JPH10102054A - Fluorescent substance - Google Patents

Fluorescent substance

Info

Publication number
JPH10102054A
JPH10102054A JP8258086A JP25808696A JPH10102054A JP H10102054 A JPH10102054 A JP H10102054A JP 8258086 A JP8258086 A JP 8258086A JP 25808696 A JP25808696 A JP 25808696A JP H10102054 A JPH10102054 A JP H10102054A
Authority
JP
Japan
Prior art keywords
magnesium
phosphor
atomic
germanium
phosphor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8258086A
Other languages
Japanese (ja)
Inventor
Toshiaki Kurachi
敏明 倉地
Shiro Otake
史郎 大竹
Tetsuji Takeuchi
徹二 武内
Shigeru Horii
堀井  滋
Tomizo Matsuoka
富造 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8258086A priority Critical patent/JPH10102054A/en
Publication of JPH10102054A publication Critical patent/JPH10102054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject highly bright and deeply red fluorescent substance by specifying the activated amount of manganese and the matrix composition of the fluorescent substance. SOLUTION: This fluorescent substance is obtained by thermally calcining a composition comprising (A) a magnesium compound thermally producing magnesium oxide, (B) magnesium difluoride, (C) germanium oxide, and (D) a manganese compound, and has an activated manganese amount of 0.1-1 atomic % based on the germanium atom. The sum A+B of the number A of magnesium atoms contained in the component A and the number B of magnesium atoms contained in the component B is 200-500 atomic % based on the germanium atom. The calcination temperature on the production of the fluorescent substance is preferably 900-1200 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蛍光ランプに用いら
れる深赤色の蛍光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deep red phosphor used in a fluorescent lamp.

【0002】[0002]

【従来の技術】蛍光ランプに用いる赤色蛍光体は、例え
ば、平成8年度(第29回)照明学会全国大会講演論文
集第337頁に発表されている。これによれば、赤色に
対する演色性を向上させるためには、赤色発光成分がよ
り長波長側にある深赤色がよいとされており、マンガン
付活ゲルマン酸蛍光体が紹介されている。マンガン付活
ゲルマン酸蛍光体の組成は、例えば、蛍光体ハンドブッ
ク(蛍光体同学会編、1987年12月)第231頁に
記載されている。これによれば、この蛍光体の組成式
は、3.5MgO・0.5MgF2・GeO2:Mn4+
で表され、マンガンの付活量はゲルマニウムに対し0.
01原子%となっている。
2. Description of the Related Art A red phosphor used for a fluorescent lamp is disclosed in, for example, the 1989 National Meeting of the Illuminating Engineering Institute, 337 pages of proceedings. According to this, in order to improve the color rendering properties for red, it is considered that deep red, in which the red light-emitting component is on the longer wavelength side, is preferable, and a manganese-activated germanic acid phosphor is introduced. The composition of the manganese-activated germanic acid phosphor is described in, for example, page 231 of the Phosphor Handbook (edited by the Phosphors Society of Japan, December 1987). According to this, the composition formula of this phosphor is 3.5MgO.0.5MgF 2 .GeO 2 : Mn 4+
And the activation amount of manganese is 0.1% with respect to germanium.
It is 01 atomic%.

【0003】また、焼成の方法は、酸化マグネシウムと
弗化マグネシウムと酸化ゲルマニウムと炭酸マンガンを
混合し、空気中1000℃で数時間焼成した後、混合粉
砕し、空気中1200℃で十数時間焼成するとされてい
る。
[0003] In addition, firing is performed by mixing magnesium oxide, magnesium fluoride, germanium oxide and manganese carbonate, firing in air at 1000 ° C for several hours, mixing and pulverizing, and firing in air at 1200 ° C for more than 10 hours. It has been done.

【0004】[0004]

【発明が解決しようとする課題】近年、演色評価数の高
い蛍光ランプにマンガン付活ゲルマン酸蛍光体が用いら
れているが、視感度が低い領域での発光となるためラン
プ光束の低下が問題となり、深赤色蛍光体の高輝度化が
強く望まれている。
In recent years, manganese-activated germanic acid phosphors have been used in fluorescent lamps having a high color rendering index, but they emit light in a region where visibility is low, and thus there is a problem of a decrease in lamp luminous flux. Therefore, it is strongly desired to increase the luminance of the deep red phosphor.

【0005】本発明は係る従来の課題を克服するために
なされたもので、マンガンの付活量および蛍光体の母体
の組成の最適化により高輝度のマンガン付活ゲルマン酸
蛍光体を提供することを目的とする。
An object of the present invention is to provide a manganese-activated germanic acid phosphor having high luminance by optimizing the amount of manganese activated and the composition of the base material of the phosphor. With the goal.

【0006】また、元素の置換およびフラックスもしく
は共付活剤の添加により、高輝度のマンガン付活ゲルマ
ン酸蛍光体を提供することを目的とする。
Another object of the present invention is to provide a high-luminance manganese-activated germanic acid phosphor by substituting elements and adding a flux or a co-activator.

【0007】[0007]

【課題を解決するための手段】以上の目的を達成するた
め、本発明のマンガン付活ゲルマン酸蛍光体は、マンガ
ンの付活量をゲルマニウム原子に対し1原子%未満と
し、弗素の含量を従来より増加したことを特徴とする。
In order to achieve the above object, the manganese-activated germanic acid phosphor of the present invention has a manganese activation amount of less than 1 atomic% based on germanium atoms and a conventional fluorine content. It is characterized by an increase.

【0008】また、元素の一部置換、またはフラックス
若しくは共付活剤を添加することを特徴とする。
[0008] It is also characterized in that a partial substitution of elements or addition of a flux or a coactivator is performed.

【0009】[0009]

【発明の実施の形態】本発明のマンガン付活ゲルマン酸
蛍光体の合成方法は、加熱により酸化マグネシウムとな
るマグネシウム化合物と弗化マグネシウムと酸化ゲルマ
ニウムおよびマンガン化合物を混合し空気中で焼成す
る。第一の実施の形態は、マンガン化合物の混合比率
は、ゲルマニウム原子に対しマグネシウム原子が0.0
01原子%以上0.01原子%以下となるようにする。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for synthesizing a manganese-activated germanic acid phosphor of the present invention, a magnesium compound which becomes magnesium oxide by heating, magnesium fluoride, germanium oxide and a manganese compound are mixed and fired in air. In the first embodiment, the mixing ratio of the manganese compound is such that the ratio of magnesium atoms to germanium atoms is 0.0%.
It is set to be at least 01 atomic% and not more than 0.01 atomic%.

