JPH10102223A - Fe amorphous alloy - Google Patents

Fe amorphous alloy

Info

Publication number
JPH10102223A
JPH10102223A JP25425796A JP25425796A JPH10102223A JP H10102223 A JPH10102223 A JP H10102223A JP 25425796 A JP25425796 A JP 25425796A JP 25425796 A JP25425796 A JP 25425796A JP H10102223 A JPH10102223 A JP H10102223A
Authority
JP
Japan
Prior art keywords
amorphous
alloy
atomic
less
supercooled liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25425796A
Other languages
Japanese (ja)
Inventor
Akihisa Inoue
明久 井上
Akira Murakami
亮 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP25425796A priority Critical patent/JPH10102223A/en
Publication of JPH10102223A publication Critical patent/JPH10102223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the production of a thick bulky alloy and to provide an alloy showing a wide supercooling liq. region and excellent in workability by adding specified amounts of Cr, Nb, Mo and Co to an Fe-Al-Ga-P-C-B-Si alloy having a specified compositional range. SOLUTION: This Fe amorphous alloy is composed of a compsn. shown by Fe(100-a-b-c-d-e-f-g )Ala Gab Pc Cd Be Sif Mg, where M denotes one or more kinds among Cr, Nb, Mo and Co, and, by atomic %, 4<=a<=6, 1<=b<=3, 9<=c<=12, 5<=d<=7, 3<=e<=5, 0.5<=f<=4 and 0.25<=g<=5 are satisfied. In the case the contents of Al, Ga, P, C, B and Si lie in the ranges outside of the above, its amorophousness formability deteriorates, and even if a die casting method is used, amorphous signal phases can not be obtd. in a casting material having about >=1.5mm thickness. In the case the contents of one or more kinds among Nb, Cr, Mo and Co are less than the lower limits, the supercooling liq. region is made <60K, and amorphous metal excellent in workability can not be obtd., and in the case of the upper limit or above, its amorphosness formability deteriorates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非晶質形成能に優
れ、かつ広い過冷却液体領域を示すFe系非晶質合金に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-based amorphous alloy having excellent amorphous forming ability and showing a wide supercooled liquid region.

【0002】[0002]

【従来の技術】溶融状態の合金を急冷することにより、
薄帯状、細線状、粉粒体状など種々の形状を有する非晶
質合金が得られることはよく知られている。そして、こ
れまでにFe系、Co系、Ti系、Zr系およびAl系など
の合金系において数多くの非晶質合金が見い出されてい
る。中でも、Fe系の非晶質合金は優れた軟磁気特性を
有し、かつ、高強度で高い熱的安定性を示すことから、
新しい磁性材料としてトランス材料への応用を初めとす
る種々の産業分野への応用展開がなされている。
2. Description of the Related Art By rapidly cooling a molten alloy,
It is well known that amorphous alloys having various shapes such as a ribbon shape, a fine wire shape, and a granular material shape can be obtained. Many amorphous alloys have been found so far in alloy systems such as Fe system, Co system, Ti system, Zr system and Al system. Among them, Fe-based amorphous alloys have excellent soft magnetic properties, and exhibit high strength and high thermal stability.
Applications to various industrial fields such as application to transformer materials as new magnetic materials have been made.

【0003】しかしながら、従来のFe系非晶質合金
は、非晶質形成能が十分でなく、臨界冷却速度が高いた
め、作製可能な形状としては厚さが60μm以下の薄帯
形状や、直径が150μm以下の細線形状、あるいは粒
径が100μm以下の粉末形状のみに限られ、工業的に
用途が限定されていた。
However, conventional Fe-based amorphous alloys have insufficient amorphous forming ability and a high critical cooling rate, and therefore, can be manufactured in the form of a ribbon having a thickness of 60 μm or less or a diameter of less than 60 μm. Is limited to only a fine wire shape of 150 μm or less, or a powder shape having a particle size of 100 μm or less, and its use has been industrially limited.

