JPH0996665A - Residual capacity meter for battery - Google Patents

Residual capacity meter for battery

Info

Publication number
JPH0996665A
JPH0996665A JP7253280A JP25328095A JPH0996665A JP H0996665 A JPH0996665 A JP H0996665A JP 7253280 A JP7253280 A JP 7253280A JP 25328095 A JP25328095 A JP 25328095A JP H0996665 A JPH0996665 A JP H0996665A
Authority
JP
Japan
Prior art keywords
battery
current
discharge
remaining capacity
increase rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7253280A
Other languages
Japanese (ja)
Inventor
Shoji Sakai
昭治 堺
Hirotomo Asa
弘知 麻
Sadahisa Onimaru
貞久 鬼丸
Mitsuo Inagaki
稲垣  光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP7253280A priority Critical patent/JPH0996665A/en
Publication of JPH0996665A publication Critical patent/JPH0996665A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the disadvantages of a discharge voltage-discharge current characteristics comparison system by providing a means for operating the increasing rate of discharge current of a battery when it is higher than a specified level and increasing. SOLUTION: A varied state detection means M3 detects the variation with time of a discharge current from a battery M1 detected by a current detection means M2 and a voltage detection means M4 detects the discharge voltage of battery M1. An increase rate operating means M5 calculates the increase rate of discharge current, when it is higher than a specified level and increasing, based on the detection results of current detection means M2 and varied state detection means M3. A residual capacity detection means M6 detects the residual capacity of battery, based on a map recording the relationship between the discharge voltage and discharge current in the increase rate calculated by the increase rate operating means M5 and a predetermined relationship, the residual capacity of battery and the discharge voltage and current. Since the residual capacity of battery is corrected by the map, it can be detected accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電池の残存容量を測
定する電池残存容量計に関し、特に、電気自動車用電池
の電池残存容量計において、放電電圧─電流(V−I)
特性比較方式を利用した電池残存容量計における充電状
態検出結果を補正し、正確な電池残存容量を可能とした
電池残存容量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery remaining capacity meter for measuring the remaining capacity of a battery, and more particularly, in a battery remaining capacity meter for an electric vehicle battery, discharge voltage-current (VI).
The present invention relates to a battery remaining capacity meter that corrects a state of charge detection result in a battery remaining capacity meter using a characteristic comparison method and enables accurate battery remaining capacity.

【0002】[0002]

【従来の技術】従来、電池の残存容量を測定する1つの
方法として、電気量積算方式による測定方法がある。こ
の電気量積算方式では、満充電状態から使用した電気量
を減じていくことにより、電池の充電状態を算出する。
また、他の方法として、放電電圧─電流(V−I)特性
比較方式による測定方法がある。この方式では、電気自
動車の走行中の放電電流と放電電圧を測定し、予めメモ
リに格納した種々の充電状態でのV−I特性テーブルと
測定結果を比較し、電池の残存容量を推測する。
2. Description of the Related Art Conventionally, as one method for measuring the remaining capacity of a battery, there is a measuring method using an electric quantity integrating method. In this electricity amount integration method, the state of charge of the battery is calculated by subtracting the amount of electricity used from the fully charged state.
Further, as another method, there is a measuring method by a discharge voltage-current (VI) characteristic comparison method. In this method, the discharge current and the discharge voltage of the electric vehicle during traveling are measured, and the V-I characteristic table in various charged states stored in the memory in advance is compared with the measurement result to estimate the remaining capacity of the battery.

【0003】後者の方式として、例えば、特開平6─5
9003号公報に開示の方法では、放電電流が所定値以
上であり、この電流が所定値以上の増加率で増加してい
る状態(高負荷状態)にある場合に、その時の電流と電
圧を取り入れてV−I特性を検出している。
As the latter method, for example, Japanese Patent Laid-Open No. 6-5
In the method disclosed in Japanese Patent Publication No. 9003, when the discharge current is a predetermined value or more and the current is increasing at an increasing rate of the predetermined value or more (high load state), the current and voltage at that time are taken in. To detect the VI characteristic.

【0004】[0004]

【発明が解決しようとする課題】ところで、前者の電気
量積算方式において、通常、多数回の充放電が可能な鉛
電池であっても、充放電を繰り返すことによりその性能
が劣化する。電池性能が劣化すると満充電状態での電池
容量が減少する。このように劣化して電池容量が減少し
た状態で電気量積算方式を用いると、電池残存容量の測
定精度に誤差が生じ、この測定精度の誤差は電池性能の
劣化度が進行するに伴い増大していく。さらに、電池の
実使用上においても、電池性能が劣化すると低電流では
放電可能であっても大電流では放電ができない、という
問題もある。従って、この電気量積算方式では電池性能
の劣化に対して充分に対応することができず、電気自動
車のエネルギ源としての電池の残存容量を測定するには
適切とは言えない。
By the way, in the former electricity quantity integrating system, even a lead battery which can be charged and discharged many times usually deteriorates in performance by repeating charging and discharging. When the battery performance deteriorates, the battery capacity in the fully charged state decreases. If the electricity amount integration method is used in the state where the battery capacity is reduced due to such deterioration, an error occurs in the measurement accuracy of the battery remaining capacity, and the error in the measurement accuracy increases as the deterioration degree of the battery performance progresses. To go. Further, in actual use of the battery, there is a problem that when the battery performance deteriorates, the battery can be discharged at a low current but cannot be discharged at a large current. Therefore, this electricity quantity integration method cannot sufficiently cope with the deterioration of the battery performance, and cannot be said to be suitable for measuring the remaining capacity of the battery as the energy source of the electric vehicle.

