JPH0994227A - Ophthalmological apparatus - Google Patents

Ophthalmological apparatus

Info

Publication number
JPH0994227A
JPH0994227A JP7276954A JP27695495A JPH0994227A JP H0994227 A JPH0994227 A JP H0994227A JP 7276954 A JP7276954 A JP 7276954A JP 27695495 A JP27695495 A JP 27695495A JP H0994227 A JPH0994227 A JP H0994227A
Authority
JP
Japan
Prior art keywords
eye
alignment
inspected
state
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7276954A
Other languages
Japanese (ja)
Other versions
JP3625323B2 (en
Inventor
Takashi Masuda
高 増田
Yoshimasa Hamano
好正 濱野
Koji Uchida
浩治 内田
Satoshi Shimashita
聡 嶋下
Toshibumi Masaki
俊文 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27695495A priority Critical patent/JP3625323B2/en
Publication of JPH0994227A publication Critical patent/JPH0994227A/en
Application granted granted Critical
Publication of JP3625323B2 publication Critical patent/JP3625323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform automatic optometry by setting a positioning condition as desired according to the state of the eye of a subject. SOLUTION: A virtual image is formed on the cornea Ec of a subject E by the light flux from a light source 17 through a projecting lens 16, a half mirror 12 and an objective lens 11, the light from the virtual image is deflected by a prism 19b and 19c on the opening of a diaphragm 13 and a cornea reflected image is formed on the positions different from each other on an image pick up device 15 by image formation lens 14. A position-coinciding condition of the device 15 to the eye of the subject is detected from the image-formation position of the cornea reflecting image and position-coinciding is performed based on the weight of a position-coinciding error previously given and then, after detecting that the conditions are satisfied, optometry is automatically begun.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、装置と被検眼との
位置合わせ状態を検知し、所定の位置合わせ状態になっ
た場合に自動的に被検眼の情報を得る眼科装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ophthalmologic apparatus which detects the alignment state between the apparatus and an eye to be inspected and automatically obtains information on the eye to be inspected when a predetermined alignment state is reached.

【0002】[0002]

【従来の技術】従来から、眼科用装置には被検眼との位
置関係に対して正確な位置合わせが要求されるものが多
く、特に眼底カメラや非接触眼圧計等は極めて精密な位
置合わせが必要であり、その許容誤差が極めて狭いこと
が知られている。このために、計測装置と被検眼との位
置合わせの度合いを検出する機構について数々の提案が
なされており、特に最近は検出された位置合わせ情報を
使用して位置関係を正しく調整した後で、検者の特別な
操作なしに自動的に測定及び記録を行う計測装置が提案
されている。
2. Description of the Related Art Conventionally, many ophthalmic devices are required to be accurately aligned with respect to the positional relationship with the eye to be inspected. Especially, a fundus camera, a non-contact tonometer, and the like require extremely precise alignment. It is known that it is necessary and its tolerance is extremely narrow. For this reason, a number of proposals have been made regarding a mechanism for detecting the degree of alignment between the measuring device and the eye to be inspected, and recently, particularly after correctly adjusting the positional relationship using the detected alignment information, There has been proposed a measuring device that automatically measures and records without any special operation by an examiner.

【0003】例えば、特開昭63−283620号公報
に開示されている装置は、図6に示すような検出光学系
を有し、LED光源1から出射した位置合わせ用光束
は、投影レンズ2を介してハーフミラー3で反射され、
対物レンズ4により被検眼Eの角膜Ec上に集光される。
角膜Ec上で反射した光束は再び対物レンズ4を通り、ハ
ーフミラー3、結像レンズ5により光検出器6に結像受
光されて位置合わせ検出が行われる。
For example, the apparatus disclosed in Japanese Patent Application Laid-Open No. 63-283620 has a detection optical system as shown in FIG. 6, and the alignment light flux emitted from the LED light source 1 passes through the projection lens 2. Is reflected by the half mirror 3 through
The light is focused on the cornea Ec of the eye E by the objective lens 4.
The light flux reflected on the cornea Ec passes through the objective lens 4 again, and is imaged and received by the photodetector 6 by the half mirror 3 and the imaging lens 5 to perform alignment detection.