【0004】一方、特開平5−245597号公報や特
開平5−253656号公報では極めて容易に肉厚の非
晶質合金を作製することができる金型を用いた鋳造法
(以下、金型鋳造法と称す)が提案されており、Fe系
非晶質合金の鋳造材を得る方法が開示されているが、従
来のFe−Si−B系やFe−P−C系合金では、肉厚の
バルク状非晶質材が得られず、Fe系非晶質合金の応用
開発の障害となっていた。
On the other hand, JP-A-5-245597 and JP-A-5-253656 disclose a casting method using a mold (hereinafter, referred to as a mold casting) capable of extremely easily producing a thick amorphous alloy. And a method for obtaining a cast material of a Fe-based amorphous alloy is disclosed. However, in a conventional Fe-Si-B-based or Fe-PC-based alloy, a thicker material is required. A bulk amorphous material could not be obtained, which hindered the application and development of Fe-based amorphous alloys.

【0005】このような背景から、近年、優れた非晶質
形成能を有するFe系合金の探索がなされ、様々な形状
への加工が有利な60K以上の広い過冷却液体領域を示
す合金としてFe72Al5Ga2P11C6B4合金(M
aterials Transactions, JIM, Vol 36,No.9(1995),p118
0〜1183)、Fe70Al5Ga2P11C6B4Nb2合
金(Materials Transactions, JIM, Vol 37,No.1(199
6),p32)およびFe72Al5Ga2P11C5B4Si1
合金(日本金属学会第118回大会概要集)が提案され
ている。これらの合金は、優れた非晶質形成能に加え
て、優れた軟磁気特性や熱的安定性も示すことから、機
能性非晶質合金バルク材への応用が期待されている。
[0005] From such a background, in recent years, Fe-based alloys having excellent amorphous forming ability have been searched, and Fe72Al5Ga2P11C6B4 is an alloy showing a wide supercooled liquid region of 60K or more, which is advantageous for processing into various shapes. Alloy (M
aterials Transactions, JIM, Vol 36, No. 9 (1995), p118
0-1183), Fe70Al5Ga2P11C6B4Nb2 alloy (Materials Transactions, JIM, Vol 37, No. 1 (199
6), p32) and Fe72Al5Ga2P11C5B4Si1
Alloys (Abstracts of the 118th Annual Meeting of the Japan Institute of Metals) have been proposed. These alloys exhibit excellent soft magnetic properties and thermal stability in addition to excellent amorphous forming ability, and are therefore expected to be applied to functional amorphous alloy bulk materials.

【0006】しかし、発明者らが上記金型鋳造法によ
り、過冷却液体領域が60K以上である上記のFe72
Al5Ga2P11C6B4およびFe70Al5Ga2P
11C6B4Nb2合金の1.5mm以上の肉厚の鋳造材を
作製すると、非晶質形成能が十分でなく非晶質単相のも
のが得られないことが判明した。
[0006] However, the inventors have found that the above-mentioned Fe72 having a supercooled liquid region of 60K or more can be obtained by the above-mentioned mold casting method.
Al5Ga2P11C6B4 and Fe70Al5Ga2P
It has been found that when a cast material of 11C6B4Nb2 alloy having a thickness of 1.5 mm or more is produced, the ability to form an amorphous phase is not sufficient and an amorphous single phase cannot be obtained.

【0007】一方、Fe72Al5Ga2P11C5B4
Si1合金は前記金型鋳造法により1.5mm以上の肉厚の
鋳造材を作製することが可能であり優れた非晶質形成能
を有していたが、その後、特開平5−104127号公
報に開示されている過冷却液体を利用した加工を試みた
場合、過冷却液体領域は実際は60K未満であるために
非晶質状態を維持したままで加工時の変形量を大きくと
ることができなかった。
On the other hand, Fe72Al5Ga2P11C5B4
The Si1 alloy was capable of producing a cast material having a thickness of 1.5 mm or more by the mold casting method and had an excellent amorphous forming ability, and thereafter, was disclosed in Japanese Patent Application Laid-Open No. 5-104127. When the processing using the supercooled liquid disclosed in the above is attempted, since the supercooled liquid region is actually less than 60K, the deformation amount during the processing cannot be increased while maintaining the amorphous state. Was.

