JPH0999567A - Piezo-actuator - Google Patents

Piezo-actuator

Info

Publication number
JPH0999567A
JPH0999567A JP7284605A JP28460595A JPH0999567A JP H0999567 A JPH0999567 A JP H0999567A JP 7284605 A JP7284605 A JP 7284605A JP 28460595 A JP28460595 A JP 28460595A JP H0999567 A JPH0999567 A JP H0999567A
Authority
JP
Japan
Prior art keywords
displacement
piezoelectric element
piezo
triangular wave
magnifying mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7284605A
Other languages
Japanese (ja)
Inventor
Junji Moriwaki
淳二 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP7284605A priority Critical patent/JPH0999567A/en
Publication of JPH0999567A publication Critical patent/JPH0999567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Impact Printers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezo-actuator for controlling the vibration in an output actuating point of a displacement enlarging mechanism. SOLUTION: A piezo-actuator 1 comprises a piezo-electric element 10 for converting a voltage signal to a mechanical displacement, a displacement enlarging mechanism 20 for enlarging the mechanical displacement amount of the piezo-eletrical element 10 and a driving section for generating the voltage signal for driving the piezo-electric element 10. The piezo-electric element 10 is provided with a wave form of a deformed triangular wave with a smooth section formed by the variation of voltages in the vicinity of a crest and in the vicinity of a lowest point of the triangle wave to be adjusted slower than the variation of voltages of the front and rear sections of the above-said vicinities, and the continuous time period (t) of the smooth section is in the range of 40-60% of the period of resonance frequency of the displacement enlarging mechanism 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,ピエゾアクチュエータの出力部
を構成する変位拡大機構の振動を抑制する技術に関す
る。
TECHNICAL FIELD The present invention relates to a technique for suppressing vibration of a displacement magnifying mechanism that constitutes an output portion of a piezo actuator.

【0002】[0002]

【従来技術】印字ヘッドのワイヤ等を高速で駆動するア
クチュエータとして,圧電素子を用いたピエゾアクチュ
エータが知られている。これは,圧電素子に電圧を印加
して圧電素子に変位を生じさせ,変位拡大機構を介して
出力(作動点)の変位量を増幅するものである。そし
て,通常は圧電素子に対して印加する電圧波形は,図
6,図7の符号49に示すように,通常三角波が用いら
れ,これによって圧電素子の変位はプラスまたはマイナ
ス方向にほぼ等速度で変化する。
2. Description of the Related Art A piezo actuator using a piezoelectric element is known as an actuator for driving a wire or the like of a print head at high speed. This is to apply a voltage to the piezoelectric element to cause the piezoelectric element to be displaced, and to amplify the displacement amount of the output (operating point) via the displacement magnifying mechanism. As a voltage waveform normally applied to the piezoelectric element, a triangular wave is normally used as shown by reference numeral 49 in FIGS. 6 and 7, whereby the piezoelectric element is displaced in the plus or minus direction at substantially the same speed. Change.

【0003】また,上記変位拡大機構には,例えば,梃
子式の変位拡大機構があり,支点と圧電素子の力の作用
点との距離Aよりも出力となる変位の作動点と支点との
距離Bを大きくする(B>A)ことにより,上記作動点
における変位量ΔL’を,作用点の変位量ΔLよりも大
きくすることが出来る(ΔL’=ΔL*B/A)。な
お,多言するまでもなく上記作用点と作動点とは,支点
と同一サイドにあっても良く,反対側にあっても良い。
The displacement magnifying mechanism is, for example, a lever type displacement magnifying mechanism, and the distance between the working point and the fulcrum of the displacement, which is an output, is larger than the distance A between the fulcrum and the point of action of the force of the piezoelectric element. By increasing B (B> A), the displacement amount ΔL ′ at the operating point can be made larger than the displacement amount ΔL at the operating point (ΔL ′ = ΔL * B / A). Needless to say, the action point and the action point may be on the same side as the fulcrum or on the opposite side.

