keywords
radiation
measuring
measurement
radio
transmitters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16410896A
Other languages
Japanese (ja)
Inventor
Megumi Urata
恵 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16410896A priority Critical patent/JPH1010234A/en
Publication of JPH1010234A publication Critical patent/JPH1010234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure positional information and radioactivity accurately by receiving signals from a plurality of distributed radio transmitters every time when a radiation measuring unit movable in a work area performs a measurement thereby obtaining the information of measuring position. SOLUTION: A radiation measuring unit employs a portable dosimeter, e.g. an ionization chamber survey meter or a patrol meter, having a radiation measuring section and a radio receiving section. At least three radio transmitters 7-10 are provided on each operation floor 1 and the radio receiving section receives radio signals 11-14 from the transmitters 7-10 and calculates an angle and a distance thus determining a radioactivity measuring point 6. The survey meter comprises a memory for storing the radiation measurements and the position of the measuring point 6. Since a plurality of transmitters 7-10 are provided, an obstacle existing at an intermediate position can be covered by other signals. According to the arrangement, the measuring point 6 can be determined accurately and automatically.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放射線作業エリア内
において、放射線量を測定すると共に放射線作業者の位
置情報を求めることを特徴とする放射能測定システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radioactivity measuring system for measuring a radiation dose and obtaining positional information of a radiation worker in a radiation work area.

【0002】[0002]

【従来の技術】原子力発電所等の放射線作業エリア内で
空間線量当量率を測定し位置情報と共に記憶装置に入れ
る方法としては、特開昭59−122989号「放射線線量分布
測定装置」がある。この発明は放射能測定器と無線機と
を用いており、放射能測定結果と位置情報を無線で送信
し、測定時間の短縮と被ばく低減を図るものである。位
置の情報としては、あらかじめ作成している平面の図面
を用いてライトペン等を用いて求める構造となってい
る。
2. Description of the Related Art As a method of measuring an air dose equivalent rate in a radiation work area such as a nuclear power plant and storing the same in a storage device together with positional information, there is Japanese Patent Application Laid-Open No. 59-1222989 "Radiation dose distribution measuring device". The present invention uses a radioactivity measuring device and a radio, transmits radioactivity measurement results and position information by radio, and aims to reduce measurement time and reduce exposure. As the position information, a structure is obtained using a light pen or the like using a previously created plane drawing.

【0003】[0003]

【発明が解決しようとする課題】放射線作業者が放射線
作業領域で作業中に位置の情報を検出する手間や入力ミ
スなどをせずに作業の低減化を行うことが望まれてい
る。そのため本発明の目的は、放射線作業者が放射線測
定を行う際に精度良く自動的に位置情報を求めるととも
に放射能測定を行うことが出来るシステムを提供する事
にある。
SUMMARY OF THE INVENTION It is desired that a radiation worker reduce the work without the trouble of detecting position information and the input error during the work in the radiation work area. Therefore, an object of the present invention is to provide a system that allows a radiation worker to automatically and accurately obtain position information and measure radioactivity when performing radiation measurement.

【0004】[0004]

【課題を解決するための手段】放射線作業エリア内の適
宜位置に分散配置された複数の無線発信機と放射線作業
エリア内を移動可能な放射能測定器とを有し、前記放射
能測定器は少なくとも放射線作業エリア内の放射線測定
を行う測定手段と、前記放射線測定を行う度に前記複数
の無線発信機からの信号を受け取り放射線作業エリア内
の放射線測定を行った位置情報を求める演算処理手段
と、前記測定手段で得られた結果と前記演算処理手段で
得られた結果を記憶する記憶手段を有する放射能測定シ
ステムにすることで解決される。
Means for Solving the Problems A radio transmitter having a plurality of radio transmitters arranged at appropriate positions in a radiation working area and a radioactivity measuring instrument movable in the radiation working area, the radioactivity measuring instrument comprising: A measuring means for performing radiation measurement in at least the radiation work area, and an arithmetic processing means for receiving signals from the plurality of wireless transmitters each time the radiation measurement is performed and obtaining positional information of performing radiation measurement in the radiation work area; The problem can be solved by providing a radioactivity measurement system having storage means for storing a result obtained by the measurement means and a result obtained by the arithmetic processing means.