【0008】[0008]

【発明が解決しようとする課題】本発明は、工業的観点
から、より優れた非晶質形成能を有し1.5mm以上の肉
厚を有するバルク状非晶質合金の作製が可能となると同
時に、60K以上の広い過冷却液体領域を示し、非晶質
合金の加工性に優れた合金を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention provides a method for producing a bulk amorphous alloy having a superior amorphous forming ability and a thickness of 1.5 mm or more from an industrial viewpoint. At the same time, an object of the present invention is to provide a supercooled liquid region having a large area of 60 K or more and exhibit excellent workability of an amorphous alloy.

【0009】[0009]

【課題を解決するための手段】本発明は、原子%による
組成式が、 Fe(100-a-b-c―d-e-f-g)AlaGabPcC
dBeSifMg [ただし式中、MはCr、Nb、MoおよびCoの群から選
択される1種または2種以上の元素であり、4≦a≦
6、1≦b≦3、9≦c≦12、5≦d≦7、3≦e≦
5、0.5≦f≦4および0.25≦g≦5を満足する]
で示される組成からなることを特徴とするFe系非晶質
合金に関する。
According to the present invention, a composition formula based on atomic% is Fe (100-abcdcefg) AlaGabPcC.
dBeSifMg wherein M is one or more elements selected from the group consisting of Cr, Nb, Mo and Co, and 4 ≦ a ≦
6, 1 ≦ b ≦ 3, 9 ≦ c ≦ 12, 5 ≦ d ≦ 7, 3 ≦ e ≦
5, 0.5 ≦ f ≦ 4 and 0.25 ≦ g ≦ 5]
The present invention relates to an Fe-based amorphous alloy having a composition represented by the following formula:

【0010】本発明者らは鋭意検討を行った結果、特定
の組成範囲のFe−Al−Ga−P−C−B−Si系合金に
Nb、Cr、MoおよびCoから選択される1種または2種
以上の元素を特定量添加することにより、非晶質形成能
に優れ、かつ60K以上の過冷却液体領域を示す新規F
e系非晶質合金が得られることを見いだした。
As a result of intensive studies, the present inventors have found that Fe-Al-Ga-PCCB-Si alloys having a specific composition range include one or more selected from Nb, Cr, Mo and Co. By adding two or more kinds of elements in a specific amount, a new F having excellent amorphous forming ability and showing a supercooled liquid region of 60K or more can be obtained.
An e-type amorphous alloy was obtained.

【0011】本発明による、非晶質形成能に優れ、かつ
60K以上の過冷却液体領域を示すFe系非晶質合金に
おける各合金元素の組成範囲は以下の通りである。な
お、組成範囲は原子%で表され、これは合金中に含まれ
る全ての原子の数に対する各原子の数の割合を意味す
る。
The composition range of each alloy element in the Fe-based amorphous alloy according to the present invention, which is excellent in amorphous forming ability and shows a supercooled liquid region of 60 K or more, is as follows. The composition range is represented by atomic%, which means the ratio of the number of each atom to the number of all atoms contained in the alloy.

【0012】Alの含有量は、4原子%以上6原子%以
下であることが必要であり、好ましくは4.5原子%以
上5.5原子%以下である。Al含有量が4原子%未満あ
るいは、6原子%を越えると、非晶質形成能が低下し、
金型鋳造法を用いても1.5mm以上の肉厚の鋳造材にお
いて非晶質単相が得られなくなる。
The content of Al needs to be 4 to 6 atomic%, preferably 4.5 to 5.5 atomic%. If the Al content is less than 4 at% or more than 6 at%, the ability to form an amorphous phase decreases,
Even if the die casting method is used, an amorphous single phase cannot be obtained in a cast material having a thickness of 1.5 mm or more.

【0013】Gaの含有量は、1原子%以上3原子%以
下であることが必要であり、好ましくは1.5原子%以
上2.5原子%以下である。Ga含有量が1原子%未満あ
るいは3原子%を越えると、非晶質形成能が低下し、金
型鋳造法を用いても1.5mm以上の肉厚の鋳造材におい
て非晶質単相が得られなくなる。
It is necessary that the content of Ga is 1 atomic% or more and 3 atomic% or less, and preferably 1.5 atomic% or more and 2.5 atomic% or less. If the Ga content is less than 1 at.% Or more than 3 at.%, The ability to form an amorphous phase is reduced, and even when using a die casting method, an amorphous single phase is formed in a cast material having a thickness of 1.5 mm or more. No longer available.