【0004】[0004]

【解決しようとする課題】しかしながら,上記従来のピ
エゾアクチュエータには,次のような問題点がある。そ
れは,圧電素子の変位をプラス及びマイナス方向に脈動
させた場合に,変位の方向が変わる変向点または変位の
速度が大きく変わる変速点等において,変位拡大機構に
共振周波数近傍の減衰振動が発生し,これに伴って作動
点が振動することである。本発明は,かかる従来の問題
点に鑑みてなされたものであり,変位拡大機構の作動点
における振動を抑制することのできるピエゾアクチュエ
ータを提供しようとするものである。
However, the above-mentioned conventional piezo actuator has the following problems. When the displacement of the piezoelectric element is pulsated in the plus and minus directions, a damping vibration near the resonance frequency occurs in the displacement magnifying mechanism at the turning point where the displacement direction changes or the shifting point where the displacement speed changes significantly. However, the operating point vibrates accordingly. The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a piezo actuator capable of suppressing vibration at an operating point of a displacement magnifying mechanism.

【0005】[0005]

【課題の解決手段】請求項1にかかる発明は,電圧信号
を機械的な変位に変換する圧電素子と,この圧電素子の
機械的な変位量を拡大する変位拡大機構と,上記圧電素
子を駆動する電圧信号を発生する駆動部とを有するピエ
ゾアクチュエータにおいて,上記圧電素子を駆動する電
圧信号は,三角波を基調とし,三角波の頂点近傍と最下
降点近傍に電圧の変化をその前後部よりも緩やかにした
平滑部を設けた変形三角波の波形を有しており,上記平
滑部の継続時間長は,上記変位拡大機構の共振周波数の
周期の40〜60%の間にあることを特徴とするピエゾ
アクチュエータにある。
According to a first aspect of the present invention, a piezoelectric element that converts a voltage signal into a mechanical displacement, a displacement magnifying mechanism that magnifies a mechanical displacement amount of the piezoelectric element, and a piezoelectric element that drives the piezoelectric element. In a piezo actuator having a drive unit for generating a voltage signal for driving, the voltage signal for driving the piezoelectric element is based on a triangular wave, and changes in voltage near the apex and the lowest point of the triangular wave are more gradual than those before and after. The piezo is characterized in that it has a modified triangular waveform provided with a smoothing part, and the duration of the smoothing part is between 40 and 60% of the cycle of the resonance frequency of the displacement magnifying mechanism. On the actuator.

【0006】本発明において最も注目すべきことは,三
角波の頂点近傍と最下降点近傍に電圧の変化をその前後
部よりも緩やかにした平滑部を設けたことであり,この
平滑部の継続時間長は,上記変位拡大機構の共振周波数
の周期Tの40〜60%の間にあることである。圧電素
子を駆動する電圧波形を上記のような変形三角波とする
ことにより,変位拡大機構の振動を効果的に吸収または
減衰させることが出来る。
What is most noticeable in the present invention is that a smoothing section is provided near the apex and the lowest point of the triangular wave so that the change in voltage is slower than that before and after the smoothing section. The length is between 40 and 60% of the period T of the resonance frequency of the displacement magnifying mechanism. By making the voltage waveform for driving the piezoelectric element a modified triangular wave as described above, the vibration of the displacement magnifying mechanism can be effectively absorbed or damped.

【0007】即ち,三角波状に圧電素子の変位が変化す
る場合,三角波の山又は谷の変向点において,変位拡大
機構に振動が励起されるが,上記平滑部を設けてこの振
動の励起後の約半周期(50±10%)の間三角波の変
向を留保し,その後に三角波の方向を反転させること
(図2の曲線41参照)により,変位拡大機構の振動を
大幅に抑制することが出来る。
That is, when the displacement of the piezoelectric element changes like a triangular wave, vibration is excited in the displacement magnifying mechanism at the turning point of the peak or valley of the triangular wave. For about half a cycle (50 ± 10%) of the triangular wave, the direction of the triangular wave is retained, and then the direction of the triangular wave is reversed (see curve 41 in Fig. 2) to significantly suppress the vibration of the displacement magnifying mechanism. Can be done.