【0005】[0005]

【発明の実施の形態】以下本発明の一実施例を図面を用
いて説明する。図1において、1は原子炉建屋のオペレ
ーションフロア(オペフロ)を示し、通常は原子炉建屋
の5階で、原子炉格納容器PCV(Primary Containment
Vessel)や圧力容器RPV(ReactorPressure Vessel)
を開放し、ドライヤーセパレーター等を移動し、燃料集
合体の移動を操作する階である。2はドライヤーセパレ
ーター貯蔵プールDSP(DrierSeparator Pit)、3は使
用済燃料貯蔵プールSFP(Spent Fuel storage Poo
l)、4は原子炉圧力容器(RPVと略す)、5は原子炉
ウエル,6は放射能を測定しようとしている点、7〜1
0は無線発信機、11〜14はそれぞれ無線発信機7〜
10からの無線信号を示す。放射線測定器には空間放射
線線量当量率(mSv/hr又はμSv/hr)を測定
するための線量率計があり通常は電離箱サーベイメータ
ーや、パトロールメーター又はシンチレーション式サー
ベイメーター等の主として可搬型のものが用いられる。
床面や機器の表面汚染密度(Bq/cm2)を測定するもの
としてはスミヤ方式とGMサーベイメーターやシンチレ
ーションサーベイメーター等が用いられている。これら
の放射線測定器には放射線測定部と、各々の無線発信機
からの信号を受ける受信部がついており、各発信機から
の角度又は距離を求めることができる。位置測定用に用
いる無線発信機の数は各フロア毎に最低3つ以上は必要
である。またこのサーベイメーターには放射線測定結果
を記憶する記憶装置も有している。図1の6の場所では
放射線線量当量率や表面汚染密度等を測定すると共に位
置の情報も同時に記憶する。放射線作業者の位置として
は基準となる無線発信機7からの信号を放射線測定器内
の受信部が受信し、演算処理を行うことにより複数の無
線発信機から放射線測定器までの角度や距離を放射線測
定を行う度に得ることで求まる。無線発信機は複数個配
置しているのであるからもし中間点に障害物があり、受
信不能となった場合においても他の信号でカバーするこ
とができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 denotes an operation floor (operating floor) of a reactor building. Usually, the fifth floor of the reactor building has a reactor containment vessel PCV (Primary Containment).
Vessel) and pressure vessel RPV (ReactorPressure Vessel)
The floor where the fuel assemblies are moved by operating the dryer separator and the like. 2 is a dryer separator storage pool DSP (Drier Separator Pit), 3 is a spent fuel storage pool SFP (Spent Fuel storage Pool).
l) 4 is a reactor pressure vessel (abbreviated as RPV), 5 is a reactor well, 6 is a point to measure radioactivity, 7-1
0 is a radio transmitter, 11 to 14 are radio transmitters 7 to
10 shows a wireless signal from FIG. Radiation measuring instruments include dosimeters for measuring the space radiation dose equivalent rate (mSv / hr or μSv / hr), and are usually mainly portable, such as ionization chamber survey meters, patrol meters or scintillation survey meters. Things are used.
A smear method, a GM survey meter, a scintillation survey meter, and the like are used to measure the surface contamination density (Bq / cm 2 ) of a floor or equipment. These radiation measuring instruments include a radiation measuring unit and a receiving unit that receives a signal from each wireless transmitter, and can obtain an angle or a distance from each transmitter. The number of wireless transmitters used for position measurement must be at least three for each floor. The survey meter also has a storage device for storing radiation measurement results. At the location 6 in FIG. 1, the radiation dose equivalent rate, the surface contamination density, and the like are measured, and the location information is also stored at the same time. As the position of the radiation worker, a signal from the radio transmitter 7 serving as a reference is received by a receiver in the radiation measurement device, and the angle and distance from the plurality of radio transmitters to the radiation measurement device are determined by performing an arithmetic process. It is obtained by obtaining each time a radiation measurement is performed. Since a plurality of wireless transmitters are arranged, even if there is an obstacle at the intermediate point and reception becomes impossible, it is possible to cover with another signal.