【0005】一方、後者の上記文献に開示されたV−I
特性比較方式では、種々の増加率の相違について考慮さ
れていない。即ち、電池の充電状態が一定であっても放
電電流の増加率に従ってV−I特性の検出結果に種々の
影響を与えることが実験等で明らかになった。従って、
この従来方式では、種々の時間間隔における放電電流の
増加率の相違によりV−I特性の検出結果に誤差を生じ
ることになる。また、電池の満充電付近では電圧変化が
緩やかであるが、上述の誤差は満充電付近ほど大きく、
このときに誤差が増大することも明らかになっている。
On the other hand, the VI disclosed in the above-mentioned reference of the latter is used.
The characteristic comparison method does not take into consideration the difference in various increase rates. That is, it has been clarified by experiments that various effects are exerted on the detection result of the VI characteristic according to the rate of increase of the discharge current even if the state of charge of the battery is constant. Therefore,
In this conventional method, an error occurs in the detection result of the VI characteristic due to the difference in the increase rate of the discharge current at various time intervals. Also, the voltage change is gradual near the full charge of the battery, but the above error is larger near full charge,
It is also clear that the error increases at this time.

【0006】従って、本発明の目的は、上述の従来の問
題を解消した、電気自動車に好適な電池残存容量計を提
供することにあり、特に、電池残存容量測定の1つの方
法である放電電圧─放電電流(V−I)特性比較方式に
おける上述した不都合を解消した電池残存容量計を提供
することにある。
Therefore, an object of the present invention is to provide a battery residual capacity meter suitable for an electric vehicle, which solves the above-mentioned conventional problems, and in particular, a discharge voltage which is one method of measuring the battery residual capacity. -To provide a battery remaining capacity meter that solves the above-mentioned inconvenience in the discharge current (VI) characteristic comparison method.

【0007】[0007]

【課題を解決するための手段】図1は本発明の原理構成
図である。本発明の電池残存容量計は、電池M1の放電
電流を検出する電流検出手段M2と、電流検出手段M2
で検出された放電電流の時間的な変化状態を検出する変
化状態検出手段M3と、電池M1の放電時における放電
電圧を検出する電圧検出手段M4と、電流検出手段M2
及び変化状態検出手段M3の検出結果に基づき、放電電
流が所定値以上であり、かつ増加しているときに、その
増加率を算出する増加率演算手段M5と、増加率演算手
段M5により算出された増加率における放電電圧及び放
電電流の関係と予め放電電圧と放電電流に対する電池残
存容量の関係を記録したマップに基づいて、電池残存容
量を検出する残存容量検出手段M6と、残存容量検出結
果を表示する表示手段M7と、で構成される。
FIG. 1 is a block diagram showing the principle of the present invention. The battery remaining capacity meter of the present invention comprises a current detecting means M2 for detecting a discharge current of the battery M1 and a current detecting means M2.
Change state detecting means M3 for detecting the time change state of the discharge current detected in 1., voltage detecting means M4 for detecting the discharge voltage at the time of discharging the battery M1, and current detecting means M2.
Also, based on the detection result of the change state detection means M3, when the discharge current is equal to or higher than a predetermined value and is increasing, the increase rate calculation means M5 for calculating the increase rate and the increase rate calculation means M5 calculate the increase rate. Based on a map in which the relationship between the discharge voltage and the discharge current at the increasing rate and the relationship between the discharge voltage and the discharge current and the battery residual capacity are recorded in advance, the residual capacity detection means M6 for detecting the battery residual capacity and the residual capacity detection result are displayed. Display means M7 for displaying.

【0008】このような構成により、放電電流の時間的
な変化に基づき算出した放電電流増加率をパラメーター
とし、特に放電電流が所定値以上であり、かつ増加して
いるときに、そのときの放電電流と放電電圧と、所定の
マップに基づいて電池残存容量を補正し正確な電池残存
容量を検出するものである。本発明では、電気自動車な
ど充放電電流の大きさが不定である場合に、V−I特性
が放電電流の増加率の影響を受けるという点に着目して
いる。これにより、上記の如き放電電流の条件のもと
で、電池残存容量をマップにより補正することにより電
池残存容量の検出精度を向上させることができ、その結
果、上述の構成を備えた本発明の電池残存容量計におい
ては、従来のV−I特性比較方式に比べて所定のタイミ
ングにて正確に電池残存容量を検出することができる。
With such a configuration, the discharge current increase rate calculated based on the temporal change of the discharge current is used as a parameter, and particularly when the discharge current is equal to or more than a predetermined value and increases, the discharge at that time is performed. The battery remaining capacity is corrected based on the current and the discharge voltage and a predetermined map to accurately detect the battery remaining capacity. The present invention focuses on the fact that the VI characteristic is affected by the increase rate of the discharge current when the magnitude of the charge / discharge current is indefinite such as in an electric vehicle. This makes it possible to improve the detection accuracy of the battery remaining capacity by correcting the battery remaining capacity with a map under the conditions of the discharge current as described above, and as a result, the present invention having the above-described configuration is provided. The battery remaining capacity meter can detect the battery remaining capacity more accurately at a predetermined timing than the conventional VI characteristic comparison method.

【0009】なお、増加率演算手段M5は、放電を所定
時間以上停止した場合には、放電電流の増加率の算出条
件が満足される場合でも、放電停止後、1回目の増加率
の算出を停止する。これにより、所定時間以上停止した
場合に、上述のV−I特性への影響がさらに大きくなる
のを回避することができる。さらに、増加率演算手段M
5は、回生充電等において放電途中に短時間の微少充電
を行った場合に、充電した電気量を放電するまでは増加
率の算出を停止する。これにより、電池残存容量の誤検
出が防止され、さらに電池残存容量の測定精度を向上さ
せることができる。
When the discharge is stopped for a predetermined time or longer, the increase rate calculation means M5 calculates the first increase rate after the discharge is stopped, even if the condition for calculating the increase rate of the discharge current is satisfied. Stop. As a result, it is possible to prevent the above-mentioned influence on the VI characteristic from further increasing when the operation is stopped for a predetermined time or longer. Further, the increase rate calculation means M
In the case of regenerative charging or the like, when the minute charge is performed for a short time during the discharging, the calculation of the increase rate is stopped until the charged amount of electricity is discharged. As a result, erroneous detection of the battery remaining capacity can be prevented, and the measurement accuracy of the battery remaining capacity can be further improved.