【0010】焼成後の蛍光体の組成は、 一般式、AMgO・BMgF2・GeO2:xMn4+ で表され、蛍光体に含まれるマグネシウム原子の総量は
2≦A+B≦5で表される組成からなるようにする。好
ましくは、 一般式、(4−y)MgO・yMgF2・GeO2:xM
4+ 但し、0.5<y<1、で表される組成からなることが
望ましい。
[0010] The composition of the phosphor after firing, the general formula, AMgO · BMgF 2 · GeO 2 : represented by xMn 4+, the total amount of magnesium atoms contained in the phosphor is represented by 2 ≦ A + B ≦ 5 Composition To consist of Preferably, a general formula: (4-y) MgO.yMgF 2 .GeO 2 : xM
n 4+ However, it is desirable to have a composition represented by 0.5 <y <1.

【0011】また、焼成温度は、900〜1200℃、
好ましくは1050〜1150℃である。焼成時間は1
0分以上、好ましくは2時間以上である。
The firing temperature is 900-1200 ° C.
Preferably it is 1050-1150 degreeC. Firing time is 1
The time is 0 minutes or more, preferably 2 hours or more.

【0012】また、全体を均一に反応させるため、混合
の後800〜1100℃、好ましくは900〜1000
℃で10分以上、好ましくは1時間以上の予備焼成して
おくことが望ましい。
Further, in order to make the whole react uniformly, 800-1100 ° C. after mixing, preferably 900-1000 ° C.
It is desirable to pre-fire at 10 ° C. for 10 minutes or more, preferably for 1 hour or more.

【0013】第二の実施の形態は、弗化マグネシウムの
一部をハロゲン化マグネシウムで置き換え、第一の実施
の形態と同様の方法で混合し焼成すると輝度が向上す
る。ハロゲン化マグネシウムとしては、塩化マグネシウ
ムまたは臭化マグネシウムがよい。
In the second embodiment, when a part of magnesium fluoride is replaced with magnesium halide, and mixed and fired in the same manner as in the first embodiment, the brightness is improved. As the magnesium halide, magnesium chloride or magnesium bromide is preferable.

【0014】置換の割合は、弗素原子に対し5原子%以
上40原子%以下がよい。好ましくは、5原子%〜20
原子%である。
The substitution ratio is preferably from 5 atomic% to 40 atomic% based on fluorine atoms. Preferably, 5 at% to 20 at%
Atomic%.

【0015】また、この場合の焼成温度は置換の割合に
応じて最適温度は変化し、置換の割合が大きくなるほど
最適焼成温度は低くなる傾向があるが、一般に900〜
1200℃が好適である。焼成時間は10分以上、好ま
しくは2時間以上である。
In this case, the firing temperature varies in accordance with the replacement ratio, and the optimum firing temperature tends to decrease as the replacement ratio increases.
1200 ° C. is preferred. The firing time is at least 10 minutes, preferably at least 2 hours.

【0016】また、全体を均一に反応させるため、混合
の後600〜900℃、好ましくは600〜700℃で
30分以上、好ましくは1時間以上の予備焼成しておく
ことが望ましい。
Further, in order to make the whole react uniformly, it is desirable to pre-fire at 600 to 900 ° C., preferably 600 to 700 ° C. for 30 minutes or more, preferably 1 hour or more after mixing.

【0017】第三の実施の形態は、ゲルマニウム原子に
対し1原子%以上の共付活剤を混合し、第一の実施の形
態と同様の方法で焼成すると輝度が向上する。共付活剤
には希土類酸化物を用いる。好ましくは、ランタン酸化
物を用いる。焼成温度は、共付活剤を用いない場合と同
じで、900〜1200℃、好ましくは1050〜11
50℃である。また、焼成時間は10分以上、好ましく
は2時間以上である。
In the third embodiment, the luminance is improved by mixing a coactivator in an amount of 1 atomic% or more with respect to germanium atoms and firing the mixture in the same manner as in the first embodiment. A rare earth oxide is used as the coactivator. Preferably, lanthanum oxide is used. The firing temperature is the same as when no coactivator is used;
50 ° C. The firing time is at least 10 minutes, preferably at least 2 hours.

【0018】また、全体を均一に反応させるため、混合
の後800〜1100℃、好ましくは900〜1000
℃で30分以上、好ましくは1時間以上の予備焼成して
おくことが望ましい。
Further, in order to make the whole react uniformly, after mixing, 800-1100 ° C., preferably 900-1000 ° C.
It is desirable to pre-fire at 30 ° C. for 30 minutes or more, preferably for 1 hour or more.

【0019】また、希土類酸化物の他に二酸化錫、三酸
化二インジウム、またはアルミナを用いた場合も同様の
効果が得られる。
Similar effects can be obtained when tin dioxide, indium trioxide or alumina is used in addition to the rare earth oxide.

【0020】第四の実施の形態は、ゲルマニウム原子に
対し1原子%以上の低融点化合物、特にバリウム、マグ
ネシウム、またはナトリウムのハロゲン化物をフラック
スとして混合し、第一の実施の形態と同様の方法で焼成
すると反応性が向上するため輝度が向上する。フラック
スには、塩化バリウム、塩化マグネシウム、臭化マグネ
シウム、または弗化ナトリウムが好適である。
In the fourth embodiment, a low melting point compound of 1 atomic% or more relative to germanium atoms, in particular, a halide of barium, magnesium or sodium is mixed as a flux, and a method similar to that of the first embodiment is used. When baking is performed, the reactivity is improved, so that the luminance is improved. Barium chloride, magnesium chloride, magnesium bromide, or sodium fluoride is preferred for the flux.

【0021】焼成温度は、900〜1200℃、好まし
くは1050〜1150℃である。焼成時間は10分以
上、好ましくは2時間以上である。
The firing temperature is from 900 to 1200 ° C., preferably from 1,050 to 1,150 ° C. The firing time is at least 10 minutes, preferably at least 2 hours.

【0022】また、全体を均一に反応させるため、混合
の後、低融点化合物の融点以上の温度で1100℃以
下、好ましくは900〜1100℃で30分以上、好ま
しくは1時間以上の予備焼成しておくことが望ましい。
In order to make the whole react uniformly, after mixing, the mixture is pre-baked at a temperature not lower than the melting point of the low melting point compound at 1100 ° C. or lower, preferably at 900 to 1100 ° C. for 30 minutes or more, preferably for 1 hour or more. It is desirable to keep.