【0014】Pの含有量は、9原子%以上12原子%以
下であることが必要であり、好ましくは10原子%以上
11原子%以下である。P含有量が9原子%未満あるい
は12原子%を越えると、非晶質形成能が低下し、金型
鋳造法を用いても1.5mm以上の肉厚の鋳造材において
非晶質単相が得られなくなる。
[0014] The content of P must be 9 atomic% or more and 12 atomic% or less, and is preferably 10 atomic% or more and 11 atomic% or less. If the P content is less than 9 at% or more than 12 at%, the ability to form an amorphous phase is reduced, and even when using a die casting method, an amorphous single phase is formed in a cast material having a thickness of 1.5 mm or more. No longer available.

【0015】Cの含有量は、5原子%以上7原子%以下
であることが必要であり、好ましくは5.5原子%以上
6.5原子%以下である。C含有量が5原子%未満ある
いはC含有量が7原子%を越えると、非晶質形成能が低
下し、金型鋳造法を用いても1.5mm以上の肉厚の鋳造
材において非晶質単相が得られなくなる。
[0015] The content of C must be 5 atomic% or more and 7 atomic% or less, and preferably 5.5 atomic% or more and 6.5 atomic% or less. If the C content is less than 5 atomic% or the C content exceeds 7 atomic%, the ability to form an amorphous phase is reduced, and even when a die casting method is used, a cast material having a thickness of 1.5 mm or more becomes amorphous. Quality single phase cannot be obtained.

【0016】Bの含有量は、3原子%以上5原子%以下
であることが必要であり、好ましくは3.5原子%以上
4.5原子%以下である。B含有量が3原子%未満ある
いは5原子%を越えると、非晶質形成能が低下し、金型
鋳造法を用いても1.5mm以上の肉厚の鋳造材において
非晶質単相が得られなくなる。
[0016] The content of B must be 3 atomic% or more and 5 atomic% or less, and preferably is 3.5 atomic% or more and 4.5 atomic% or less. If the B content is less than 3 atomic% or more than 5 atomic%, the ability to form an amorphous phase is reduced, and even when using a die casting method, an amorphous single phase is formed in a cast material having a thickness of 1.5 mm or more. No longer available.

【0017】Siの含有量は、0.5原子%以上4原子%
以下であることが必要であり、好ましくは、1原子%以
上3原子%以下である。Si含有量が0.5原子%未満あ
るいは4原子%を越えると、非晶質形成能が低下し、金
型鋳造法を用いても1.5mm以上の肉厚の鋳造材におい
て非晶質単相が得られなくなる。
The content of Si is 0.5 atomic% or more and 4 atomic%.
It is necessary to be less than or equal to, preferably, 1 atomic% or more and 3 atomic% or less. If the Si content is less than 0.5 atomic% or more than 4 atomic%, the ability to form an amorphous phase is reduced, and even if a die casting method is used, an amorphous single material having a thickness of 1.5 mm or more cannot be obtained. No phase is obtained.

【0018】さらに、本発明のFe系非晶質合金は、C
r、Nb、MoおよびCoの群から選択される1種または2
種以上の元素の含有量が0.25原子%以上5原子%以
下であることが必要であり、好ましくは0.5原子%以
上4原子%以下である。Cr、Nb、MoおよびCoの群か
ら選択される1種または2種以上の元素が0.25原子
%未満であると過冷却液体領域が60K未満となり加工
性に優れた非晶質金属が得られなくなり、5原子%を越
えると、非晶質形成能が低下し、金型鋳造法を用いても
1.5mm以上の肉厚の鋳造材において非晶質単相が得ら
れなくなる。これらの添加元素のうち鋳造性の観点から
好ましいのはCrまたはNbである。
Further, the Fe-based amorphous alloy of the present invention comprises C
one or two selected from the group consisting of r, Nb, Mo and Co
It is necessary that the content of at least one kind of element is 0.25 atomic% or more and 5 atomic% or less, and preferably 0.5 atomic% or more and 4 atomic% or less. When one or more elements selected from the group consisting of Cr, Nb, Mo and Co is less than 0.25 atomic%, the supercooled liquid region becomes less than 60K, and an amorphous metal excellent in workability is obtained. If the content exceeds 5 atomic%, the ability to form an amorphous phase is reduced, and an amorphous single phase cannot be obtained in a cast material having a thickness of 1.5 mm or more even by using a mold casting method. Among these additional elements, Cr or Nb is preferable from the viewpoint of castability.