【0008】これは,詳細を後述するように,振動によ
る変位が,山側でプラス(谷側ではマイナス)の方向に
およそ半周期の間変化し,その後振動の変位量がマイナ
ス(谷側ではプラス)の方向に変化するのにほぼ同期し
て,即ち変位拡大機構の共振周波数の周期Tの約50%
のタイミングに,素子本体による基本変位が平滑部から
再び三角波による変位に,上記振動の変位の変化と同一
の方向に変化するため,励起された振動のエネルギーが
吸収されることによる。
As will be described later in detail, this is because the displacement due to vibration changes in the plus direction on the mountain side (minus on the valley side) for about a half cycle, and then the displacement amount of vibration is minus (plus on the valley side). ) Almost in synchronism with the change in the direction of, ie, about 50% of the period T of the resonance frequency of the displacement magnifying mechanism.
At this timing, the basic displacement due to the element body changes from the smooth portion to the displacement due to the triangular wave again in the same direction as the change in the above-described vibration displacement, and thus the energy of the excited vibration is absorbed.

【0009】なお,振動の減衰効果は,上記平滑部の時
間長が変位拡大機構の共振周波数の周期Tの2分の1に
近い方がより大きくなる。しかしながら,平滑部の時間
長が50±10%の範囲にあれば,実用上十分な効果を
発揮することができる(図4及び図5参照)。そして,
より好ましくは,上記時間長を50±5%程度にするこ
とが好ましい。
The vibration damping effect becomes greater when the time length of the smoothing portion is closer to one half of the cycle T of the resonance frequency of the displacement magnifying mechanism. However, if the time length of the smooth portion is in the range of 50 ± 10%, a practically sufficient effect can be exhibited (see FIGS. 4 and 5). And
More preferably, the time length is set to about 50 ± 5%.

【0010】また,上記平滑部における電圧変化(圧電
素子の変位)の程度は,出来るだけ平滑にしフラット化
する方がより効果的であ。従って,請求項2記載のよう
に平滑部を電圧が変化しない定電圧部とすることが好ま
しい。
Further, it is more effective that the degree of voltage change (displacement of the piezoelectric element) in the smooth portion is smoothed and flattened. Therefore, it is preferable that the smoothing section is a constant voltage section in which the voltage does not change.

【0011】また,上記変位拡大機構には,例えば,請
求項3記載のように,支点を中心にして揺動する梃子式
の変位拡大機構があり,上記支点と作動部との距離Bよ
りも短い距離Aに圧電素子の力の作用点を設けたものが
ある。支点と圧電素子の作用点との距離をAとし支点と
作動点との距離をBとしたとき,これによって,変位出
力の作動点における変位量ΔL’を,圧電素子の力の作
用点の変位量ΔLよりも大きくすることが出来るからで
ある(ΔL’=ΔL*B/A)。
The displacement magnifying mechanism includes, for example, a lever type displacement magnifying mechanism that swings about a fulcrum as described in claim 3, and the displacement magnifying mechanism is more than the distance B between the fulcrum and the operating portion. There is one in which a point of action of the force of the piezoelectric element is provided at a short distance A. When the distance between the fulcrum and the point of action of the piezoelectric element is A, and the distance between the fulcrum and the operating point is B, the displacement amount ΔL 'at the operating point of the displacement output is calculated as follows: This is because it can be made larger than the amount ΔL (ΔL '= ΔL * B / A).

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例 本例は,図1に示すように,電圧信号を機械的な変位に
変換する圧電素子10と,圧電素子10の機械的な変位
量を拡大する変位拡大機構20と,圧電素子10を駆動
する電圧信号を発生する図示しない駆動部とを有するピ
エゾアクチュエータ1である。図2に示すように,圧電
素子10を駆動する電圧信号は,三角波415を基調と
し,三角波の頂点近傍と最下降点近傍に電圧の変化をそ
の前後部よりも緩やかにした平滑部411,412を設
けた変形三角波41の波形を有しており,平滑部41
1,412の継続時間長tは,上記変位拡大機構20の
共振周波数の周期Tの40〜60%の間にある50%の
値に設定されている。そして,平滑部411,412は
電圧が変化しない定電圧部である。
Embodiment Example In this embodiment, as shown in FIG. 1, a piezoelectric element 10 for converting a voltage signal into a mechanical displacement, a displacement magnifying mechanism 20 for enlarging the mechanical displacement amount of the piezoelectric element 10, and a piezoelectric element 10 are provided. The piezoelectric actuator 1 includes a drive unit (not shown) that generates a voltage signal for driving the. As shown in FIG. 2, the voltage signal for driving the piezoelectric element 10 is based on the triangular wave 415, and smoothing parts 411 and 412 are provided in which the voltage changes are made more gradual near the apex and the lowest point of the triangular wave than at the front and rear thereof. Has a waveform of a modified triangular wave 41,
The duration t of 1,412 is set to a value of 50% which is between 40% and 60% of the cycle T of the resonance frequency of the displacement magnifying mechanism 20. The smoothing sections 411 and 412 are constant voltage sections whose voltage does not change.