【0023】また、バリウム、マグネシウム、またはナ
トリウムのハロゲン化物の他に燐酸または無水ほう酸を
用いた場合も同様の効果が得られる。
The same effect can be obtained when phosphoric acid or boric anhydride is used in addition to the barium, magnesium, or sodium halide.

【0024】ま第五の実施の形態は、ゲルマニウム原子
の一部をIVa族またはIVb族元素である珪素、錫、チタ
ン、ジルコニウムまたはハフニウムうちの1種類の元素
または複数の元素の組み合わせで置換し、第一の実施の
形態と同様の方法で混合した後、焼成すると輝度が向上
する。
In the fifth embodiment, a part of germanium atoms is replaced with one or more of the group IVa or group IVb elements silicon, tin, titanium, zirconium or hafnium. After mixing in the same manner as in the first embodiment, firing is performed to improve the luminance.

【0025】焼成温度は、置換する元素と置換の割合に
より異なるが、900〜1800℃が好適である。
The firing temperature varies depending on the element to be replaced and the proportion of the replacement, but is preferably 900 to 1800 ° C.

【0026】焼成時間は10分以上、好ましくは2時間
以上である。また、全体を均一に反応させるため、混合
の後、800〜1100℃、好ましくは900〜100
0℃で30分以上、好ましくは1時間以上の予備焼成し
ておくことが望ましい。
The firing time is at least 10 minutes, preferably at least 2 hours. In addition, in order to make the whole react uniformly, after mixing, 800 to 1100 ° C., preferably 900 to 100 ° C.
It is desirable to pre-fire at 0 ° C. for 30 minutes or more, preferably for 1 hour or more.

【0027】以下に実施例を用いて本発明を詳しく説明
する。 (実施例1)組成式、3.5MgO・0.5MgF2
GeO2:xMn4+ で表されるマンガン付活ゲルマン酸
蛍光体(以下MFG蛍光体と略称)。
Hereinafter, the present invention will be described in detail with reference to Examples. (Example 1) Composition formula: 3.5MgO.0.5MgF 2.
GeO 2 : A manganese-activated germanic acid phosphor represented by xMn 4+ (hereinafter abbreviated as MFG phosphor).

【0028】炭酸マンガンをそれぞれ0.001,0.
003,0.005,0.007,0.01,0.02
モルをそれぞれ秤量する。前記各々の炭酸マンガンに酸
化マグネシウム3.5モル、弗化マグネシウム0.5モ
ル、酸化ゲルマニウム1モルを秤量して加え、乳鉢に入
れアセトンを適量加えて湿式混合した後、蓋付のアルミ
ナるつぼに入れ、空気雰囲気中で400℃/時間の昇温
速度で昇温し、1000℃で2時間の予備焼成を行う。
さらに乳鉢を用いて粉砕後、空気雰囲気中で400℃/
時間の昇温速度で昇温し、1200℃で2時間焼成す
る。さらに前記焼成物を乳鉢を用いて粉砕する。
Manganese carbonate was added in an amount of 0.001, 0.
003, 0.005, 0.007, 0.01, 0.02
Weigh each mole. 3.5 mol of magnesium oxide, 0.5 mol of magnesium fluoride, and 1 mol of germanium oxide were weighed and added to each of the manganese carbonates, put in a mortar, added with an appropriate amount of acetone, wet-mixed, and placed in an alumina crucible with a lid. Then, the temperature is raised at a rate of 400 ° C./hour in an air atmosphere, and preliminary firing is performed at 1000 ° C. for 2 hours.
Furthermore, after crushing using a mortar, 400 ° C /
The temperature is raised at a temperature rising rate of time, and firing is performed at 1200 ° C. for 2 hours. Further, the fired product is ground using a mortar.

【0029】このようにして得られたMFG蛍光体の粉
体における相対輝度を図1に示す。ここで、従来のx=
0.01の場合の蛍光体の輝度を1としている。
FIG. 1 shows the relative luminance of the powder of the MFG phosphor thus obtained. Here, the conventional x =
The luminance of the phosphor in the case of 0.01 is set to 1.

【0030】図1より、マンガンの付活量xが従来の
0.01以下の場合、最高1.2倍の初期輝度が得られ
るという結果を得た。
FIG. 1 shows that when the manganese activation amount x is 0.01 or less, the initial luminance can be obtained up to 1.2 times.

【0031】また、酸化マグネシウムの代わりに塩基性
炭酸マンガンを用いてもよい。また、混合および粉砕に
はボールミルを用いてもよい。
Further, basic manganese carbonate may be used in place of magnesium oxide. A ball mill may be used for mixing and pulverization.

【0032】また、焼成温度を変化させた場合のMFG
の相対輝度を図2に示す。図2より焼成温度を1100
℃にすると、さらに輝度が向上するという結果を得た。
Further, the MFG when the firing temperature is changed
Is shown in FIG. As shown in FIG.
When the temperature was set to ° C., the result that the luminance was further improved was obtained.

【0033】(実施例2)組成式、4MgO・MgF2
・GeO2:0.01Mn4+ で表されるマンガン付活ゲ
ルマン酸蛍光体。
Example 2 Composition: 4MgO.MgF 2
GeO 2 : A manganese-activated germanic acid phosphor represented by 0.01Mn 4+ .

【0034】酸化マグネシウム4モル、弗化マグネシウ
ム1モル、酸化ゲルマニウム1モル、炭酸マンガン0.
01モルを秤量して乳鉢に入れ、アセトンを適量加えて
湿式混合し、蓋付のアルミナるつぼに入れ、空気雰囲気
中で400℃/時間の昇温速度で昇温し、1000℃で
2時間の予備焼成を行う。
4 mol of magnesium oxide, 1 mol of magnesium fluoride, 1 mol of germanium oxide, 0.
01 mol was weighed and placed in a mortar, an appropriate amount of acetone was added thereto, and the mixture was wet-mixed. The mixture was placed in an alumina crucible with a lid, and heated at a heating rate of 400 ° C./hour in an air atmosphere. Preliminary firing is performed.

【0035】さらに乳鉢を用いて粉砕後、空気雰囲気中
で400℃/時間の昇温速度で昇温し、1100℃で2
時間焼成する。さらに前記焼成物を乳鉢を用いて粉砕す
る。
After crushing using a mortar, the temperature was raised at a rate of 400 ° C./hour in an air atmosphere.
Bake for hours. Further, the fired product is ground using a mortar.