【0004】この検出機構では、角膜Ecが装置に対して
正しく位置合わせされた場合に、光検出器6の受光信号
量が最大となるように構成されており、光検出器6で光
電変換された受光信号は判断回路7によって位置合わせ
状態が検出されると、その検出結果により測定トリガ発
生器8から信号が発せられ、測定が開始されるようにな
っている。
In this detection mechanism, when the cornea Ec is correctly aligned with the apparatus, the light receiving signal amount of the photodetector 6 is maximized, and photoelectric conversion is performed by the photodetector 6. When the judgment circuit 7 detects the alignment state of the received light signal, a signal is emitted from the measurement trigger generator 8 according to the detection result, and the measurement is started.

【0005】図7は被検眼Eと装置の位置合わせが前後
左右でずれた場合の光検出器6の出力の変化状態を示
し、Z軸は光検出器6の信号出力、X軸は装置の左右方
向の位置、Y軸は前後方向の位置を表しており、被検眼
Eと装置の位置合わせが完全になされた場合は、出力は
Z軸上で極大値を示す。図8は図7を上から見た等高線
による説明図であり、実際の被検眼Eと装置との位置合
わせの軌跡が曲線S1、S2で示されている。
FIG. 7 shows a change state of the output of the photodetector 6 when the position of the eye E to be inspected and the device are deviated from each other in the front-rear direction. The position in the left-right direction and the Y-axis represent the position in the front-rear direction. When the eye E to be inspected and the device are completely aligned, the output shows a maximum value on the Z-axis. FIG. 8 is an explanatory view by contour lines as viewed from above in FIG. 7, and the actual locus of alignment between the eye E to be inspected and the apparatus is shown by curves S1 and S2.

【0006】このように、被検眼Eと装置との相対関係
は試行的に常に動いているので、自動測定を行う場合に
は、同一レベル内に留まる時間やレベル間を遷移する回
数等を基にして、予め設定された条件を満足した場合
に、測定トリガ発生器8から信号が出力され測定が開始
される。
As described above, since the relative relationship between the eye E and the apparatus constantly moves on a trial basis, when performing automatic measurement, the time to stay within the same level, the number of transitions between levels, and the like are used. Then, when the preset condition is satisfied, the signal is output from the measurement trigger generator 8 and the measurement is started.

【0007】[0007]

【発明が解決しようとする課題】しかしながら今日にお
いては、より正確に位置合わせが行われた状態で行う測
定の他に、例えば固視が不充分な状態でも、或る程度の
位置合わせの状態で測定を行う装置が求められている。
However, nowadays, in addition to the measurement performed in a more accurate alignment state, for example, even when the fixation is insufficient, a certain degree of alignment state can be obtained. There is a need for a device that makes measurements.

【0008】本発明の第1の目的は、上述の問題点を解
消し、被検眼の固視状況に応じて適切な自動測定を行う
眼科装置を提供することにある。
A first object of the present invention is to solve the above-mentioned problems and to provide an ophthalmologic apparatus which performs appropriate automatic measurement according to the fixation state of the eye to be examined.

【0009】本発明の第2の目的は、装置を駆動する駆
動手段と組み合わせて位置合わせを行い、位置合わせ完
了を判断して自動測定を行う眼科装置を提供することに
ある。
A second object of the present invention is to provide an ophthalmologic apparatus which performs positioning by combining with a driving means for driving the apparatus, judges the completion of the positioning and performs automatic measurement.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の第1発明に係る眼科装置は、被検眼と装置との位置合
わせ状態を逐次に検知する位置検出手段を有し、該位置
検出手段から得られる位置合わせ誤差に基づいて自動的
に被検眼の情報を得る眼科装置において、前記被検眼の
情報を得るための条件を前記位置合わせ誤差の状態に応
じて異ならせて設定する条件設定手段を有することを特
徴とする。
An ophthalmologic apparatus according to a first aspect of the present invention for achieving the above object has a position detecting means for sequentially detecting the alignment state between an eye to be inspected and the apparatus, and the position detecting means. In an ophthalmologic apparatus that automatically obtains information of the eye to be inspected based on the alignment error obtained from the condition setting means for setting the condition for obtaining the information of the eye to be inspected differently according to the state of the alignment error. It is characterized by having.