【0010】そして、残存容量検出手段M6は増加率が
所定の範囲内にあるときのみ電池残存容量を算出する。
これにより、増加率及び電池残存容量毎の補正マップを
簡略化でき記憶容量を減らすことができる。これらか
ら、本発明によれば、V−I特性検出に影響を与える、
電流の増加率、車両の停止及び充電分極の影響を考慮し
てV−I特性を検出しているので、V−I特性比較方式
を利用した電池の充電状態検出において電池残存容量の
測定精度を向上させることができる。
The remaining capacity detecting means M6 calculates the remaining capacity of the battery only when the rate of increase is within a predetermined range.
As a result, the correction map for each increase rate and battery remaining capacity can be simplified and the storage capacity can be reduced. From these, according to the present invention, it affects the VI characteristic detection,
Since the V-I characteristic is detected in consideration of the rate of increase in current, the stop of the vehicle, and the influence of the charge polarization, the measurement accuracy of the battery residual capacity is improved in the detection of the state of charge of the battery using the VI characteristic comparison method. Can be improved.

【0011】[0011]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面に沿って説明する。図2は本発明の一実施形態
における電気自動車用の電池残存容量計の要部構成図で
ある。図示のように、電池1の両極端子1には、インバ
ータ3を介して交流モータ2が接続されている。電池1
は、例えば、16個の鉛蓄電池にて構成されている。電
子制御装置(ECU)4は、CPU5a及びメモリ5b
を有するマイクロコンピュータ5と、交流モータ2の駆
動を制御するためのモータ制御回路6とを備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a main part configuration diagram of a battery residual capacity meter for an electric vehicle according to an embodiment of the present invention. As shown in the figure, an AC motor 2 is connected to the bipolar terminals 1 of the battery 1 via an inverter 3. Battery 1
Is composed of, for example, 16 lead storage batteries. The electronic control unit (ECU) 4 includes a CPU 5a and a memory 5b.
And a motor control circuit 6 for controlling the driving of the AC motor 2.

【0012】さらに、この電池残存容量液は検出器ユニ
ット7を備える。検出器ユニット7は、電流検出器
(A)8と電圧検出器(V)9と温度検出器(T)10
とを備える。電流検出器(A)8は電池1から交流モー
タ2への放電電流、交流モータ2から電池1への回生充
電若しくは図示しない充電器又はエンジン駆動による発
電機から電池1に流れる充電電流、等を検出する。電圧
検出器(V)9は電池1の端子電圧を検出する。温度検
出器(T)10は熱電対10aにより電池1のケース温
度を検出する。そして、各検出器8〜10による検出結
果はマクロコンピュータ5に入力される。
Further, the battery residual capacity liquid has a detector unit 7. The detector unit 7 includes a current detector (A) 8, a voltage detector (V) 9, and a temperature detector (T) 10.
With. The current detector (A) 8 measures the discharge current from the battery 1 to the AC motor 2, the regenerative charging from the AC motor 2 to the battery 1, or the charging current flowing from the generator (not shown) or the generator driven by the engine to the battery 1. To detect. The voltage detector (V) 9 detects the terminal voltage of the battery 1. The temperature detector (T) 10 detects the case temperature of the battery 1 by the thermocouple 10a. Then, the detection results of the detectors 8 to 10 are input to the macro computer 5.

【0013】マイクロコンピュータ5のCPU5aは、
検出器ユニット7からの検出結果を取り入れる。そし
て、放電電流の値が所定値以上であり、かつ放電電流が
増加しているときに、放電電流の増加率を算出し、この
増加率が所定値を超えた場合に、電池1の放電電圧─放
電電流(V−I)特性を検出し、検出結果を予めメモリ
5bに記憶したV−I特性テーブルと比較して、電池1
の残存容量を演算し、演算し電池残存容量を表示装置1
1に表示する。
The CPU 5a of the microcomputer 5 is
The detection result from the detector unit 7 is taken in. Then, when the value of the discharge current is equal to or greater than a predetermined value and the discharge current is increasing, the rate of increase of the discharge current is calculated, and when the rate of increase exceeds the predetermined value, the discharge voltage of the battery 1 is increased. -The discharge current (VI) characteristic is detected, the detection result is compared with the VI characteristic table stored in the memory 5b in advance, and the battery 1
The remaining capacity of the battery is calculated, and the remaining capacity of the battery is calculated and displayed.
Display in 1.

【0014】メモリ5bには、上述の予め記憶したV−
I特性テーブルの他に、放電電流の増加率と電池残存容
量に応じて算出されたV−I特性を補正するための補正
データが予め記憶されている。図3(A),(B)は電
池1の残存容量が一定の時の放電電流の増加率とV−I
特性検出結果との関係を示すグラフである。(A)は放
電電流と時間との関係、即ち、放電電流の増加率を示
し、(B)は放電電圧と放電電流との関係、即ち、V−
I特性を示す。なお、このグラフでは、電池の一定残存
容量として約50%の場合を例として示す。
In the memory 5b, the previously stored V-
In addition to the I characteristic table, correction data for correcting the VI characteristic calculated according to the increase rate of the discharge current and the remaining battery capacity is stored in advance. 3 (A) and 3 (B) show the increase rate of discharge current and VI when the remaining capacity of the battery 1 is constant.
It is a graph which shows the relationship with a characteristic detection result. (A) shows the relationship between discharge current and time, that is, the increase rate of discharge current, and (B) shows the relationship between discharge voltage and discharge current, that is, V-
I characteristic is shown. In this graph, the case where the constant remaining capacity of the battery is about 50% is shown as an example.