【0036】このようにして得られたMFG蛍光体の粉
体における相対輝度を図3に示す。ここで、焼成後の組
成が、 3.5MgO・0.5MgF2・GeO2:0.01Mn
4+ で表され、焼成温度が1200℃である従来のMFG蛍
光体の輝度を1としている。
FIG. 3 shows the relative luminance of the powder of the MFG phosphor thus obtained. Here, the composition after firing is 3.5 MgO · 0.5 MgF 2 · GeO 2 : 0.01 Mn
The brightness of the conventional MFG phosphor whose firing temperature is 1200 ° C. and which is represented by 4+ is set to 1.

【0037】図3より、マンガンの付活量xが0.01
の場合、焼成温度が1050以上で焼成すると、従来の
1.05倍の初期輝度が得られるという結果を得た。
As shown in FIG. 3, the activation amount x of manganese is 0.01
In the case of the above, when the firing temperature was 1050 or more, the result was obtained that an initial luminance 1.05 times that of the conventional example was obtained.

【0038】(実施例3)一般式、(4−y)MgO・
yMgF2・GeO2:0.003Mn4+ で表される組
成からなるMFG蛍光体。
Example 3 General formula (4-y) MgO.
yMgF 2 · GeO 2: 0.003Mn MFG phosphor having the composition represented by 4+.

【0039】弗化マグネシウムをそれぞれ0.4,0.
5,0.6,0.7,0.8,0.9,1モルをそれぞ
れ秤量する。一方、酸化マグネシウムを、3.6,3.
5,3.4,3.3,3.2,3.1,3.0モルをそ
れぞれ秤量する。前記各々の弗化マグネシウムにマグネ
シウムの総原子数が4モルとなる組合せで酸化マグネシ
ウムを加え、さらに酸化ゲルマニウム1モル、炭酸マン
ガン0.003モルを秤量して加えて乳鉢に入れ、アセ
トンを適量加えて湿式混合した後、蓋付のアルミナるつ
ぼに入れ、空気雰囲気中で400℃/時間の昇温速度で
昇温し、1000℃で2時間の予備焼成を行う。さらに
乳鉢を用いて粉砕後、空気雰囲気中で400℃/時間の
昇温速度で昇温し、1100℃で2時間焼成する。さら
に前記焼成物を乳鉢を用いて粉砕する。
Magnesium fluoride was added at 0.4, 0.
5, 0.6, 0.7, 0.8, 0.9 and 1 mol are weighed respectively. On the other hand, magnesium oxide was added to 3.6,3.
5, 3.4, 3.3, 3.2, 3.1 and 3.0 moles are weighed respectively. Magnesium oxide was added to each of the above magnesium fluorides in a combination such that the total number of atoms of magnesium was 4 mol, and 1 mol of germanium oxide and 0.003 mol of manganese carbonate were weighed and added. The mixture was placed in a mortar, and an appropriate amount of acetone was added. After wet mixing, the mixture is placed in an alumina crucible with a lid, heated at a rate of 400 ° C./hour in an air atmosphere, and pre-fired at 1000 ° C. for 2 hours. Furthermore, after pulverizing using a mortar, the temperature is raised at a rate of 400 ° C./hour in an air atmosphere, and firing is performed at 1100 ° C. for 2 hours. Further, the fired product is ground using a mortar.

【0040】このようにして得られたMFG蛍光体の粉
体における相対輝度を図4に示す。ここで、従来の組成
である酸化マグネシウム3.5モルに対し弗化マグネシ
ウム0.5モルの場合の蛍光体の輝度を1としている。
FIG. 4 shows the relative luminance of the powder of the MFG phosphor thus obtained. Here, the luminance of the phosphor in the case of 0.5 mol of magnesium fluoride with respect to 3.5 mol of magnesium oxide which is a conventional composition is set to 1.

【0041】図4より、弗化マグネシウムの混合量yが
従来の0.5以上の場合、最高1.09倍の初期輝度が
得られるという結果を得た。また、弗化マグネシウムの
混合量yは0.7モル以上が最も良いと考えられる。
FIG. 4 shows that when the mixed amount y of magnesium fluoride is 0.5 or more, the initial luminance of up to 1.09 times can be obtained. It is considered that the mixing amount y of the magnesium fluoride is most preferably 0.7 mol or more.

【0042】なお、弗化マグネシウムの混合量yが1を
越える場合は焼結のため粉砕が困難となることが多く、
蛍光体としての利用は困難となる。
When the mixing amount y of magnesium fluoride exceeds 1, pulverization often becomes difficult due to sintering.
It becomes difficult to use as a phosphor.

【0043】また、弗化マグネシウムの混合量yが0.
8の場合の焼成温度による相対輝度の変化を図5に示
す。
When the mixed amount y of magnesium fluoride is 0.
FIG. 5 shows a change in relative luminance depending on the firing temperature in the case of No. 8.

【0044】図5より、焼成温度は1100℃付近が最
も良いと考えられる。 (実施例4)組成式、3.2MgO・(0.8−z)M
gF2・zMgCl2・GeO2:0.003Mn4+ で表
される組成からなるMFG蛍光体。
From FIG. 5, it is considered that the best firing temperature is around 1100 ° C. (Example 4) Composition formula, 3.2MgO. (0.8-z) M
gF 2 .zMgCl 2 .GeO 2 : MFG phosphor having a composition represented by 0.003 Mn 4+ .

【0045】弗化マグネシウムをそれぞれ0.8,0.
7,0.6,0.5,0.4モルをそれぞれ秤量する。
一方、塩化マグネシウムを0.1,0.2,0.3,
0.4モルをそれぞれ秤量する。前記各々の弗化マグネ
シウムに弗化マグネシウムと塩化マグネシウムの総量が
0.8モルとなる組合せで塩化マグネシウムを加え、さ
らに酸化マグネシウム3.2モル、酸化ゲルマニウム1
モル、炭酸マンガン0.003モルを秤量して加えて乳
鉢に入れ、アセトンを適量加えて湿式混合した後蓋付の
アルミナるつぼに入れ、空気雰囲気中で400℃/時間
の昇温速度で昇温し、650℃で5時間の予備焼成を行
う。さらに乳鉢を用いて粉砕後それぞれの粉体を4つに
分け、空気雰囲気中で400℃/時間の昇温速度で昇温
し、それぞれ900℃、1000℃、1100℃および
1200℃で2時間焼成する。さらに前記焼成物を乳鉢
を用いて粉砕する。
Magnesium fluoride was added at 0.8, 0.
7, 0.6, 0.5 and 0.4 mol are weighed respectively.
On the other hand, magnesium chloride was 0.1, 0.2, 0.3,
Weigh 0.4 mol each. Magnesium chloride was added to each of the magnesium fluorides in a combination such that the total amount of magnesium fluoride and magnesium chloride was 0.8 mol, and 3.2 mol of magnesium oxide and 1 mol of germanium oxide were added.
And 0.003 mol of manganese carbonate are weighed and added to a mortar, and an appropriate amount of acetone is added and wet-mixed. Then, the mixture is placed in an alumina crucible with a lid, and heated at a heating rate of 400 ° C./hour in an air atmosphere. Then, preliminary firing is performed at 650 ° C. for 5 hours. Further, after pulverizing using a mortar, each powder was divided into four pieces, and heated at a heating rate of 400 ° C./hour in an air atmosphere and fired at 900 ° C., 1000 ° C., 1100 ° C., and 1200 ° C. for 2 hours, respectively. I do. Further, the fired product is ground using a mortar.