【0011】第2発明に係る眼科装置は、被検眼と装置
との位置合わせ状態を逐次に検知する位置検知手段と、
該位置検知手段から得られる位置合わせ状態が所定条件
を満足するか否かに基づいて自動的に被検眼情報を得る
ための制御手段とを有し、該制御手段は前記位置検知手
段から得られる位置合わせ状態が、位置合わせ誤差の程
度に応じて異なる度合いで所定条件を満足するか否かの
判断に使用することを特徴とする。
An ophthalmologic apparatus according to a second aspect of the present invention comprises position detecting means for sequentially detecting the alignment state between the eye to be inspected and the apparatus,
And a control means for automatically obtaining eye information based on whether or not the alignment state obtained from the position detection means satisfies a predetermined condition, and the control means is obtained from the position detection means. It is characterized in that it is used to judge whether or not the alignment state satisfies a predetermined condition at different degrees depending on the degree of alignment error.

【0012】[0012]

【発明の実施の形態】本発明を図1〜図5に図示の実施
例に基づいて詳細に説明する。図1は実施例の光学系の
斜視図を示し、被検眼Eの前方の光軸上には、対物レン
ズ11、ハーフミラー12、複数開口を有する絞り1
3、結像レンズ14、撮像素子15が順次に配列され、
ハーフミラー12の上方の入射方向には、投影レンズ1
6、光源17が配列されており、撮像素子15の出力は
演算回路18に接続されている。更に、図の光路中には
ビームスプリッタが配置され、このビームスプリッタを
介して対物レンズ11を共用する眼底撮影観察系や眼屈
折測定光学系等の検眼測定系が配置されているが、図で
は省略している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 shows a perspective view of an optical system of an embodiment, in which an objective lens 11, a half mirror 12, and a diaphragm 1 having a plurality of apertures are arranged on an optical axis in front of an eye E to be examined.
3, the imaging lens 14, and the image sensor 15 are sequentially arranged,
In the incident direction above the half mirror 12, the projection lens 1
6, the light source 17 is arranged, and the output of the image sensor 15 is connected to the arithmetic circuit 18. Further, a beam splitter is arranged in the optical path in the figure, and an optometry system such as a fundus photographing observation system and an eye refraction measurement optical system which share the objective lens 11 are arranged through the beam splitter. Omitted.

【0013】複数開口絞り13は、図2に示すような中
心部開口13aと、この中心部開口13aに対して水平
方向に対称に配置された開口13b、13cとにより構
成され、これらの開口13b、13cに対応して、その
後方にそれぞれプリズム19b、19cが配置されてお
り、開口13aにはプリズムは配置されていない。
The multi-aperture diaphragm 13 is composed of a central opening 13a as shown in FIG. 2 and openings 13b and 13c arranged symmetrically with respect to the central opening 13a in the horizontal direction. , 13c, prisms 19b, 19c are arranged behind them, respectively, and no prism is arranged in the opening 13a.

【0014】図3(a) 、(b) は開口13b、13cとプ
リズム19b、19cの側面図を示し、プリズム19
b、19cは2つの開口13b、13cの中心を結んだ
線に対して垂直方向に斜面が設けられ、それぞれの斜面
の向きが異なるように配置されている。
3A and 3B are side views of the openings 13b and 13c and the prisms 19b and 19c, respectively.
b and 19c are provided with slopes perpendicular to the line connecting the centers of the two openings 13b and 13c, and are arranged so that the directions of the slopes are different.