【0019】なお、本発明のFe系非晶質合金は、優れ
た非晶質形成能を有し、かつ60K以上の過冷却液体領
域を示す範囲内において、5原子%以下のNi、Ta、Z
rを添加元素として含んでもよい。
The Fe-based amorphous alloy of the present invention has excellent amorphous forming ability, and within a range showing a supercooled liquid region of 60K or more, Ni, Ta, 5 atomic% or less, Z
r may be included as an additional element.

【0020】本発明のFe系非晶質合金は非晶質形成能
に優れているため、特開平5−245597号公報や特
開平5−253656号公報で開示されている、103
K/s程度の冷却速度が得られる金型鋳造法において容易
に肉厚が1.5mm以上の非晶質鋳造材が得られる。な
お、金型鋳造法を用いる場合は、孔径0.5mm〜1.0mm
の石英製ノズルを用い、真空またはアルゴン減圧雰囲気
下で合金をノズル中で溶解したのち、銅製の金型に噴出
圧0.1〜2.0kg/cm2で噴出し金型中で凝固させること
により、鋳物厚さ1.5mm以上の非晶質バルク材を容易
に得ることができる。
The Fe-based amorphous alloy of the present invention is excellent in amorphous-forming ability, disclosed in Japanese Patent Laid-Open 5-245597 and JP 5-253656, JP-10 3
An amorphous cast material having a thickness of 1.5 mm or more can be easily obtained by a mold casting method capable of obtaining a cooling rate of about K / s. When the die casting method is used, the hole diameter is 0.5 mm to 1.0 mm.
By using a quartz nozzle, and after dissolving the alloy in the nozzle under a vacuum or an argon pressure atmosphere, it is solidified by blowing molds in ejection pressure 0.1 to 2.0 / cm 2 in a copper mold Thereby, an amorphous bulk material having a casting thickness of 1.5 mm or more can be easily obtained.

【0021】また、本発明のFe系非晶質合金は優れた
非晶質形成能を示すため、単ロール法、双ロール法、回
転液中紡糸法、ガスアトマイズ法等の従来から用いられ
ている生産性に優れた液体急冷法を用いて容易に種々の
形状の非晶質合金を製造することもできる。例えば、非
晶質合金の代表的な製造方法として知られる単ロール法
においては、合金を石英管中、アルゴン雰囲気下で溶融
した後、孔径0.1mm〜1.0mmの石英製ノズルを用い、
真空またはアルゴン雰囲気下、1000〜4000rpm
で回転している直径20cm程度の銅ロール状に噴出圧
0.1〜2.0kg/cm2で噴出し、急冷凝固させることによ
り得ることができる。
Since the Fe-based amorphous alloy of the present invention exhibits excellent amorphous forming ability, it has been conventionally used such as a single roll method, a twin roll method, a spinning method in a rotating liquid, and a gas atomizing method. Amorphous alloys of various shapes can be easily produced by using a liquid quenching method which is excellent in productivity. For example, in a single roll method known as a typical production method of an amorphous alloy, after melting the alloy in a quartz tube under an argon atmosphere, using a quartz nozzle having a hole diameter of 0.1 mm to 1.0 mm,
1000-4000rpm under vacuum or argon atmosphere
It can be obtained by jetting at a jet pressure of 0.1 to 2.0 kg / cm 2 into a copper roll having a diameter of about 20 cm rotating at a speed of, and rapidly solidifying it.

【0022】このようにして得られる本発明の非晶質合
金からなる非晶質バルク材は60K以上の過冷却液体領
域を示すため、過冷却液体状態を利用した加工法におい
て優れた加工性を有する。なお、本発明における過冷却
液体領域とは、昇温速度20〜40K/分において示差
走査熱量分析により得られるガラス転移温度(Tg)と
結晶化温度(Tx)の差(Tx−Tg)で定義される温度
域である。
Since the amorphous bulk material comprising the amorphous alloy of the present invention thus obtained exhibits a supercooled liquid region of 60K or more, excellent workability can be obtained in a processing method utilizing a supercooled liquid state. Have. The supercooled liquid region in the present invention is defined by the difference (Tx-Tg) between the glass transition temperature (Tg) and the crystallization temperature (Tx) obtained by differential scanning calorimetry at a heating rate of 20 to 40 K / min. Temperature range.