【0015】(A)に示すように、時間2sec ,5sec
,10sec ,20sec の各々の放電時間により放電電
流の増加率が相違することが分かる。なお、各2hは放
電停止時間である。また、(B)に示すように、電池1
の残存容量が50%と一定であっても、〇,□,×,△
(上記4種類の放電時間)で示す曲線の傾きから明らか
なように、(A)に示す各放電時間での放電電流の増加
率の相違によりV−I特性検出結果が相違することが分
かる。
As shown in (A), time 2 sec, 5 sec
It can be seen that the rate of increase of the discharge current differs depending on the discharge time of 10 seconds, 10 seconds, and 20 seconds. Note that each 2h is the discharge stop time. Moreover, as shown in FIG.
Even if the remaining capacity of 50% is constant, 〇, □, ×, △
As is clear from the slopes of the curves shown in the above (four types of discharge times), it can be seen that the VI characteristic detection results differ due to the difference in the increase rate of the discharge current at each discharge time shown in (A).

【0016】さらに、図示しないが、このV−I特性検
出結果の相違は電池1の残存容量が大きい満充電付近ほ
ど大きいことが実験により確認されている。なお、図示
しないが、(A)に示すような各2hの放電停止を行わ
なずに、放電電流の増加率を変化させながら連続して放
電した場合は、放電電流の増加率の相違によるV−I特
性検出結果の相違は見られなかった。
Further, although not shown, it has been confirmed by experiments that the difference in the VI characteristic detection result is greater as the remaining capacity of the battery 1 is larger near the full charge. Although not shown, when discharge is continuously performed while changing the increase rate of the discharge current without stopping the discharge for each 2h as shown in (A), V due to the difference in the increase rate of the discharge current No difference was found in the results of the -I characteristic detection.

【0017】図4(A),(B)は放電電流の増加率が
一定の時の放電停止時間とV−I特性検出結果との関係
を示すグラフである。(A)は放電時間が一定、即ち、
放電電流の増加率が一定で、放電停止時間を変化させた
場合(No.1〜No.7は各放電停止時間間隔)であ
り、(B)はV−I特性のグラフである。このグラフで
は電池の一定残存容量として残量45%の場合を例とし
て示す。
4A and 4B are graphs showing the relationship between the discharge stop time and the VI characteristic detection result when the rate of increase of the discharge current is constant. (A) has a constant discharge time, that is,
The increase rate of the discharge current is constant and the discharge stop time is changed (No. 1 to No. 7 are each discharge stop time interval), and (B) is a graph of the VI characteristic. In this graph, the case where the remaining capacity of the battery is 45% is shown as an example.

【0018】(B)に示すように、電池1の残存容量が
一定(45%)であっても、〇,■,▼,×,□,△,
+(上記の7種類の放電停止時間)で示す曲線の傾きか
ら明らかなように、V−I特性検出前の放電停止時間の
相違によりV−I特性検出結果に相違を生じる。ところ
で、このような図3(B)及び図4(B)に示す増加率
の変化及び放電停止時間の変化に基づくV−I特性検出
結果の相違は、電池1の電極付近での濃度勾配が原因で
あると考察される。
As shown in (B), even if the remaining capacity of the battery 1 is constant (45%), ◯, ■, ▼, ×, □, Δ,
As is clear from the slope of the curve indicated by + (the above-mentioned seven types of discharge stop time), the difference in the discharge stop time before the detection of the VI characteristic causes a difference in the VI characteristic detection result. By the way, the difference in the VI characteristic detection result based on the change of the increase rate and the change of the discharge stop time shown in FIGS. 3B and 4B is that the concentration gradient in the vicinity of the electrode of the battery 1 is It is considered to be the cause.

【0019】本実施形態では、上述した実験結果を考慮
して、電池残存容量を演算するときに、放電電流の増加
率の範囲を限定するようにしている。さらに、放電停止
時間が所定値を超えた場合は、放電電流の増加率の算出
条件が満足される場合でも、放電停止後、1回目の増加
率の算出処理を停止する。また、放電途中に、回生充電
やエンジン駆動による充電が行われた場合には、充電分
極により放電電圧が高めに検出されるため、本実施形態
では充電された容量を放電するまで放電電流の増加率の
算出処理を停止する。
In the present embodiment, the range of the rate of increase of the discharge current is limited when the battery remaining capacity is calculated in consideration of the above experimental results. Furthermore, when the discharge stop time exceeds the predetermined value, the first increase rate calculation process is stopped after the discharge is stopped even if the discharge current increase rate calculation condition is satisfied. Further, when regenerative charging or charging by engine driving is performed during discharging, the discharge voltage is detected to be higher due to charge polarization, so in the present embodiment, the discharge current increases until the charged capacity is discharged. The rate calculation process is stopped.

【0020】また、電池電圧と電池残存容量の関係は温
度依存性を有する。このため、このような温度依存性を
利用し、温度検出器10により検出された温度に基づい
て演算された残存容量を補正することとする。ところ
で、図3(B)及び図4(B)に示すV−I特性検出結
果に対する補正データを予め各電池残存容量毎にメモリ
5bに記憶し、この記憶された補正データを利用して電
池残存容量を補正する。しかし、この場合にはメモリ5
bの記憶容量が膨大となる。
The relationship between the battery voltage and the battery remaining capacity has temperature dependency. Therefore, by utilizing such temperature dependence, the remaining capacity calculated based on the temperature detected by the temperature detector 10 is corrected. By the way, the correction data for the VI characteristic detection results shown in FIGS. 3B and 4B is stored in advance in the memory 5b for each remaining battery capacity, and the stored remaining data is used to store the remaining battery. Correct the capacity. However, in this case memory 5
The storage capacity of b becomes enormous.