【0015】光源17から射出した光束は、投影レンズ
16を通りハーフミラー12に反射され、対物レンズ1
1から被検眼Eの角膜Ecを照明し、対物レンズ11の焦
点位置に角膜反射による虚像17’を形成する。この虚
像17’からの光束は再び対物レンズ11で屈折され、
平行光となって複数開口絞り13に入射する。絞り13
において中心の開口13aを通過した光束はそのまま偏
向されずに直進し、一対の開口13b、13cを通過し
た光束はプリズム19b、19cによってそれぞれ上下
の別方向に偏向され、結像レンズ14によりその焦点位
置にある撮像素子15上に、被検眼Eの前眼部と共に角
膜反射像17”を結像する。
The light beam emitted from the light source 17 passes through the projection lens 16 and is reflected by the half mirror 12, and the objective lens 1
The cornea Ec of the eye E is illuminated from 1 to form a virtual image 17 'due to corneal reflection at the focal position of the objective lens 11. The light flux from this virtual image 17 'is refracted again by the objective lens 11,
It becomes parallel light and enters the multi-aperture diaphragm 13. Aperture 13
, The light flux that has passed through the central opening 13a travels straight without being deflected, and the light flux that has passed through the pair of openings 13b and 13c is deflected in different vertical directions by the prisms 19b and 19c, respectively, and is focused by the imaging lens 14 at its focal point. A corneal reflection image 17 ″ is formed on the image sensor 15 at the position together with the anterior segment of the eye E to be inspected.

【0016】このとき撮像素子15上には、対物レンズ
11及び結像レンズ14によって、図示しない照明光源
に照明されて開口13aを通過した前眼部像と、開口1
3b、13cを通過してプリズム19b、19cにより
偏向された角膜反射像17”とが映出され、この角膜反
射像17”は撮像素子15上の異なる所定位置に分離し
て結像される。
At this time, on the image pickup device 15, the anterior ocular segment image which has been illuminated by an illumination light source (not shown) by the objective lens 11 and the imaging lens 14 and has passed through the aperture 13a, and the aperture 1.
A corneal reflection image 17 ″ deflected by the prisms 19b and 19c after passing through 3b and 13c is projected, and the corneal reflection image 17 ″ is separated and imaged at different predetermined positions on the image sensor 15.

【0017】なお、撮像素子15上に角膜反射像17”
だけを結像させる場合は、前眼部照明用光源と光源11
とが異なる発光波長の光束を発するように選定し、開口
13b、13cが光源11からの光束の波長だけを透過
するようにする。実際には、プリズム19b、19cに
上述のような光学特性を有する誘電体多層膜を蒸着した
り、開口13b、13cの近傍にフィルタを配置するな
どの構成とする。
A cornea reflection image 17 "is formed on the image pickup device 15.
In the case of forming an image of only the
Are selected so as to emit light fluxes having different emission wavelengths, and the openings 13b and 13c transmit only the wavelength of the light flux from the light source 11. In practice, the dielectric multilayer film having the above-mentioned optical characteristics is vapor-deposited on the prisms 19b and 19c, and a filter is arranged near the openings 13b and 13c.

【0018】図4は位置合わせが完了した状態の撮像素
子15上の画像を示し、実際の装置では図示しない内蔵
テレビモニタに表示される。この内蔵テレビモニタに
は、中心部開口13aを通過して結像された前眼部Pf
と、周辺部開口13b、13cを通過して結像された角
膜反射像17b”、17c”とが表示される。なお、1
7a”は中心部開口13aを通過した反射像である。
FIG. 4 shows an image on the image pickup device 15 in a state where the alignment is completed, which is displayed on an internal television monitor (not shown) in an actual device. This built-in television monitor has an anterior segment Pf imaged through the central opening 13a.
And corneal reflection images 17b ″ and 17c ″ formed by passing through the peripheral openings 13b and 13c are displayed. In addition, 1
7a ″ is a reflection image that has passed through the central opening 13a.