【0013】また,変位拡大機構20は,図1に示すよ
うに,支点Sを中心にして揺動する梃子式の変位拡大機
構であって,上記支点Sと作動部21との距離Bよりも
短い距離Aに圧電素子10の力の作用点Fを設けたもの
である。そして,変位拡大機構20に設けた空隙29の
大きさGは,作動部21の最大変位量ΔLm(130μ
m)よりも大きい値(0.3〜0.4mm)に設定され
ている。
Further, as shown in FIG. 1, the displacement magnifying mechanism 20 is a lever-type displacement magnifying mechanism that swings about a fulcrum S, and is more than a distance B between the fulcrum S and the operating portion 21. The point F of action of the force of the piezoelectric element 10 is provided at a short distance A. The size G of the gap 29 provided in the displacement magnifying mechanism 20 is determined by the maximum displacement amount ΔLm (130 μm) of the operating portion 21.
m) is set to a larger value (0.3 to 0.4 mm).

【0014】以下,それぞれについて説明を補足する。
圧電素子10は,素子本体11と,ピストン12と,ハ
ウジング13とを有しており,素子本体11は,図示し
ないハウジング13の底面に固定されている。そして,
変位拡大機構20の胴部22の下方はハウジング13の
上部にネジ止めされている。変位拡大機構20の材質
は,アルミ合金である。
A supplementary explanation will be given below for each of them.
The piezoelectric element 10 has an element body 11, a piston 12, and a housing 13, and the element body 11 is fixed to the bottom surface of a housing 13 (not shown). And
The lower portion of the body portion 22 of the displacement magnifying mechanism 20 is screwed to the upper portion of the housing 13. The material of the displacement magnifying mechanism 20 is an aluminum alloy.

【0015】一方,ピストン12は,胴部22との間に
介設された板バネ14の付勢力によって素子本体11の
上端面111に押圧されている。そして,素子本体11
と共に上下に揺動し,これに伴って支点Fが上下動す
る。ピストン12の材質は,鋼材である。なお,同図に
おいて,符号16は,Oリングである。
On the other hand, the piston 12 is pressed against the upper end surface 111 of the element body 11 by the urging force of the leaf spring 14 provided between the piston 12 and the body portion 22. And the element body 11
Along with this, it swings up and down, and the fulcrum F moves up and down accordingly. The material of the piston 12 is steel. In the figure, reference numeral 16 is an O-ring.

【0016】素子本体11に電圧が印加されると,素子
本体11は同図の上方に伸長し,作用点Fを介して変位
拡大機構20の作動部21を押し上げる。そして,梃子
の原理により,作動部21の変位量ΔL’は,作用点F
における変位量ΔLよりも拡大される(ΔL’=ΔL*
B/A)。
When a voltage is applied to the element body 11, the element body 11 extends upward in the figure and pushes up the actuating portion 21 of the displacement magnifying mechanism 20 via the point of action F. Then, according to the principle of leverage, the displacement amount ΔL ′ of the working portion 21 is
Is larger than the displacement amount ΔL at ΔL ′ = ΔL *
B / A).