【0006】次に原子炉ウエルにおいて測定する場合に
ついて、図2及び図3を用いて説明する。図2におい
て、61はオペフロ,62はウエル底面、63は格納容
器(PCV)フランジ面、64はウエルの水抜用溝、65
は原子炉圧力容器(RPV)、66は燃料集合体、67は
放射線測定員、図3において68は放射線測定器、69
〜71は無線発信機、72〜74はそれぞれ無線発信機
69〜71からの信号を示す。
Next, a case where measurement is performed in a reactor well will be described with reference to FIGS. 2 and 3. FIG. In FIG. 2, 61 is an operation floor, 62 is a well bottom surface, 63 is a containment vessel (PCV) flange surface, 64 is a well drainage groove, 65
Is a reactor pressure vessel (RPV), 66 is a fuel assembly, 67 is a radiation measurer, 68 is a radiation meter, 69 in FIG.
Numerals 71 to 71 denote signals from the radio transmitters 69 to 71, respectively.

【0007】原子力発電所の定期検査においては、まず
オペフロの床に敷いてある床材を外し格納容器の上ブ
タ、及び圧力容器の上ブタを外す。その後燃料集合体の
上側に設置してあるドライヤー及びセパレターを取り外
す。ここで62の原子炉ウエルよりオペフロ近くまで水
を張り、燃料集合体を燃料プールへ移動する。燃料集合
体の移動が完了したならば原子炉ウエルの水を圧力容器
のフランジ面まで下げる。この状態で機器の点検を行う
が、その前にウエル床面等の環境状況の測定を行う。す
なわち放射線線量当量率や表面汚染密度等の測定を行
う。電離箱サーベイメーターやGMサーベイメーターを
持ってウエル内に下りて行き線量率等を測定する。これ
らは通常定期的に測定する点の外に、通常より高い点を
捜して測定する。サーベイメーターには無線受信機及び
記憶装置がついており、オペフロに設置している無線発
信機からの信号を受け線量当量率等と共に記憶する。信
号は複数の地点からくるのであるから角度又は距離を求
めることにより放射線作業者のウエル内での位置を求め
ることができる。このようにオペフロからの無線でウエ
ル内での位置を求めることができれば、ウエルの底面に
バーコード等の印をつける必要がなくなる。測定した結
果はそのまま持ち出しパソコンへ入力することで出力で
きる。もしサーベメーター類が汚染しているのであれば
管理区域内にパソコンのリーダを置いておき電話回線等
で転送する。
[0007] In the periodic inspection of the nuclear power plant, first, the floor material laid on the floor of the operating floor is removed, and the upper pig of the containment vessel and the upper pig of the pressure vessel are removed. Thereafter, the dryer and the separator installed above the fuel assembly are removed. At this point, water is filled from the reactor well 62 to the vicinity of the operation floor, and the fuel assembly is moved to the fuel pool. When the movement of the fuel assembly is completed, the water in the reactor well is lowered to the flange surface of the pressure vessel. In this state, the equipment is inspected, but before that, the environmental conditions such as the well floor surface are measured. That is, the radiation dose equivalent rate, the surface contamination density, and the like are measured. Go down into the well with an ionization chamber survey meter or GM survey meter and measure the dose rate and the like. These are usually measured by looking for points higher than normal, in addition to those measured regularly. The survey meter is equipped with a radio receiver and a storage device, and receives a signal from a radio transmitter installed in the operation floor and stores it together with a dose equivalent rate and the like. Since the signal comes from a plurality of points, the position of the radiation worker in the well can be obtained by obtaining the angle or distance. If the position in the well can be obtained wirelessly from the operating floor, it is not necessary to put a mark such as a bar code on the bottom surface of the well. The measurement results can be output by directly taking them out to a personal computer. If the survey meters are contaminated, place a PC reader in the control area and transfer them over a telephone line.