【0019】この状態で、角膜反射像17b”、17
c”の中間位置座標X0、Y0と、両者間の水平方向距離Dx
を算出して記憶する。これらの角膜反射像17b”、1
7c”の抽出は、一般的に画像をフレームメモリに取り
込んでソフトウェアにより抽出する方式や、撮像素子1
5からのビデオ信号をコンパレータで比較し、所定レベ
ル以上の信号が得られた時間から抽出する方式等により
行われ、演算回路18はこれらの演算を行う。
In this state, the corneal reflection images 17b ", 17
Intermediate position coordinates X0, Y0 of c "and the horizontal distance Dx between them
Is calculated and stored. These corneal reflection images 17b ″, 1
7c ″ is generally extracted by a method in which an image is captured in a frame memory and extracted by software, or the image sensor 1
This is performed by a method of comparing the video signals from 5 with a comparator and extracting from the time when a signal of a predetermined level or higher is obtained. The arithmetic circuit 18 performs these arithmetic operations.

【0020】実際の位置合わせ時に得られる角膜反射像
17b”、17c”の中間位置座標X、Yは、被検眼E
の装置に対する左右上下方向位置に対応し、また両者間
の水平方向距離Dは同様に前後方向位置にそれぞれ対応
するので、これらの値がX0、Y0、Dxからどの程度ずれて
いるかにより、各方向の位置合わせずれ量が演算回路1
8において演算される。
The intermediate position coordinates X and Y of the corneal reflection images 17b "and 17c" obtained during the actual alignment are the eye E to be examined.
The horizontal distance D between the two devices corresponds to the horizontal position and the horizontal distance D between them also corresponds to the front-back position. Therefore, depending on how much these values deviate from X0, Y0, and Dx, each direction The amount of misalignment of
8 is calculated.

【0021】本実施例によれば、被検眼Eと装置との位
置合わせ状態が三次元方向で定量的に検知できるので、
位置合わせのずれ量に対し所定の重みを付することがで
きる。例えば、図5に示すようにずれの量と方向をXY
Z座標で考え、所定の位置合わせ状態(図の座標中心
O)に対して位置ずれ量に応じてレベル1〜3の範囲を
設定し、レベル3に相当する領域L3が中心Oに対して±
0.1mm以内の誤差範囲であれば重み100、レベル
2の領域L2が±0.2mm以内の誤差範囲であれば重み
50、レベル1の領域L1が±0.4mm以内の誤差範囲
であれば重み10というように設定する。
According to this embodiment, the alignment state between the eye E and the apparatus can be quantitatively detected in the three-dimensional direction.
A predetermined weight can be given to the amount of misalignment of the alignment. For example, as shown in FIG.
Considering the Z coordinate, a range of levels 1 to 3 is set according to the amount of displacement for a predetermined alignment state (coordinate center O in the figure), and an area L3 corresponding to level 3 is ± with respect to the center O.
If the error range is within 0.1 mm, the weight is 100; if the level 2 region L2 is within ± 0.2 mm, the weight is 50; if the level 1 region L1 is within ± 0.4 mm, the error range is within ± 0.4 mm. The weight is set to 10.

【0022】このように位置合わせ誤差に応じた重みを
設定し、重みを加えた検知結果、例えば得られる検出値
X、Y、Dからそのときのレベルを逐次に求め、求めた
レベルに対応する重みを、そのレベルが得られている時
間検出回数で積分した結果が所定値以上になったとき
に、演算回路18からの制御信号で図示しない検眼測定
系により被検眼Eの情報を得るようにしている。このよ
うにすることにより、被検眼Eの状態に合った条件を単
一の評価尺度で設定することができる。
In this way, weights are set according to the alignment error, and the levels at that time are sequentially obtained from the weighted detection results, for example, obtained detection values X, Y, D, and correspond to the obtained levels. When the result of integrating the weights by the number of times of detection for which the level is obtained becomes a predetermined value or more, the control signal from the arithmetic circuit 18 is used to obtain the information of the eye E by an optometry system (not shown). ing. By doing so, the condition suitable for the state of the eye E can be set with a single evaluation scale.