【0017】次に,本例のピエゾアクチュエータ1の振
動抑制作用について説明する。従来のように,素子本体
11を,図6,図7に示すように,三角波49によって
駆動すると,電圧が増加(又は減少)から減少(又は増
加)に切り替わる変向点491において,変位拡大機構
20に振動が励起され,変位量ΔL’は,符号69のよ
うに脈動波を含んだ形で変化する。この変位曲線69
は,図7に示すように,励起された減衰振動の変位69
2と,圧電素子10によるの三角波の変位691とが重
畳したものである。
Next, the vibration suppressing action of the piezo actuator 1 of this embodiment will be described. When the element body 11 is driven by the triangular wave 49 as shown in FIGS. 6 and 7 as in the conventional case, the displacement magnifying mechanism is provided at the turning point 491 where the voltage switches from increasing (or decreasing) to decreasing (or increasing). Vibration is excited in 20, and the displacement amount ΔL ′ changes in a form including a pulsating wave as indicated by reference numeral 69. This displacement curve 69
Is the displacement 69 of the excited damping vibration, as shown in FIG.
2 and the triangular wave displacement 691 by the piezoelectric element 10 are superposed.

【0018】一方,本例のピエゾアクチュエータ1で
は,実験データを表した図2,図3に示すように,素子
本体11は,変形三角波41によって駆動され,三角波
415から平滑部411,412に切り替わる変向点4
16において,同様に,振動(周期T)が励起される。
しかしながら,これによる振動変位611(図3)は,
本例では,急速に減衰する。
On the other hand, in the piezo actuator 1 of this example, as shown in FIG. 2 and FIG. 3 showing experimental data, the element body 11 is driven by the modified triangular wave 41 to switch from the triangular wave 415 to the smoothing portions 411, 412. Turning point 4
At 16, vibrations (period T) are likewise excited.
However, the resulting vibration displacement 611 (Fig. 3) is
In this example, it decays rapidly.

【0019】即ち,本例では,図3に示すように,振動
変位611が,山側においてプラス(谷側の平滑部41
2ではマイナス)の方向におよそ半周期の間変化し,そ
の後その変位量がマイナス(谷側の平滑部412ではプ
ラス)の値に変化するのにほぼ同期して,即ち変位拡大
機構20の共振周波数の周期Tの50%のタイミング
に,素子本体11による基本変位が平滑部411,41
2から再び三角波415に,振動変位611の変化と同
一の方向に変化する。その結果,励起された振動が吸収
され,振動変位611の変位量が大きく減衰する。
That is, in this example, as shown in FIG. 3, the vibration displacement 611 is positive on the peak side (the smooth part 41 on the valley side).
2 changes in a negative direction for about half a period, and thereafter, the displacement amount changes to a negative value (in the valley side smooth portion 412, a positive value) almost in synchronism, that is, the resonance of the displacement magnifying mechanism 20. At the timing of 50% of the frequency cycle T, the basic displacement due to the element body 11 is reduced by the smoothing portions 411, 41.
It changes from 2 to the triangular wave 415 again in the same direction as the change of the vibration displacement 611. As a result, the excited vibration is absorbed, and the displacement amount of the vibration displacement 611 is greatly attenuated.

【0020】その結果,図3に示す本例の変位曲線61
は,図7に示す変位曲線69に比べて,上記振動による
脈動が大幅に減少する。なお,実験データから得られた
図4,図5に示すように,平滑部481,471の時間
長tが周期Tの40%よりも小または60%よりも大の
場合にも,それなりの効果は発揮されるが,効果は小さ
くなる。
As a result, the displacement curve 61 of this example shown in FIG.
In comparison with the displacement curve 69 shown in FIG. 7, the pulsation due to the vibration is significantly reduced. As shown in FIGS. 4 and 5 obtained from the experimental data, even when the time length t of the smoothing units 481 and 471 is smaller than 40% of the period T or larger than 60%, the effect is reasonable. Is exhibited, but the effect is reduced.

【0021】即ち,図4に示すように,変形三角波48
における平滑部481の時間長tを,変位拡大機構20
の共振振動の周期Tの40%よりも小さな値38%にし
た場合には,変位曲線68は,図2の変位曲線61に比
べてかなり多く脈動成分が残っている。また,図5に示
すように,変形三角波47における平滑部471の時間
長tを,変位拡大機構20の共振振動の周期Tの60%
よりも大きな値63%にした場合には,変位曲線67
は,図2の変位曲線61に比べるとかなり多く脈動成分
が残存する。
That is, as shown in FIG. 4, the modified triangular wave 48
The time length t of the smooth portion 481 at
When the value is set to 38%, which is smaller than 40% of the period T of the resonance vibration, the displacement curve 68 has considerably more pulsating components than the displacement curve 61 of FIG. Further, as shown in FIG. 5, the time length t of the smoothing portion 471 in the modified triangular wave 47 is 60% of the cycle T of the resonance vibration of the displacement magnifying mechanism 20.
If the value is 63%, which is larger than
Is considerably larger than the displacement curve 61 in FIG.