【0008】次に狭い部屋における放射能測定について
図4を用いて説明する。図4において80は建屋の壁、
81はポンプ、82はモーター、83,84は配管、8
5は測定員、86は放射線測定器、87は測定点、88
〜90は無線発信機、91〜93はそれぞれ無線発信機
からの信号を示す。狭い部屋においてもオペフロと同様
測定員が目的とする測定点に近づいて測定する。最大の
線量当量率等を示す位置を求めて測定する。それと同時
に床面から3m位の位置の壁面等に設置された複数の無
線発信機からの信号を受け、位置を求めて測定結果と共
に記憶装置に保存する。無線発信機は複数台設置するの
であるから、一部の機器によってさえぎられても位置を
求めることができる。
Next, measurement of radioactivity in a small room will be described with reference to FIG. In FIG. 4, reference numeral 80 denotes a building wall,
81 is a pump, 82 is a motor, 83 and 84 are pipes, 8
5 is a measuring person, 86 is a radiation measuring instrument, 87 is a measuring point, 88
90 to 93 indicate signals from the wireless transmitter, respectively. Even in a small room, as in the case of the operation floor, the measurement staff approaches the target measurement point and measures. Measure the position showing the maximum dose equivalent rate. At the same time, it receives signals from a plurality of wireless transmitters installed on a wall or the like at a position about 3 m from the floor, finds the position, and stores it in a storage device together with the measurement result. Since a plurality of wireless transmitters are installed, the position can be determined even if some wireless devices are interrupted.

【0009】さらに狭い場所で機器が複雑に配置されて
いる格納容器(PCV)内の測定について図5を用いて
説明する。図5において、95は格納容器(PCV)、
96は圧力容器(RPV)、97〜100は再循環ポン
プ、101〜106は無線発信機、107はPCVへの
機器搬入ハッチ、108は測定点を示す。定検が始まる
と107の機器搬入ハッチより人が入りPCV内で多数
の人が作業を行う。場所によっては無線の信号がさえぎ
られることもあるが図7に示すように複数の無線発信機
を配置するのであるから任意の場所で位置を指定するこ
とができる。
A measurement in a storage container (PCV) in which devices are arranged in a more narrow space in a complicated manner will be described with reference to FIG. In FIG. 5, 95 is a containment container (PCV),
Reference numeral 96 denotes a pressure vessel (RPV); 97 to 100, a recirculation pump; 101 to 106, a radio transmitter; 107, a hatch for carrying equipment into a PCV; When the regular inspection starts, people enter from the equipment carrying hatch 107 and many people work in the PCV. Depending on the location, the wireless signal may be interrupted, but since a plurality of wireless transmitters are arranged as shown in FIG. 7, the location can be designated at any location.

【0010】これら複数の無線発信機は、個々の場所に
おいて測定を開始する前に設置し、測定が完了した後回
収するものとする。設置位置としては、足場などを設け
ずに比較的障害が少ないように床面から1〜3m程度の
高さに配置する。設置場所はあらかじめパソコンにおい
て指示しておき、それに従って設置する。このような方
法を採用することにより、パソコンにデータを取り込ん
だ時比較的容易に処理することができる。
[0010] The plurality of radio transmitters are installed before starting the measurement at each location, and are collected after the measurement is completed. The installation position is set at a height of about 1 to 3 m from the floor surface without providing a scaffold or the like so that obstacles are relatively small. The installation location is specified on a personal computer in advance, and installation is performed according to the instruction. By adopting such a method, when data is taken into a personal computer, it can be processed relatively easily.

【0011】測定した結果や発信機の位置情報等をパソ
コンの記憶部へ移し、位置関係を求めると共に放射線マ
ップを出力したり、グラフを描いて経時変化等を求める
ことができる。これらの結果により作業者に対する装備
や作業時間を指示する一つの参考データとすることがで
きる。すなわち空間線量当量率より、作業時間の目安を
設定することができ、表面汚染密度から防護マスクや手
袋等の防護装備の指示ができる。
The measured result and the position information of the transmitter can be transferred to the storage section of the personal computer, and the positional relationship can be obtained, and at the same time, a radiation map can be output or a graph can be drawn to determine the change over time. Based on these results, it can be used as one reference data for instructing the equipment and the working time for the worker. That is, the standard of the working time can be set from the air dose equivalent rate, and the instruction of protective equipment such as a protective mask and gloves can be made from the surface contamination density.