【0046】このようにして得られたMFG蛍光体の、
置換量zを0.1とした場合の相対輝度の焼成温度特性
を図6に示す。また、焼成温度を1100℃とした場合
の相対輝度の置換割合zによる変化を図7に示す。ここ
で、弗化マグネシウムを塩化マグネシウムで置換しない
場合、すなわち、焼成後の組成が、 3.5MgO・0.5MgF2・GeO2:0.01Mn
4+ で表される組成からなり、二次焼成温度が1100℃の
場合の輝度を1としている。
The MFG phosphor thus obtained was
FIG. 6 shows firing temperature characteristics of relative luminance when the substitution amount z is set to 0.1. FIG. 7 shows a change in the relative luminance depending on the substitution ratio z when the firing temperature is 1100 ° C. Here, when magnesium fluoride is not replaced with magnesium chloride, that is, the composition after firing is 3.5 MgO.0.5 MgF 2 .GeO 2 : 0.01 Mn.
It has a composition represented by 4+ , and has a luminance of 1 when the secondary firing temperature is 1100 ° C.

【0047】図6および図7より、弗化マグネシウムを
塩化マグネシウムで置換すると、置換を行わない場合と
比べ、最高1.05倍の初期輝度が得られるという結果
を得た。また、置換量zは0.1モル、焼成温度は11
00℃付近が最も良いと考えられる。
FIGS. 6 and 7 show that when the magnesium fluoride is replaced with magnesium chloride, an initial luminance of up to 1.05 times can be obtained as compared with the case where the replacement is not performed. The substitution amount z was 0.1 mol, and the firing temperature was 11 mol.
Around 00 ° C. is considered to be the best.

【0048】また、塩化マグネシウムの代わりに臭化マ
グネシウムを用いて同様の実験を行なった場合の相対輝
度の置換量および焼成温度による変化をそれぞれ図8お
よび図9に示す。
FIGS. 8 and 9 show changes in the relative luminance and the firing temperature when the same experiment was performed using magnesium bromide instead of magnesium chloride.

【0049】図8および図9より、臭化マグネシウムで
置換すると、同様の効果が得られるという結果を得た。
FIGS. 8 and 9 show that the same effect can be obtained by substitution with magnesium bromide.

【0050】(実施例5)組成式、3.2MgO・0.
8MgF2・GeO2:0.003Mn4++aLa 23
で表される組成からなるMFG蛍光体。
Example 5 Compositional formula: 3.2 MgO.
8MgFTwo・ GeOTwo: 0.003 Mn4++ ALa TwoOThree 
An MFG phosphor having a composition represented by the following formula:

【0051】三酸化二ランタンをそれぞれ0.001,
0.0015,0.002,0.003,0.005,
0.01,0.02,0.025モルをそれぞれ秤量す
る。前記各々の三酸化二ランタンに酸化マグネシウム
3.2モル、弗化マグネシウム0.8モル、酸化ゲルマ
ニウム1モル、炭酸マンガン0.003モルを秤量して
加え、乳鉢に入れアセトンを適量加えて湿式混合した
後、蓋付のアルミナるつぼに入れ、空気雰囲気中で40
0℃/時間の昇温速度で昇温し、1000℃で2時間の
予備焼成を行う。さらに乳鉢を用いて粉砕後、空気雰囲
気中で400℃/時間の昇温速度で昇温し、1100℃
で2時間焼成する。さらに前記焼成物を乳鉢を用いて粉
砕する。
Dilanthanum trioxide was added in an amount of 0.001,
0.0015, 0.002, 0.003, 0.005
Weigh 0.01, 0.02 and 0.025 mol respectively. 3.2 mol of magnesium oxide, 0.8 mol of magnesium fluoride, 1 mol of germanium oxide, and 0.003 mol of manganese carbonate are weighed and added to each of the above-mentioned lanthanum trioxides, put into a mortar, and an appropriate amount of acetone is added and wet mixed. After that, put in an alumina crucible with a lid,
The temperature is raised at a rate of 0 ° C./hour, and preliminary firing is performed at 1000 ° C. for 2 hours. Further, after crushing using a mortar, the temperature was raised at a rate of 400 ° C./hour in an air atmosphere,
For 2 hours. Further, the fired product is ground using a mortar.

【0052】このようにして得られたMFG蛍光体の粉
体における相対輝度を、図10に示す。ここで、三酸化
二ランタンを付活しない(a=0)場合の蛍光体の輝度
を1としている。
FIG. 10 shows the relative luminance of the powder of the MFG phosphor thus obtained. Here, the luminance of the phosphor when the lanthanum trioxide is not activated (a = 0) is set to 1.

【0053】図10より、三酸化二ランタンを付活する
ことにより、最高1.07倍の初期輝度が得られるとい
う結果を得た。また、付活量は0.02モル以上が良い
と考えられるが、0.03以上になるとかえって輝度が
低下することが既に実験により分かっている。
FIG. 10 shows that activation of dilanthanum trioxide can provide an initial luminance of 1.07 times at the maximum. Further, it is considered that the activation amount is preferably 0.02 mol or more, but it has already been found by experiments that the luminance is lowered when the activation amount is 0.03 or more.

【0054】なお、三酸化二ランタンの代わりに他の希
土類酸化物、二酸化錫、三酸化二インジウム、またはア
ルミナを用いても同様の効果が得られる。
The same effect can be obtained by using another rare earth oxide, tin dioxide, indium trioxide or alumina instead of dilanthanum trioxide.

【0055】(実施例6)組成式、3.2MgO・0.
8MgF2・0.9GeO2・0.05SiO2・0.0
05SnO2:0.003Mn4+ で表される組成からな
るMFG蛍光体。
(Example 6) Composition formula, 3.2MgO.
8MgF 2 · 0.9GeO 2 · 0.05SiO 2 · 0.0
05SnO 2 : MFG phosphor having a composition represented by 0.003Mn 4+ .