【0022】なお,本例では,平滑部411,412を
一定電圧としたが,変形三角波における平滑部の電圧の
変化率を三角波の上昇時または下降時の変化率よりも小
さくすることにより,変位拡大機構20の作動部21の
変位の脈動を従来より低減することが出来る。
In this example, the smoothing portions 411 and 412 are set to a constant voltage, but if the rate of change of the voltage of the smoothing portion in the modified triangular wave is made smaller than the rate of change in the rising or falling of the triangular wave, the displacement is changed. The pulsation of the displacement of the actuating portion 21 of the enlarging mechanism 20 can be reduced as compared with the conventional case.

【0023】[0023]

【発明の効果】上記のように,本発明によれば,変位拡
大機構の作動点における振動を抑制することのできるピ
エゾアクチュエータを提供することが出来る。
As described above, according to the present invention, it is possible to provide the piezo actuator capable of suppressing the vibration at the operating point of the displacement magnifying mechanism.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態例のピエゾアクチュエータの断面図。FIG. 1 is a sectional view of a piezo actuator according to an embodiment.

【図2】実施形態例のピエゾアクチュエータにおいて圧
電素子への印加電圧と作動部の変位量の変化を示す図。
FIG. 2 is a diagram showing changes in the applied voltage to the piezoelectric element and the displacement amount of the operating portion in the piezo actuator of the embodiment.

【図3】図2の部分拡大図。FIG. 3 is a partially enlarged view of FIG.

【図4】実施形態例と同一構造のピエゾアクチュエータ
に対して異なる変形三角波を印加とた場合の印加電圧と
作動部の変位量の変化を示す図(平滑部の時間長t=
0.38T)。
FIG. 4 is a diagram showing changes in the applied voltage and the displacement amount of the operating portion when different deformed triangular waves are applied to the piezoelectric actuator having the same structure as that of the embodiment (time length t = of the smoothing portion).
0.38T).

【図5】実施形態例と同一構造のピエゾアクチュエータ
に対して異なる変形三角波を印加とた場合の印加電圧と
作動部の変位量の変化を示す図(平滑部の時間長t=
0.63T)。
FIG. 5 is a diagram showing changes in the applied voltage and the displacement amount of the operating part when different deformed triangular waves are applied to the piezoelectric actuator having the same structure as that of the embodiment (the time length t of the smoothing part is t =
0.63T).

【図6】実施形態例と同一構造のピエゾアクチュエータ
に対して従来どおり三角波を印加とた場合の印加電圧と
作動部の変位量の変化を示す図。
FIG. 6 is a diagram showing changes in applied voltage and displacement of an operating portion when a triangular wave is conventionally applied to a piezoelectric actuator having the same structure as that of the embodiment.

【図7】図6の部分拡大図。7 is a partially enlarged view of FIG.

【符号の説明】[Explanation of symbols]