【0012】上記実施例は特に原子力発電所の建屋内だ
けでなく放射線を取り扱う作業エリア内で広く利用可能
である。
The above embodiment can be widely used not only in a building of a nuclear power plant but also in a work area handling radiation.

【0013】[0013]

【発明の効果】このように複数の無線発信機を使用して
位置を求める方法を用いれば空間線量当量率や、表面汚
染密度の測定において作業者の測定点を正確かつ自動的
に求めることができ、より正確な被ばく低減対策を立て
ることができる。
As described above, by using the method of determining the position using a plurality of radio transmitters, it is possible to accurately and automatically determine the measurement point of the worker in measuring the air dose equivalent rate and the surface contamination density. And more accurate exposure reduction measures can be taken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による線量当量率や表面汚染密度の測定
方法を示した図。
FIG. 1 is a diagram showing a method for measuring a dose equivalent rate and a surface contamination density according to the present invention.

【図2】本発明による原子炉ウエルにおける線量当量率
や表面汚染密度の測定方法を示した正面図。
FIG. 2 is a front view showing a method of measuring a dose equivalent rate and a surface contamination density in a reactor well according to the present invention.

【図3】本発明による原子炉ウエルにおける線量当量率
や表面汚染密度の測定方法を示した平面図。
FIG. 3 is a plan view showing a method of measuring a dose equivalent rate and a surface contamination density in a reactor well according to the present invention.

【図4】本発明による機器の線量当量率や表面汚染密度
の測定方法を示した図。
FIG. 4 is a diagram showing a method of measuring a dose equivalent rate and a surface contamination density of an apparatus according to the present invention.

【図5】本発明の原子炉格納容器内における線量当量率
や表面汚染密度の測定方法を示した図。
FIG. 5 is a view showing a method of measuring a dose equivalent rate and a surface contamination density in a containment vessel of the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉建屋のオペレーションフロア、2…ドライヤ
ーセパレーター貯蔵プールDSP、3…使用済燃料貯蔵
プールSFP、4…原子炉圧力容器、5…原子炉ウエ
ル、6…放射能測定点、7〜10,69,70,71,
88,89,90,101〜106…無線発信機、11
〜14,72,73,74,91,92,93…無線発
信機からの無線信号、61…オペフロ、62…ウエル底
面、63…格納容器フランジ面、64…ウエルの水抜用
溝、65…原子炉圧力容器、66…燃料集合体、67…
放射線測定員、68,86…放射線測定器、80…建屋
の壁、81…ポンプ、82…モーター、83,84…配
管、85…測定員、87,108…測定点、95…格納
容器、96…圧力容器、97〜100…再循環ポンプ、
107…PCVへの機器搬入ハッチ。
1 ... Operation floor of reactor building 2 ... Dryer separator storage pool DSP 3 ... Spent fuel storage pool SFP 4 ... Reactor pressure vessel 5 ... Reactor well 6 ... Radioactivity measurement point 7-10 69, 70, 71,
88, 89, 90, 101 to 106 ... wireless transmitter, 11
~ 14, 72, 73, 74, 91, 92, 93 ... radio signal from radio transmitter, 61 ... operation floor, 62 ... well bottom surface, 63 ... containment flange surface, 64 ... well drainage groove, 65 ... atom Furnace pressure vessel, 66 ... fuel assembly, 67 ...
Radiation measurement staff, 68, 86: Radiation measuring instrument, 80: Building wall, 81: Pump, 82: Motor, 83, 84: Piping, 85: Measurement staff, 87, 108: Measurement point, 95: Containment vessel, 96 ... pressure vessel, 97-100 ... recirculation pump,
107: hatch for loading equipment into PCV.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】放射線作業エリア内の適宜位置に分散配置
された複数の無線発信機と放射線作業エリア内を移動可
能な放射能測定器とを有し、前記放射能測定器は少なく
とも放射線作業エリア内の放射線測定を行う測定手段
と、前記放射線測定を行う度に前記複数の無線発信機か
らの信号を受け取り放射線作業エリア内の放射線測定を
行った位置情報を求める演算処理手段と、前記測定手段
で得られた結果と前記演算処理手段で得られた結果を記
憶する記憶手段を有することを特徴とする放射能測定シ
ステム。
1. A radiation work area comprising: a plurality of radio transmitters distributed at appropriate positions in a radiation work area; and a radioactivity measurement device movable in the radiation work area, wherein the radioactivity measurement device is at least a radiation work area. Measuring means for performing radiation measurement in the apparatus, arithmetic processing means for receiving signals from the plurality of radio transmitters each time the radiation measurement is performed, and obtaining position information of performing radiation measurement in the radiation work area, and the measuring means A radioactivity measurement system comprising a storage unit for storing the result obtained in step (1) and the result obtained by the arithmetic processing unit.
JP16410896A 1996-06-25 1996-06-25 Radioactivity measuring system Pending JPH1010234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16410896A JPH1010234A (en) 1996-06-25 1996-06-25 Radioactivity measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16410896A JPH1010234A (en) 1996-06-25 1996-06-25 Radioactivity measuring system