【0021】図5及び図6は本発明の処理フローチャー
トである。以下に、CPU5aによる電池残存容量の演
算処理についてフローチャートを用いて説明する。ま
ず、マイクロコンピュータ5への電源投入に伴い、演算
処理ルーチンが開始される。ステップS101におい
て、CPU5aは先ず初期化処理を実行する。即ち、図
示しない一時記憶データカウンターのカウント値(m) 、
及び図示しない車両の停止時間カウンターのカウント値
(count) を「0」に設定し、積算使用容量Qを「0」に
設定し、電圧Vと電流Iのデータ一時記憶判定フラグ(f
lag)を「オフ」に設定し、充電分極判定フラグ(flag-ch
a)を「オフ」に設定し、所定の時間以上の走行停止を判
定するための走行停止判定フラグ(flag-sleep)を「オ
フ」に設定し、CPU5a内のタイマーをスタートさせ
る。
FIG. 5 and FIG. 6 are process flowcharts of the present invention. Below, the calculation processing of the battery remaining capacity by the CPU 5a will be explained using a flow chart. First, when the microcomputer 5 is powered on, an arithmetic processing routine is started. In step S101, the CPU 5a first executes an initialization process. That is, the count value (m) of the temporary storage data counter (not shown),
And the count value of the vehicle stop time counter (not shown)
(count) is set to "0", the cumulative used capacity Q is set to "0", and the voltage V and current I data temporary storage determination flag (f
lag) is set to “off” and the charge polarization determination flag (flag-ch
a) is set to "OFF", a traveling stop determination flag (flag-sleep) for determining traveling stop for a predetermined time or more is set to "OFF", and a timer in the CPU 5a is started.

【0022】ステップS102において、CPU5a
は、電池1の充放電電流Iのデータを0.1秒毎に読み
込む。ステップS103において、CPU5aは電流I
=0で、かつ一時記憶判定フラグ(flag)が「オフ」か否
か判別する。即ち、車両は停止中であり、かつ電圧V及
び電流Iの一時記憶データがないか否か判別する。
In step S102, the CPU 5a
Reads the data of the charging / discharging current I of the battery 1 every 0.1 seconds. In step S103, the CPU 5a causes the current I
= 0, and it is determined whether the temporary storage determination flag (flag) is “OFF”. That is, it is determined whether or not the vehicle is stopped and there is no temporarily stored data of the voltage V and the current I.

【0023】ステップS103が否定された場合(N
O)は、ステップS104でカウント値(count) を
「0」にクリアし、ステップS108に進む。一方、ス
テップS103が肯定された場合(YES)は、CPU
5aはステップS105でカウント値(count) を1つ増
加し、ステップS106に進む。ステップS106にお
いて、CPU5aはカウント値(count) が「100」よ
り大きいか否か、即ち、車両が停止してから10秒経過
したか否か判定する。なお、この10秒の値は図4に示
した実験結果を考慮した。
When step S103 is denied (N
O) clears the count value (count) to "0" in step S104, and proceeds to step S108. On the other hand, if step S103 is positive (YES), the CPU
5a increments the count value (count) by 1 in step S105, and proceeds to step S106. In step S106, the CPU 5a determines whether or not the count value (count) is larger than "100", that is, whether or not 10 seconds have elapsed since the vehicle stopped. The value of 10 seconds takes the experimental result shown in FIG. 4 into consideration.

【0024】10秒経過したか否かの判別が否定された
場合(NO)は、ステップS108に進み、肯定された
場合(YES)は、ステップS107で走行停止判定フ
ラグ(fkag-sleep)を「オン」に設定し、ステップS10
8に進む。ステップS108において、CPU5aは充
電分極判定フラグ(flag-cha)が「オフ」であるか、又
は、電流I<0であり、かつ一時記憶判定フラグ(flag)
が「オン」であるか否かを判別する。即ち、充電分極の
影響がないか、又は電流が負値であり、かつ、一時記憶
データがあるか否かを判別する。ステップS108が否
定された場合(NO)は、ステップS109に進む。
If the determination as to whether 10 seconds has elapsed is negative (NO), the process proceeds to step S108, and if the determination is positive (YES), the travel stop determination flag (fkag-sleep) is set to "S107" in step S107. Set to "ON" and step S10
Proceed to 8. In step S108, the CPU 5a determines whether the charge polarization determination flag (flag-cha) is "OFF" or the current I <0 and the temporary storage determination flag (flag).
Is "ON". That is, it is determined whether there is no influence of charge polarization or whether the current has a negative value and there is temporary storage data. If step S108 is denied (NO), the process proceeds to step S109.

【0025】ステップS109において、充電分極判定
フラグ(flag-cha)を「オン」に設定し、積算使用量Qに
電流Iの値を加算する。続くステップS110におい
て、CPU5aは積算使用量Qが「0」以上であるか否
か、即ち、充電された量を放電したか否かを判定する。
ここで、充電された量よりも多くの放電がされたか否か
を判別するようにしてもよい。
In step S109, the charge polarization determination flag (flag-cha) is set to "ON", and the value of the current I is added to the integrated usage amount Q. In subsequent step S110, the CPU 5a determines whether or not the integrated usage amount Q is equal to or more than “0”, that is, whether or not the charged amount is discharged.
Here, it may be determined whether or not a larger amount of electricity is discharged than the charged amount.