【0023】本発明における非晶質合金は、0.9T以
上の飽和磁束密度を有する磁性材料であり、300〜4
60℃の温度範囲で結晶化が生じないような時間範囲を
選択して熱処理を行うことにより、優れた軟磁気特性を
有する材料を得ることができる。本発明を以下の実施例
および比較例により具体的に説明する。
The amorphous alloy according to the present invention is a magnetic material having a saturation magnetic flux density of 0.9 T or more, and
By selecting a time range in which crystallization does not occur in a temperature range of 60 ° C. and performing the heat treatment, a material having excellent soft magnetic properties can be obtained. The present invention will be specifically described with reference to the following Examples and Comparative Examples.

【0024】実施例1〜32、比較例1〜17 表1〜4に示した実施例1〜32、比較例1〜17の各
組成からなる合金を、孔径0.5mmの石英ノズル中で溶
解した後に、アルゴン減圧雰囲気下で銅鋳型内に噴出圧
0.5kg/cm2で噴出し、冷却凝固させて直径1.5mm、高
さ50mmの円柱試料を作製した。
[0024] Example 1-32, Example 1-32 shown in Comparative Examples 1 to 17 Table 1-4, each consisting of the composition of Comparative Example 1 to 17 alloy, dissolved in a quartz nozzle having a pore size of 0.5mm After that, the sample was jetted into a copper mold at a pressure of 0.5 kg / cm 2 under a reduced pressure atmosphere of argon, and cooled and solidified to produce a cylindrical sample having a diameter of 1.5 mm and a height of 50 mm.

【0025】次に、作製したそれぞれの試料について組
織の同定および過冷却液体領域の温度幅の測定を行っ
た。なお、組織の同定については、X線回折法により非
晶質相特有のハローパターンが得られた状態を「非晶
質」と判定し、非晶質と結晶相が混在する状態を「結晶
質」と判定した。過冷却液体領域の温度幅△Txは、昇
温速度40K/分で示差走査熱量分析により得られるガ
ラス転移温度(Tg)と結晶化温度(Tx)の差(Tx−
Tg)を測定することにより求めた。なお、組織の同定
より結晶相と判定されたものについては、示差走査熱量
分析を行わなかった。それぞれの判定結果および測定結
果を表1〜4にまとめて示した。
Next, for each of the prepared samples, the structure was identified and the temperature width of the supercooled liquid region was measured. Regarding the structure identification, the state where a halo pattern peculiar to the amorphous phase was obtained by the X-ray diffraction method was determined as “amorphous”, and the state where the amorphous and crystalline phases were mixed was referred to as “crystalline”. Was determined. The temperature width ΔTx of the supercooled liquid region is determined by the difference (Tx−Tg) between the glass transition temperature (Tg) and the crystallization temperature (Tx) obtained by differential scanning calorimetry at a heating rate of 40 K / min.
Tg). In addition, the differential scanning calorimetry was not performed on those determined to be crystalline phases based on the identification of the structure. Tables 1 to 4 summarize the respective judgment results and measurement results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表1および表2より、本発明による実施例
1〜32は、いずれも非晶質単相からなる直径1.5m
m、高さ50mmの円柱試料が作製されていた。また、過
冷却液体として存在できる温度域すなわち過冷却液体領
域もいずれの合金においても60K以上と非常に広い温
度範囲を示す非晶質合金であった。
From Tables 1 and 2, it can be seen that Examples 1 to 32 according to the present invention each have a diameter of 1.5 m, which is composed of an amorphous single phase.
A cylindrical sample having a height of 50 mm and a height of 50 mm was prepared. In addition, the temperature range in which the supercooled liquid can exist, that is, the supercooled liquid range was an amorphous alloy showing a very wide temperature range of 60 K or more in any alloy.