【0056】酸化マグネシウム3.2モル、弗化マグネ
シウム0.8モル、酸化ゲルマニウム0.9モル、二酸
化珪素0.05モル、二酸化錫0.05モル、炭酸マン
ガン0.003モルを秤量して加え、乳鉢に入れアセト
ンを適量加えて湿式混合した後、蓋付のアルミナるつぼ
に入れ、空気雰囲気中で400℃/時間の昇温速度で昇
温し、1000℃で2時間の予備焼成を行う。さらに乳
鉢を用いて粉砕後4つに分け、空気雰囲気中で400℃
/時間の昇温速度で昇温し、それぞれ1100℃、12
00℃、1300℃、1400℃で2時間焼成する。さ
らに前記焼成物を乳鉢を用いて粉砕する。
3.2 mol of magnesium oxide, 0.8 mol of magnesium fluoride, 0.9 mol of germanium oxide, 0.05 mol of silicon dioxide, 0.05 mol of tin dioxide and 0.003 mol of manganese carbonate are weighed and added. In a mortar, an appropriate amount of acetone is added, and the mixture is wet-mixed. Then, the mixture is placed in an alumina crucible with a lid, heated at a rate of 400 ° C./hour in an air atmosphere, and pre-baked at 1000 ° C. for 2 hours. Further, after pulverizing using a mortar, the mixture is divided into four pieces, and is 400 ° C.
/ Hour at a heating rate of 1100 ° C., 12
Baking is performed at 00 ° C., 1300 ° C., and 1400 ° C. for 2 hours. Further, the fired product is ground using a mortar.

【0057】このようにして得られたMFG蛍光体の粉
体における相対輝度を、図11に示す。ここで、ゲルマ
ニウムを置換しない場合の蛍光体、即ち、焼成後の組成
が、 3.2MgO・0.8MgF2・GeO2:0.003M
4+ で表される組成からなる蛍光体の輝度を1としている。
FIG. 11 shows the relative luminance of the powder of the MFG phosphor thus obtained. Here, the phosphor in the case of not replacing germanium, that is, the composition after firing is 3.2 MgO · 0.8MgF 2 .GeO 2 : 0.003M
The luminance of a phosphor having a composition represented by n 4+ is set to 1.

【0058】図11より、ゲルマニウムの10%を珪素
5%と錫5%の組合せにより置換することにより、最高
1.06倍の初期輝度が得られるという結果を得た。ま
た、焼成温度は1200℃付近が最も良いと考えられ
る。
From FIG. 11, it was found that by replacing 10% of germanium with a combination of 5% of silicon and 5% of tin, a maximum initial brightness of 1.06 times can be obtained. It is considered that the firing temperature is best around 1200 ° C.

【0059】なお、珪素と錫の原子比を変化させた場合
も輝度向上の効果が得られるが、最適な焼成温度は、置
換の割合および珪素と錫の比率により若干異なる。
Although the effect of improving the luminance can be obtained when the atomic ratio of silicon and tin is changed, the optimum firing temperature slightly varies depending on the substitution ratio and the ratio of silicon and tin.

【0060】また、錫の代わりにチタン、ジルコニウ
ム、ハフニウムを用いた場合も同様の輝度向上の効果が
得られる。
Further, when titanium, zirconium or hafnium is used instead of tin, the same effect of improving luminance can be obtained.

【0061】[0061]

【発明の効果】本発明のマンガン付活ゲルマン酸蛍光体
は、マンガンの付活量をゲルマニウム原子に対し1原子
%未満とし、弗素の含量を従来より増加し、また、弗素
を他のハロゲン元素で置換し、ゲルマニウムを他のIVA
族またはIVB族元素の組合せで置換し、希土類酸化物ま
たは低融点化合物付加することにより高輝度な深赤色蛍
光体を実現するものであり、その効果は大きい。
According to the manganese-activated germanic acid phosphor of the present invention, the amount of activated manganese is set to less than 1 atomic% with respect to germanium atoms, the content of fluorine is increased, and fluorine is replaced with another halogen element. And replace germanium with another IVA
Substitution with a combination of group IV or IVB elements and addition of a rare earth oxide or low melting point compound realizes a high-brightness deep red phosphor, and its effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例のマンガン付活量と得ら
れるマンガン付活ゲルマン酸蛍光体の輝度の関係を示す
特性図
FIG. 1 is a characteristic diagram showing the relationship between the manganese activation amount of the first embodiment of the present invention and the luminance of the obtained manganese-activated germanic acid phosphor.

【図2】本発明の第一の実施例の焼成温度と付活ゲルマ
ン酸蛍光体の輝度を示す特性図
FIG. 2 is a characteristic diagram showing the firing temperature and the luminance of the activated germanic acid phosphor of the first embodiment of the present invention.

【図3】本発明の第二の実施例のマグネシウム原子の総
量の異なる付活ゲルマン酸蛍光体の輝度を示す特性図
FIG. 3 is a characteristic diagram showing luminance of activated germanic acid phosphors having different total amounts of magnesium atoms according to the second embodiment of the present invention.

【図4】本発明の第三の実施例の弗化マグネシウムの混
合量と得られるマンガン付活ゲルマン酸蛍光体の輝度の
関係を示す特性図
FIG. 4 is a characteristic diagram showing a relationship between a mixed amount of magnesium fluoride and luminance of a manganese-activated germanic acid phosphor obtained in a third embodiment of the present invention.

【図5】本発明の第三の実施例の焼成温度と得られるマ
ンガン付活ゲルマン酸蛍光体の輝度の関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between the sintering temperature and the luminance of the obtained manganese-activated germanic acid phosphor according to the third embodiment of the present invention.

【図6】本発明の第四の実施例の弗化マグネシウムを塩
化マグネシウムで0.1モル置換した場合の焼成温度と
得られるマンガン付活ゲルマン酸蛍光体の輝度の関係を
示す特性図
FIG. 6 is a characteristic diagram showing the relationship between the sintering temperature and the luminance of a manganese-activated germanic acid phosphor obtained when the magnesium fluoride of the fourth embodiment of the present invention is substituted with 0.1 mol of magnesium chloride.

【図7】本発明の第四の実施例の弗化マグネシウムを塩
化マグネシウムで置換した場合の置換量と得られるマン
ガン付活ゲルマン酸蛍光体の輝度の関係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the substitution amount and the luminance of a manganese-activated germanic acid phosphor obtained when magnesium fluoride is substituted with magnesium chloride according to the fourth embodiment of the present invention.