【0026】この判別が否定された場合(NO)は、図
6のステップS125に進む。肯定された場合(YE
S)は、ステップS111において充電分極判定フラグ
(flag-cha)を「オフ」に設定し、積算使用量Qを「0」
にクリアし、図6のステップS125に進む。一方、ス
テップS108が肯定された場合(YES)は、ステッ
プS112で充電分極判定フラグ(flag-cha)を「オフ」
に設定し、続くステップS113で電流Iが所定値以上
か、又は一時記憶判定フラグ(flag)が「オン」であるか
否かを判別する。この場合、所定値としては、例えば、
0.75C(A)が採用される(Cは5時間率容量を示
す)。
If this determination is negative (NO), the process proceeds to step S125 in FIG. If affirmative (YE
S) is the charge polarization determination flag in step S111
(flag-cha) is set to "OFF" and the cumulative usage Q is "0"
And the process proceeds to step S125 in FIG. On the other hand, if step S108 is positive (YES), the charge polarization determination flag (flag-cha) is set to "OFF" in step S112.
Then, in the subsequent step S113, it is determined whether or not the current I is equal to or larger than a predetermined value or the temporary storage determination flag (flag) is “ON”. In this case, as the predetermined value, for example,
0.75C (A) is adopted (C indicates a 5-hour rate capacity).

【0027】ステップS113が否定された場合(N
O)は、図6のステップS123に進み、肯定された場
合(YES)は、図6のステップS114に進む。図6
のステップS114において、V─I特性データがメモ
リ5bに一時的に記憶され、一時記憶判定フラグ(flag)
が「オン」に設定される。ステップS115において、
CPU5aは一時記憶データカウンターのカウント値
(m) が「0」よりも大きいか否かを判別する。この判別
が否定された場合(NO)は、ステップS124に進
み、肯定された場合(YES)は、続くステップS11
6で電流Im <Im −1であるか否か、即ち、電流が減
少中であるか否か判別される。
When step S113 is denied (N
O), the process proceeds to step S123 in FIG. 6, and if affirmative (YES), the process proceeds to step S114 in FIG. Figure 6
In step S114, the VI characteristic data is temporarily stored in the memory 5b, and the temporary storage determination flag (flag)
Is set to “ON”. In step S115,
CPU5a is the count value of the temporary storage data counter
It is determined whether (m) is larger than "0". If the determination is negative (NO), the process proceeds to step S124, and if the determination is positive (YES), the subsequent step S11.
At 6, it is determined whether or not the current Im <Im -1, that is, whether or not the current is decreasing.

【0028】電流が減少中であるか否かの判別が否定さ
れた場合(NO)は、ステップS124に進み、肯定さ
れた場合(YES)は、ステップS117において一時
記憶判定フラグ(flag)が「オフ」に設定され、CPU5
aは放電電流の増加率dI/dt (CA/sec) を算出す
る。ステップS118においては、CPU5aは走行停
止判定フラグ(flag-sleep)が「オフ」であるか否か、即
ち、走行停止による影響がないか否かを判別する。この
判別が否定された場合(NO)、ステップS119にお
いて走行停止判定フラグ(flag-sleep)を「オフ」に設定
し、ステップS123に進む。
If the determination as to whether or not the current is decreasing is negative (NO), the process proceeds to step S124, and if the determination is positive (YES), the temporary storage determination flag (flag) is set at "S117". Set to "Off", CPU5
For a, the rate of increase in discharge current dI / dt (CA / sec) is calculated. In step S118, the CPU 5a determines whether or not the traveling stop determination flag (flag-sleep) is "off", that is, whether or not the traveling stop has no influence. If this determination is negative (NO), the traveling stop determination flag (flag-sleep) is set to "OFF" in step S119, and the process proceeds to step S123.

【0029】肯定された場合(YES)は、ステップS
120において、CPU5aは電流Im −1が所定値以
上で、かつカウント値 m>4、かつ増加率0.5<dI
/dt<1.0であるか否かを判別する。この所定値と
しては、例えば、1.2C(A)が採用される。また、
電流増加率の値及び範囲は、車両の仕様や搭載電池の能
力により変更してもよい。
If affirmative (YES), step S
At 120, the CPU 5a indicates that the current Im −1 is equal to or more than a predetermined value, the count value m> 4, and the increase rate 0.5 <dI.
It is determined whether /dt<1.0. For example, 1.2 C (A) is adopted as the predetermined value. Also,
The value and range of the current increase rate may be changed according to the specifications of the vehicle and the capacity of the onboard battery.

【0030】ステップS120の判別が否定された場合
(NO)は、ステップS124に進み、肯定された場合
(YES)は、続くステップS121において、メモリ
5bに一時的に記憶したデータからV−I特性を算出す
る。次に、ステップS122において、所定の電流値の
ときの電圧Vの値(ステップS121で算出したV−I
特性から任意の電流値における電圧値を求めることがで
きる)を、予めメモリ5bに格納した、所定の電流値を
放電したときの電圧値と電池残存容量のマップに入力
し、電池の残存容量を求め表示装置11に表示する。こ
の所定の電流値としては、例えば、1.3C(A)が採
用される。
If the determination in step S120 is negative (NO), the process proceeds to step S124, and if the determination is affirmative (YES), in the subsequent step S121, the VI characteristic is stored from the data temporarily stored in the memory 5b. To calculate. Next, in step S122, the value of the voltage V at the predetermined current value (V-I calculated in step S121
(A voltage value at an arbitrary current value can be obtained from the characteristic) is input to a map of the voltage value and the battery remaining capacity when a predetermined current value is discharged, which is stored in the memory 5b in advance, and the remaining capacity of the battery is calculated. It is displayed on the demand display device 11. As the predetermined current value, for example, 1.3 C (A) is adopted.