【0031】一方、表3および表4の比較例1〜16は
本発明の組成範囲外の合金であり、非晶質形成能が十分
でなく、金型鋳造法を用いた場合、いずれも結晶質相を
含む直径1.5mmの円柱試料になっており、非晶質単相
合金が作製できていない。
On the other hand, Comparative Examples 1 to 16 shown in Tables 3 and 4 are alloys outside the composition range of the present invention, and have insufficient amorphous forming ability. It was a cylindrical sample with a diameter of 1.5 mm containing a material phase, and an amorphous single-phase alloy could not be produced.

【0032】比較例17では、金型鋳造法を用いて直径
1.5mmの非晶質円柱試料が作製できているが、本発明
の組成範囲外の合金であるために過冷却液体領域は60
K未満の値を示していた。
In Comparative Example 17, an amorphous cylindrical sample having a diameter of 1.5 mm was prepared by using a die casting method. However, since the alloy is out of the composition range of the present invention, the supercooled liquid region is 60%.
It showed a value of less than K.

【0033】実施例33 Fe68Al5Ga2P11C6B4Si2Nb2合金を、
孔径0.5mmの石英製ノズル中で溶解した後に、アルゴ
ン減圧雰囲気下で銅鋳型内に噴出圧0.5kg/cm2で噴出
し、冷却凝固させて直径2.0mm、高さ50mmの円柱試
料を作製した。この試料について実施例1と同様に組織
の同定および過冷却液体領域の測定を行ったところ、非
晶質単相からなっており、過冷却液体領域は70Kであ
った。
Example 33 A Fe68Al5Ga2P11C6B4Si2Nb2 alloy was
After melting in a quartz nozzle with a hole diameter of 0.5 mm, it is jetted into a copper mold at a pressure of 0.5 kg / cm 2 under a reduced pressure atmosphere of argon, cooled and solidified to form a cylindrical sample having a diameter of 2.0 mm and a height of 50 mm. Was prepared. When the structure of the sample was identified and the supercooled liquid region was measured in the same manner as in Example 1, the sample was composed of an amorphous single phase, and the supercooled liquid region was 70K.

【0034】次に、Tgまで試料を加熱し1kg/mm2の荷
重にて試料の延伸加工を行い、この加工後の試料につい
て再度実施例1と同様にして組織の同定を行なった。そ
の結果、作製された直径2.0mmの円柱試料はTg温度に
おいて30%以上の延伸加工が行え、また加工後の試料
も非晶質単相からなっており、非常に加工性に優れた合
金であることが判明した。
Next, the sample was heated to Tg and stretched under a load of 1 kg / mm 2 , and the texture of the processed sample was identified again in the same manner as in Example 1. As a result, the produced cylindrical sample having a diameter of 2.0 mm can be stretched by 30% or more at a Tg temperature, and the sample after the processing is also composed of an amorphous single phase, which is an alloy having excellent workability. Turned out to be.

【0035】比較例18 比較例17の直径1.5mmの円柱形状を有するFe72A
l5Ga2P11C5B4Si1非晶質合金を用いて、実
施例33と同様に延伸加工を行った。
Comparative Example 18 A Fe72A having a cylindrical shape with a diameter of 1.5 mm of Comparative Example 17
Stretching was performed in the same manner as in Example 33, using an l5Ga2P11C5B4Si1 amorphous alloy.

【0036】その結果、作製された試料はTg温度にお
いて15%の延伸加工しかできなかった。すなわち、F
e72Al5Ga2P11C5B4Si1非晶質合金は過冷
却液体領域を利用した加工は行えるものの、過冷却液体
領域が60K未満であるため、本発明の非晶質合金に比
べて加工性が十分ではなかった。
As a result, the produced sample could only be stretched by 15% at the Tg temperature. That is, F
Although the e72Al5Ga2P11C5B4Si1 amorphous alloy can be processed using the supercooled liquid region, the workability was not sufficient as compared with the amorphous alloy of the present invention because the supercooled liquid region was less than 60K.