Publications (1)

Publication Number Publication Date
JPH1010234A true JPH1010234A (en) 1998-01-16

Family

ID=15786913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16410896A Pending JPH1010234A (en) 1996-06-25 1996-06-25 Radioactivity measuring system

Country Status (1)

Country Link
JP (1) JPH1010234A (en)

Similar Documents

Publication Publication Date Title
JP2013108815A (en) Three-dimensional radioactivity measurement device, radiation handling work management system and radiation handling work management method
JP2008139094A (en) Radioactivity measuring method and instrument
JP2002006053A (en) Directional radiation detector
KR102257327B1 (en) Device measuring radiation and method of measuring radioactive contamination using the same
JP6677568B2 (en) Radioactivity distribution analysis system and radioactivity distribution analysis method
Hughes et al. RadScan 600-A portable instrument for the remote imaging of gamma contamination: Its design and use in aiding decommissioning strategy
JPH1010234A (en) Radioactivity measuring system
US10962658B2 (en) Portable survey meter and method
WO2011102625A2 (en) Method for searching for a reference radioactive waste drum to verify effectiveness of indirect calibration of a gamma scanner and method for verifying a calibration to extend life of standard radioactive material
CN108225268B (en) Underwater terrain remote control measurement method for low-drainage pool
CN107783174B (en) Method for calibrating detection efficiency of nuclear facility liquid effluent on-line monitor
JPS60162996A (en) Remote control system of radiation exposure dose
JP2005098741A (en) Leak detection method
KR101308937B1 (en) System and method for car-borne survey of radioactivity
JP2000346975A (en) Method for measuring radiation with recorder
JPH02222855A (en) Pollution depth discriminator
Chesnokov et al. The scanning remote gamma-spectrometer determination of the replacement of the radioactive source
Courtney et al. Testing shields in the Argonne National Laboratory fuel conditioning facility support areas
JPH0321078B2 (en)
Farfán et al. Testing of the RadBall Technology at Savannah River National Laboratory
Shaw et al. Experience from remediation of thorium contaminated sites: radiation protection and waste management issues
Stepanov et al. Radiological examination of MR reactor rooms using a remote-controlled spectrometric scanning system
Plan RADIOLOGICAL CHARACTERIZATION AND FINAL STATUS PLAN FOR BATTELLE COLUMBUS LABORATORIES DECOMMISSIONING PROJECT WEST JEFFERSON SITE
van Velzen et al. Radiological characterisation of waste in interim storage building of COVRA
JPS62297775A (en) Radiation measuring instrument and evaluating instrument for radiation dosage rate distribution