【0031】ステップS123においては、メモリ5b
に一時的に記憶したデータをクリアし、カウンタ値(m)
を「−1」に設定する。ステップS124においては、
カウンタ値(m) の値を1つ増加してステップS125に
進む。ステップS125においては、CPU5aは車両
の走行が終了したか否かを判定する。車両の走行が終了
したか否かの判定が否定された場合(NO)は、図5の
ステップS101に戻り、ステップ101から上述の処
理を繰り返す。肯定された場合(YES)は、このルー
チンを終了する。
In step S123, the memory 5b
The data temporarily stored in is cleared and the counter value (m)
Is set to "-1". In step S124,
The counter value (m) is incremented by 1, and the process proceeds to step S125. In step S125, the CPU 5a determines whether or not the vehicle has finished running. If the determination as to whether or not the vehicle has finished traveling is negative (NO), the process returns to step S101 in FIG. 5, and the above-described processing is repeated from step 101. If affirmative (YES), this routine ends.

【0032】なお、本実施形態では、車両停止の判定を
電流I=0として行っているが、これを、例えば、−
0.05<I<0.05の小電流の範囲で行うようにし
てもよい。図7(A),(B)は本発明と従来の効果の
比較説明図である。(A)は本発明における1.3C
(A)放電時のV値検出結果のグラフであり、(B)は
従来における1.3C(A)放電時のV値検出結果のグ
ラフである。いずれも縦軸は電圧(V)、横軸は電池残
存容量(%)である。図示のような本発明の効果を確認
するために次の試験を行った。即ち、電気自動車で、電
池満充電状態から放電終止電圧を検出するまで市街地を
走行し、この間の電圧、電流データを、0.1秒毎にパ
ーソナルコンピュータに記憶した。次に、この記憶デー
タを使用して1.3C(A)放電時の電圧値を本発明と
従来方式により検出した。その結果は、グラフの“×”
マークのバラツキから明らかなように、本発明では従来
に比べて、各残存容量における電圧値検出のバラツキを
小幅に押さえることができる。従って、V−I特性比較
方式による電池残存容量の検出精度を向上させることが
できる。
In this embodiment, the stop of the vehicle is determined by the current I = 0.
It may be performed in a small current range of 0.05 <I <0.05. 7 (A) and 7 (B) are comparative explanatory diagrams of the present invention and the conventional effect. (A) is 1.3C in the present invention
(A) is a graph of the V value detection result at the time of discharge, and (B) is a graph of the V value detection result at the time of 1.3C (A) discharge in the prior art. In each case, the vertical axis represents voltage (V) and the horizontal axis represents battery residual capacity (%). The following tests were conducted in order to confirm the effects of the present invention as shown. That is, an electric vehicle traveled in a city area from the fully charged state of the battery until the discharge end voltage was detected, and the voltage and current data during this period were stored in a personal computer every 0.1 seconds. Next, using this stored data, the voltage value at the time of 1.3 C (A) discharge was detected by the present invention and the conventional method. The result is "x" in the graph
As is clear from the variation of the marks, the present invention can suppress the variation of the voltage value detection in each remaining capacity to a small extent as compared with the conventional case. Therefore, it is possible to improve the detection accuracy of the battery remaining capacity by the VI characteristic comparison method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】本発明の一実施形態における電気自動車用の電
池残存容量計の要部構成図である。
FIG. 2 is a main part configuration diagram of a battery remaining capacity meter for an electric vehicle according to an embodiment of the present invention.

【図3】電池の残存容量が一定の時の放電電流の増加率
(A)と、V−I特性検出結果(B)のグラフである。
FIG. 3 is a graph of a rate of increase in discharge current (A) when the remaining capacity of the battery is constant, and a VI characteristic detection result (B).

【図4】放電電流の増加率が一定の時の放電停止時間
(A)と、V−I特性検出結果(B)のグラフである。
FIG. 4 is a graph of discharge stop time (A) when the rate of increase of discharge current is constant, and VI characteristic detection result (B).

【図5】本発明の処理フローチャート(その1)であ
る。
FIG. 5 is a process flowchart (1) of the present invention.

【図6】本発明の処理フローチャート(その2)であ
る。
FIG. 6 is a processing flowchart (2) of the present invention.

【図7】本発明(A)と従来(B)の効果の比較説明図
である。
FIG. 7 is a comparative explanatory diagram of effects of the present invention (A) and the conventional (B).

【符号の説明】[Explanation of symbols]

1…電池 2…モータ 3…インバータ 4…電子制御装置 5…マイクロコンピュータ 5a…CPU 5b…メモリ 6…モータ制御回路 7…検出器ユニット 8…電流検出器 9…電圧検出器 10…温度検出器 10a…熱電対 11…表示装置 DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Motor 3 ... Inverter 4 ... Electronic control device 5 ... Microcomputer 5a ... CPU 5b ... Memory 6 ... Motor control circuit 7 ... Detector unit 8 ... Current detector 9 ... Voltage detector 10 ... Temperature detector 10a … Thermocouple 11… Display