【0037】[0037]

【発明の効果】本発明のFe系非晶質合金は、優れた非
晶質形成能を有するため、金型鋳造法等を利用して、
1.5mm以上の肉厚の非晶質合金を容易に得ることがで
きる。また、60K以上の過冷却液体領域を示すため、
過冷却状態を利用した加工法を適用することにより、様
々な形状のFe系非晶質合金を得ることができる。さら
にFe系非晶質合金は磁性材料として有用であるため、
本発明は工業的に極めて実用性の高いものである。
The Fe-based amorphous alloy of the present invention has excellent amorphous forming ability.
An amorphous alloy having a thickness of 1.5 mm or more can be easily obtained. In addition, to indicate a supercooled liquid region of 60K or more,
By applying a processing method utilizing a supercooled state, Fe-based amorphous alloys of various shapes can be obtained. Further, since Fe-based amorphous alloys are useful as magnetic materials,
The present invention is industrially extremely practical.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%による組成式が、 Fe(100-a-b-c―d-e-f-g)AlaGabPcC
dBeSifMg [ただし式中、MはCr、Nb、MoおよびCoの群から選
択される1種または2種以上の元素であり、4≦a≦
6、1≦b≦3、9≦c≦12、5≦d≦7、3≦e≦
5、0.5≦f≦4および0.25≦g≦5を満足する]
で示される組成からなることを特徴とするFe系非晶質
合金。
1. The composition formula based on atomic% is Fe (100-abc-de-efg) AlaGabPcC.
dBeSifMg wherein M is one or more elements selected from the group consisting of Cr, Nb, Mo and Co, and 4 ≦ a ≦
6, 1 ≦ b ≦ 3, 9 ≦ c ≦ 12, 5 ≦ d ≦ 7, 3 ≦ e ≦
5, 0.5 ≦ f ≦ 4 and 0.25 ≦ g ≦ 5]
A Fe-based amorphous alloy having a composition represented by the following formula:
JP25425796A 1996-09-26 1996-09-26 Fe amorphous alloy Pending JPH10102223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25425796A JPH10102223A (en) 1996-09-26 1996-09-26 Fe amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25425796A JPH10102223A (en) 1996-09-26 1996-09-26 Fe amorphous alloy

Publications (1)

Publication Number Publication Date
JPH10102223A true JPH10102223A (en) 1998-04-21

Family

ID=17262471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25425796A Pending JPH10102223A (en) 1996-09-26 1996-09-26 Fe amorphous alloy

Country Status (1)

Country Link
JP (1) JPH10102223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059402A1 (en) * 2004-12-03 2006-06-08 Dynax Corporation Method of manufacturing metal glass separator
KR100690281B1 (en) 2004-11-22 2007-03-09 경북대학교 산학협력단 Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100690281B1 (en) 2004-11-22 2007-03-09 경북대학교 산학협력단 Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
WO2006059402A1 (en) * 2004-12-03 2006-06-08 Dynax Corporation Method of manufacturing metal glass separator

Similar Documents

Publication Publication Date Title
US5288344A (en) Berylllium bearing amorphous metallic alloys formed by low cooling rates
US5368659A (en) Method of forming berryllium bearing metallic glass
JPH08333660A (en) Iron-base metallic glass alloy
KR100690281B1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
JP2001303219A (en) Nickel base amorphous alloy composition
US5626691A (en) Bulk nanocrystalline titanium alloys with high strength
JP2003003246A (en) Cu-Be BASED AMORPHOUS ALLOY
US5876519A (en) Fe-based amorphous alloy
JP3929327B2 (en) Soft magnetic metallic glass alloy
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
JP4515548B2 (en) Bulk amorphous alloy and high strength member using the same
JP3560591B2 (en) Soft magnetic Co-based metallic glass alloy
JP2000178700A (en) HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JP2003239051A (en) HIGH-STRENGTH Zr-BASE METALLIC GLASS
JPH10102223A (en) Fe amorphous alloy
JP3756405B2 (en) Soft magnetic, high strength Fe-Co-Ni based metallic glass alloy
JP2001152301A (en) Soft magnetic glassy alloy
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
JP4557368B2 (en) Bulk amorphous alloy and high strength member using the same
KR100360530B1 (en) Ni based amorphous alloy compositions
KR100353156B1 (en) Aluminum-based single quasicrystalline alloys
KR100550284B1 (en) Fe-based amorphous alloy compositions
KR100463578B1 (en) Cu-based amorphous alloy composition
KR100498569B1 (en) Ni-based Amorphous Alloy Compositions
JPH1092619A (en) Fe-based soft magnetic metallic glass sintered body and its manufacture