10...圧電素子, 20...変位拡大機構, F...変位拡大機構に対する力の作用点, S...変位拡大機構の支点, 10. . . Piezoelectric element, 20. . . Displacement magnifying mechanism, F. . . Point of action of force on displacement magnifying mechanism, S. . . Fulcrum of displacement magnifying mechanism,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電圧信号を機械的な変位に変換する圧電
素子と,この圧電素子の機械的な変位量を拡大する変位
拡大機構と,上記圧電素子を駆動する電圧信号を発生す
る駆動部とを有するピエゾアクチュエータにおいて,上
記圧電素子を駆動する電圧信号は,三角波を基調とし,
三角波の頂点近傍と最下降点近傍に電圧の変化をその前
後部よりも緩やかにした平滑部を設けた変形三角波の波
形を有しており,上記平滑部の継続時間長は,上記変位
拡大機構の共振周波数の周期の40〜60%の間にある
ことを特徴とするピエゾアクチュエータ。
1. A piezoelectric element that converts a voltage signal into a mechanical displacement, a displacement magnifying mechanism that magnifies the mechanical displacement of the piezoelectric element, and a drive unit that generates a voltage signal that drives the piezoelectric element. In the piezoelectric actuator having, the voltage signal for driving the piezoelectric element is based on a triangular wave,
The triangular wave has a waveform of a modified triangular wave near the apex and the lowest point of the triangular wave. Piezo actuator characterized in that it is between 40% and 60% of the period of the resonance frequency.
【請求項2】 請求項1において,前記平滑部は電圧が
変化しない定電圧部であることを特徴とするピエゾアク
チュエータ。
2. The piezo actuator according to claim 1, wherein the smoothing section is a constant voltage section whose voltage does not change.
【請求項3】 請求項1または請求項2において,前記
変位拡大機構は,支点を中心にして揺動する梃子式の変
位拡大機構であって,上記支点と作動部との距離よりも
短い距離に前記圧電素子の力の作用点を設けたものであ
ることを特徴とするピエゾアクチュエータ。
3. The displacement magnifying mechanism according to claim 1 or 2, wherein the displacement magnifying mechanism is a lever-type displacement magnifying mechanism that swings about a fulcrum, and the distance is shorter than the distance between the fulcrum and the operating portion. A piezo actuator, wherein a point of action of the force of the piezoelectric element is provided in the.
JP7284605A 1995-10-04 1995-10-04 Piezo-actuator Pending JPH0999567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7284605A JPH0999567A (en) 1995-10-04 1995-10-04 Piezo-actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7284605A JPH0999567A (en) 1995-10-04 1995-10-04 Piezo-actuator

Publications (1)

Publication Number Publication Date
JPH0999567A true JPH0999567A (en) 1997-04-15

Family

ID=17680628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7284605A Pending JPH0999567A (en) 1995-10-04 1995-10-04 Piezo-actuator

Country Status (1)

Country Link
JP (1) JPH0999567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080709A (en) * 2016-11-14 2018-05-24 シンフォニアテクノロジー株式会社 Piezoelectric type actuator and piezoelectric type valve
CN109569955A (en) * 2017-09-29 2019-04-05 精工爱普生株式会社 Displacement amplifying mechanism and the liquid injection apparatus for having used the displacement amplifying mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080709A (en) * 2016-11-14 2018-05-24 シンフォニアテクノロジー株式会社 Piezoelectric type actuator and piezoelectric type valve
CN109569955A (en) * 2017-09-29 2019-04-05 精工爱普生株式会社 Displacement amplifying mechanism and the liquid injection apparatus for having used the displacement amplifying mechanism

Similar Documents

Publication Publication Date Title
EP2036139B1 (en) Wide frequency range electromechanical actuator
US4272200A (en) Horn loaded piezoelectric matrix printer drive method and apparatus
US6016231A (en) Drive mechanism employing electromechanical transducer and apparatus employing the mechanism
US20070176514A1 (en) Electromechanical actuator structure
US5382864A (en) Piezoelectric bimorph type actuator
JP2002095272A (en) Driver
JPH0999567A (en) Piezo-actuator
JPH09182468A (en) Oscillatory actuator
JP5315619B2 (en) Drive device
JP4253866B2 (en) Vibration actuator driving apparatus and vibration actuator driving method
JP3765251B2 (en) Optical scanner device and optical scanner device driving method
TW389971B (en) Bonding device
JP3352192B2 (en) Ultrasonic motor driving method and ultrasonic motor driving circuit
JP3453838B2 (en) Ultrasonic motor
JP2002300790A (en) Drive device using electromechanical conversion element and driving method of the device
JPH1189253A (en) Driving pulse generator
JPH11198233A (en) Ultrasonic bonding method of plastic film
JPH08191574A (en) Ultrasonic motor
KR100443639B1 (en) small piezoelectric or electrostrictive linear motor
JP2956214B2 (en) Driving method of piezoelectric element type print head
JPH099655A (en) Vibration actuator and driving equipment using this actuator
JP4168459B2 (en) Driving device and driving method for vibration actuator
JP2670370B2 (en) Ultrasonic motor controller
JPH0998590A (en) Oscillation actuator
JPS61102177A (en) Surface wave drive motor