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 光夫 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuo Inagaki 14 Iwatani Shimohabakucho, Nishio City, Aichi Prefecture Japan Auto Parts Research Institute, Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池の残存容量を測定する電池残存容量
計であって、 前記電池(M1)の放電電流を検出する電流検出手段
(M2)と、 前記電流検出手段(M2)で検出された放電電流の時間
的な変化状態を検出する変化状態検出手段(M3)と、 前記電池(M1)の放電時における放電電圧を検出する
電圧検出手段(M4)と、 前記電流検出手段(M2)及び前記変化状態検出手段
(M3)の検出結果に基づき、放電電流が所定値以上で
あり、かつ増加しているときに、その増加率を算出する
増加率演算手段(M5)と、 前記増加率演算手段(M5)により算出された増加率に
おける放電電圧及び放電電流の関係と、予め放電電圧と
放電電流に対する電池残存容量の関係を記録したマップ
に基づいて、電池残存容量を検出する残存容量検出手段
(M6)と、 前記残存容量検出結果を表示する表示手段(M7)と、 を具備する電池残存容量計。
1. A battery residual capacity meter for measuring the residual capacity of a battery, the current detecting means (M2) for detecting a discharge current of the battery (M1) and the current detecting means (M2). A change state detecting means (M3) for detecting a change state of the discharge current with time, a voltage detecting means (M4) for detecting a discharge voltage at the time of discharging the battery (M1), the current detecting means (M2) and Based on the detection result of the change state detecting means (M3), when the discharge current is a predetermined value or more and is increasing, an increasing rate calculating means (M5) for calculating the increasing rate, and the increasing rate calculating The remaining capacity detection for detecting the remaining capacity of the battery is performed based on a map in which the relationship between the discharging voltage and the discharging current at the increasing rate calculated by the means (M5) and the relationship between the remaining capacity of the battery with respect to the discharging voltage and the discharging current are recorded in advance. And means (M6), the battery capacity meter comprising a display means (M7) for displaying the remaining capacity detection result.
【請求項2】 前記増加率演算手段(M5)は、放電を
所定時間以上停止した場合には、放電電流の増加率の算
出条件が満足される場合でも、放電停止後、1回目の増
加率の算出を停止することを特徴とする請求項1に記載
の電池残存容量計。
2. The increase rate calculating means (M5), when the discharge is stopped for a predetermined time or more, the first increase rate after the discharge is stopped, even if the condition for calculating the increase rate of the discharge current is satisfied. The battery remaining capacity meter according to claim 1, wherein the calculation of is calculated.
【請求項3】 前記増加率演算手段(M5)は、放電途
中に短時間の微少充電を行った場合に、充電した電気量
を放電するまでは増加率の算出を停止することを特徴と
する請求項1又は2に記載の電池残存容量計。
3. The increase rate calculation means (M5) stops the calculation of the increase rate until the charged amount of electricity is discharged when a minute charge is performed for a short time during discharging. The battery residual capacity meter according to claim 1 or 2.
【請求項4】 前記残存容量検出手段(M6)は、放電
電流の増加率が所定の範囲内にあるときのみ電池残存容
量を算出することを特徴とする請求項1〜3のいずれか
に記載の電池残存容量計。
4. The remaining capacity detecting means (M6) calculates the remaining capacity of the battery only when the rate of increase of the discharge current is within a predetermined range. Battery remaining capacity meter.
JP7253280A 1995-09-29 1995-09-29 Residual capacity meter for battery Withdrawn JPH0996665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7253280A JPH0996665A (en) 1995-09-29 1995-09-29 Residual capacity meter for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7253280A JPH0996665A (en) 1995-09-29 1995-09-29 Residual capacity meter for battery

Publications (1)

Publication Number Publication Date
JPH0996665A true JPH0996665A (en) 1997-04-08

Family

ID=17249092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7253280A Withdrawn JPH0996665A (en) 1995-09-29 1995-09-29 Residual capacity meter for battery

Country Status (1)

Country Link
JP (1) JPH0996665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285163B1 (en) 1998-05-28 2001-09-04 Toyota Jidosha Kabushiki Kaisha Means for estimating charged state of battery and method for estimating degraded state of battery
JP2015095094A (en) * 2013-11-12 2015-05-18 ルネサスエレクトロニクス株式会社 Semiconductor device, battery pack, and mobile terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285163B1 (en) 1998-05-28 2001-09-04 Toyota Jidosha Kabushiki Kaisha Means for estimating charged state of battery and method for estimating degraded state of battery
JP2015095094A (en) * 2013-11-12 2015-05-18 ルネサスエレクトロニクス株式会社 Semiconductor device, battery pack, and mobile terminal

Similar Documents

Publication Publication Date Title
US5539318A (en) Residual capacity meter for electric car battery
JP3659772B2 (en) Battery deterioration judgment device
JP3111405B2 (en) Battery remaining capacity estimation method
JP3209457B2 (en) Battery remaining capacity detection method
KR100996693B1 (en) Charged state estimating device and charged state estimating method of secondary battery
JP3379283B2 (en) Battery state of charge detection method
KR100554241B1 (en) Apparatus for battery capacity measurement and for remaining capacity calculation
JP3006298B2 (en) Battery remaining capacity meter
US7990111B2 (en) Method and apparatus for detecting internal electric state of in-vehicle secondary battery
JP2005083970A (en) State sensing device and state detection method of secondary battery
JP2007121030A (en) Internal status detection system for vehicular electric storage device
JP2003035755A (en) Method for detecting stored power in battery
JP2000166109A (en) Charged state detecting device for battery
JP3453821B2 (en) Battery remaining capacity measurement device
JP2001351698A (en) Charged state detecting method for lead storage battery and deterioration judging method for the same
JP3390559B2 (en) Battery display device for electric vehicles
JP3006293B2 (en) Battery remaining capacity meter
US5698962A (en) Memory effect sensitive battery monitoring apparatus for electric vehicles
JP4564999B2 (en) In-vehicle secondary battery internal state detection device
JP3288257B2 (en) Battery state-of-charge detection device
JPH0996665A (en) Residual capacity meter for battery
JP4076211B2 (en) Secondary battery internal resistance detection device and charge control system using the same
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
JPH06281711A (en) Device for detecting residual capacity of battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203