【図8】本発明の第四の実施例の弗化マグネシウムを臭
化マグネシウムで0.1モル置換した場合の焼成温度と
得られるマンガン付活ゲルマン酸蛍光体の輝度の関係を
示す特性図
FIG. 8 is a characteristic diagram showing the relationship between the sintering temperature and the luminance of the obtained manganese-activated germanic acid phosphor when the magnesium fluoride of the fourth embodiment of the present invention is substituted with 0.1 mol of magnesium bromide.

【図9】本発明の第四の実施例の弗化マグネシウムを臭
化マグネシウムで置換した場合の置換量と得られるマン
ガン付活ゲルマン酸蛍光体の輝度の関係を示す特性図
FIG. 9 is a characteristic diagram showing the relationship between the substitution amount and the luminance of a manganese-activated germanic acid phosphor obtained when magnesium bromide is replaced with magnesium bromide according to the fourth embodiment of the present invention.

【図10】本発明の第五の実施例の三酸化二ランタンの
混合量と得られるマンガン付活ゲルマン酸蛍光体の輝度
の関係を示す特性図
FIG. 10 is a characteristic diagram showing the relationship between the mixed amount of dilanthanum trioxide and the luminance of the obtained manganese-activated germanic acid phosphor according to the fifth embodiment of the present invention.

【図11】本発明の第六の実施例の焼成温度と得られる
マンガン付活ゲルマン酸蛍光体の輝度の関係を示す特性
FIG. 11 is a characteristic diagram showing the relationship between the sintering temperature and the luminance of the obtained manganese-activated germanic acid phosphor according to the sixth embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀井 滋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松岡 富造 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shigeru Horii 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】加熱により酸化マグネシウムとなるマグネ
シウム化合物と弗化マグネシウムと酸化ゲルマニウムお
よびマンガン化合物を加熱焼成して得られる蛍光体で、
マンガンの付活量xがゲルマニウム原子に対して0.1
原子%以上1原子%未満であることを特徴とする蛍光
体。
1. A phosphor obtained by heating and calcining a magnesium compound, magnesium fluoride, germanium oxide and a manganese compound which become magnesium oxide by heating,
The activation amount x of manganese is 0.1 to germanium atom.
A phosphor characterized by being at least atomic% and less than 1 atomic%.
【請求項2】マグネシウム化合物に含まれるマグネシウ
ム原子の数Aと弗化マグネシウムに含まれるマグネシウ
ム原子の数Bの総和A+Bが、ゲルマニウム原子に対し
200原子%以上500原子%以下である請求項1記載
の蛍光体。
2. The total of A + B of the number A of magnesium atoms contained in the magnesium compound and the number B of magnesium atoms contained in the magnesium fluoride is 200 to 500 atomic% with respect to germanium atoms. Phosphor.
【請求項3】マグネシウム化合物と弗化マグネシウムに
含まれるマグネシウム原子の総和がゲルマニウムに対し
て400原子%であり、弗化マグネシウムがゲルマニウ
ムに対して50原子%100原子%以下であることを特
徴とする請求項1または請求項2記載の蛍光体。
3. The total of magnesium atoms contained in the magnesium compound and magnesium fluoride is 400 at% with respect to germanium, and the magnesium fluoride is 50 at% and 100 at% or less with respect to germanium. The phosphor according to claim 1 or 2, wherein
【請求項4】マグネシウム化合物と弗化マグネシウムと
酸化ゲルマニウムおよびマンガン化合物を加熱焼成して
得られる蛍光体で、焼成温度が900℃以上1200℃
以下であることを特徴とする請求項1〜請求項3のいず
れかに記載の蛍光体の製造方法。
4. A phosphor obtained by heating and firing a magnesium compound, magnesium fluoride, germanium oxide and a manganese compound, wherein the firing temperature is 900 ° C. or more and 1200 ° C.
The method for producing a phosphor according to claim 1, wherein:
【請求項5】弗化マグネシウムの一部または全部を他の
ハロゲン化マグネシウムで置換したことを特徴とする請
求項1〜請求項3のいずれかに記載の蛍光体。
5. The phosphor according to claim 1, wherein part or all of the magnesium fluoride is replaced with another magnesium halide.
【請求項6】ハロゲン化マグネシウムが弗化マグネシウ
ムで、焼成後の組成が一般式、AMgO・(B−z)M
gF2・zMgCl2・GeO2:xMn4+ で表され、z
の範囲が0.05以上0.4以下であることを特徴とす
る請求項5記載の蛍光体。
6. The magnesium halide is magnesium fluoride, and the composition after calcination is represented by the general formula: AMgO. (Bz) M
gF 2 .zMgCl 2 .GeO 2 : represented by xMn 4+ , z
6. The phosphor according to claim 5, wherein the range is 0.05 or more and 0.4 or less.
【請求項7】ハロゲン化マグネシウムが臭化マグネシウ
ムで、焼成後の組成が一般式、AMgO・(B−z)M
gF2・zMgBr2・GeO2:xMn4+ で表され、z
の範囲が0.05以上0.4以下であることを特徴とす
る請求項5記載の蛍光体。
7. The magnesium halide is magnesium bromide, and the composition after firing is represented by the general formula: AMgO. (Bz) M
gF 2 .zMgBr 2 .GeO 2 : represented by xMn 4+ , z
6. The phosphor according to claim 5, wherein the range is 0.05 or more and 0.4 or less.
【請求項8】ゲルマニウム原子に対して1原子%以上3
原子%以下の希土類酸化物を付加した請求項1〜7のい
ずれかに記載の蛍光体。
8. At least 1 atomic% with respect to germanium atoms.
The phosphor according to any one of claims 1 to 7, wherein a rare earth oxide of at most atomic% is added.
【請求項9】希土類酸化物がランタン酸化物であること
を特徴とする請求項8記載の蛍光体。
9. The phosphor according to claim 8, wherein the rare earth oxide is a lanthanum oxide.
【請求項10】ゲルマニウム原子に対して1原子%以上
5原子%以下の低融点ハロゲン化物を付加したことを特
徴とする請求項1〜9のいずれかに記載の蛍光体。
10. The phosphor according to claim 1, wherein 1 to 5 atomic% of a low melting point halide is added to germanium atoms.
【請求項11】低融点ハロゲン化物がバリウム、マグネ
シウムまたはナトリウムのハロゲン化物であることを特
徴とする請求項10記載の蛍光体。
11. The phosphor according to claim 10, wherein the low melting point halide is a halide of barium, magnesium or sodium.
【請求項12】ゲルマニウム原子の全部または一部を、
1種類以上の他のIVA族またはIVB族元素で置換したこ
とを特徴とする請求項1〜請求項11のいずれかに記載
の蛍光体。
12. All or a part of germanium atoms,
The phosphor according to any one of claims 1 to 11, wherein the phosphor is substituted with at least one other group IVA or group IVB element.
【請求項13】置換元素が、珪素と錫の組合せであるこ
とを特徴とする請求項12記載の蛍光体。
13. The phosphor according to claim 12, wherein the substitution element is a combination of silicon and tin.
【請求項14】珪素と錫の組成比が等原子%であること
を特徴とする請求項13記載の蛍光体。
14. The phosphor according to claim 13, wherein the composition ratio of silicon and tin is equiatomic%.
【請求項15】ゲルマニウムの20原子%以下を、5原
子%の珪素と5原子%の錫の組合せで置換したことを特
徴とする請求項15記載の蛍光体。
15. The phosphor according to claim 15, wherein 20 atomic% or less of germanium is replaced by a combination of 5 atomic% of silicon and 5 atomic% of tin.
JP8258086A 1996-09-30 1996-09-30 Fluorescent substance Pending JPH10102054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8258086A JPH10102054A (en) 1996-09-30 1996-09-30 Fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8258086A JPH10102054A (en) 1996-09-30 1996-09-30 Fluorescent substance

Publications (1)

Publication Number Publication Date
JPH10102054A true JPH10102054A (en) 1998-04-21

Family

ID=17315332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8258086A Pending JPH10102054A (en) 1996-09-30 1996-09-30 Fluorescent substance

Country Status (1)

Country Link
JP (1) JPH10102054A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006501A (en) * 2009-06-23 2011-01-13 Tokyo Kagaku Kenkyusho:Kk Deep red phosphor
JP2011012091A (en) * 2009-06-30 2011-01-20 Mitsubishi Chemicals Corp Phosphor and method for producing the same, phosphor-containing composition and light-emitting device using the same, and image display and lighting apparatus using light-emitting device
WO2012066993A1 (en) * 2010-11-17 2012-05-24 日本化学工業株式会社 Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element
WO2013146790A1 (en) * 2012-03-26 2013-10-03 宇部マテリアルズ株式会社 Deep-red light-emitting magnesium fluoro-germanate fluorescent body and method for producing same
CN104312583A (en) * 2014-09-28 2015-01-28 彩虹集团电子股份有限公司 Preparation method of near ultraviolet excited red fluorescent powder for LEDs (light emitting diodes)
JP2016027644A (en) * 2014-06-30 2016-02-18 日亜化学工業株式会社 Semiconductor light emitting device
JP2016145316A (en) * 2015-01-28 2016-08-12 日亜化学工業株式会社 Red phosphor
US9653658B2 (en) 2014-05-30 2017-05-16 Nichia Corporation Red phosphor and light emitting device including the same
US10106735B2 (en) 2015-01-28 2018-10-23 Nichia Corporation Red phosphor
JP2019019190A (en) * 2017-07-14 2019-02-07 日亜化学工業株式会社 Magnesium fluoro germanate fluophor and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006501A (en) * 2009-06-23 2011-01-13 Tokyo Kagaku Kenkyusho:Kk Deep red phosphor
JP2011012091A (en) * 2009-06-30 2011-01-20 Mitsubishi Chemicals Corp Phosphor and method for producing the same, phosphor-containing composition and light-emitting device using the same, and image display and lighting apparatus using light-emitting device
WO2012066993A1 (en) * 2010-11-17 2012-05-24 日本化学工業株式会社 Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element
WO2013146790A1 (en) * 2012-03-26 2013-10-03 宇部マテリアルズ株式会社 Deep-red light-emitting magnesium fluoro-germanate fluorescent body and method for producing same
JPWO2013146790A1 (en) * 2012-03-26 2015-12-14 宇部マテリアルズ株式会社 Deep red light emitting magnesium fluorogermanate phosphor and method for producing the same
US9653658B2 (en) 2014-05-30 2017-05-16 Nichia Corporation Red phosphor and light emitting device including the same
US10199547B2 (en) 2014-05-30 2019-02-05 Nichia Corporation Red phosphor and light emitting device including the same
JP2016027644A (en) * 2014-06-30 2016-02-18 日亜化学工業株式会社 Semiconductor light emitting device
CN104312583A (en) * 2014-09-28 2015-01-28 彩虹集团电子股份有限公司 Preparation method of near ultraviolet excited red fluorescent powder for LEDs (light emitting diodes)
JP2016145316A (en) * 2015-01-28 2016-08-12 日亜化学工業株式会社 Red phosphor
US10106735B2 (en) 2015-01-28 2018-10-23 Nichia Corporation Red phosphor
JP2019019190A (en) * 2017-07-14 2019-02-07 日亜化学工業株式会社 Magnesium fluoro germanate fluophor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
WO1997047705A1 (en) Aluminate phosphor, process for preparing the same, and vacuum ultraviolet-excited light emitting device
JPH10102054A (en) Fluorescent substance
JPH0873845A (en) Afterglow type fluorescent material
JP2790673B2 (en) Aluminate phosphor
KR100319488B1 (en) Green fluorescent body based zinc silicate
JP3195054B2 (en) Manganese-doped phosphor based on zinc silicate and method for producing the same
JP2000017257A (en) Fluorescent substance and luminous screen using the same
JP3790854B2 (en) Strontium titanate phosphor
JPH03177491A (en) Fluorescent substance and fluorescent lamp
JP3956434B2 (en) Aluminate phosphor
JP2786329B2 (en) Aluminate phosphor and fluorescent lamp using the same
JPH10279935A (en) Fluorescent substance
JP2995976B2 (en) Method for producing green light emitting phosphor for lamp
JP4219518B2 (en) Europium-activated composite oxide phosphor
JP3560085B2 (en) Aluminate phosphor
JPS62201990A (en) Sulfide phosphor
KR100285273B1 (en) A green fluorescent body based Zn2SiO4 and process for preparing them
KR100265035B1 (en) A green fluorescent body based zn2sio4 and its preparing method
JP3575821B2 (en) Phosphor and fluorescent lamp using the same
JPH04293990A (en) Manganese-activated zinc silicogermanate phosphor and its manufacture
JP2760574B2 (en) Phosphor and fluorescent lamp
US3458452A (en) Luminescent materials of zinc magnesium germanate activated with manganese
JP2726521B2 (en) Phosphor and fluorescent lamp
JP3436161B2 (en) Fluorescent lamp
JP3518264B2 (en) Afterglow phosphor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802