【0023】例えば、この検出光学系はビデオ信号によ
り位置合わせ検出を行うので、最大1秒間に30回の検
出が可能であるが、実際には処理時間などを考慮して、
1秒間に10回即ち1回当たり0.1秒の割合で検出す
るものとして、レベル1の状態が0.5秒間続けば、こ
の間被検眼Eは安定して固視していると判断されるもの
と設定すると、自動測定の条件(所定値)は100×5
=500となる。このように設定すると、位置合わせ検
出結果から予め設定された重みをその都度積算して、そ
の総和が500を越えた場合に自動測定を開始するとい
うことになり、被検眼Eの固視が不安定で±0.2mm
以内に位置合わせができない場合でも1秒間で測定が開
始されることになる。
For example, since this detection optical system detects the alignment by the video signal, the detection can be performed up to 30 times per second, but in actuality, considering the processing time, etc.
Assuming that detection is performed 10 times per second, that is, 0.1 second per detection, and the level 1 state continues for 0.5 seconds, it is determined that the eye E to be inspected is stably fixed during this period. If set to "1", the condition for automatic measurement (predetermined value) is 100 x 5
= 500. With this setting, preset weights are added up each time from the alignment detection result, and when the total exceeds 500, automatic measurement is started, and the fixation of the eye E to be examined is unsuccessful. Stable ± 0.2 mm
Even if the alignment cannot be done within one second, the measurement will be started in one second.

【0024】このような制御を行えば、固視が不安定で
位置合わせがうまく行かず、偶然に位置合わせ状態が良
いと検知された場合でも、直ちに測定を開始するような
ことはなく、また固視が不安定でどうしてもレベル2以
上に位置合わせができない場合に、何時までも測定が行
われない等というような不都合を回避することができ
る。
By performing such control, the fixation is unstable and the alignment is not successful, and even if it is accidentally detected that the alignment is good, the measurement is not started immediately, and It is possible to avoid the inconvenience that the measurement is not performed forever when the fixation is unstable and the position cannot be adjusted to the level 2 or higher.

【0025】実際に重みの掛け方等の自動測定の条件
は、多数の被検眼Eを測定しそれらを解析して最適なも
のを選択すればよい。これらの条件判断をする制御は制
御手段18としてCPUを使用して行う。従って、スク
リーニング的測定なので位置合わせ精度はあまり高くな
くてもよいが、測定を迅速に行いたい場合や、多少時間
が掛かってもより正確に位置合わせを行って測定を行い
たい場合等の自動測定条件を、検者がキーボード等の図
示しない入力装置で変更できるようにすることが可能で
ある。
Actual conditions for automatic measurement such as weighting may be determined by measuring a large number of eyes E to be inspected and analyzing them. The control for judging these conditions is performed by using a CPU as the control means 18. Therefore, since it is a screening measurement, the alignment accuracy does not have to be very high, but if you want to perform the measurement quickly, or if you want to perform the alignment more accurately even if it takes some time, the automatic measurement It is possible to allow the examiner to change the condition with an input device (not shown) such as a keyboard.

【0026】また、重みの総和から測定条件を判断する
方式の他に、以下の方法も可能である。即ち、各ゾーン
における測定回数を予め設定しておいて、例えば検知結
果が3回連続してレベル1にあれば測定を開始し、検知
結果がレベル2の場合は10回連続してレベル2にあれ
ば測定を開始するようにする。更に、レベル1の場合は
1回しか滞在せず、2回目に検知したときにはレベル2
に変化したような場合にも、3回目、4回目にレベル1
に戻ったときには測定を実行するようにし、レベル2以
上の状態では連続していなければ測定を実行しないよう
にするなど、精度の状態を示す領域間の遷移状態によっ
ても、測定条件を変化させて最適条件を設定する。これ
により、信頼度の高い測定を行うことができる。
In addition to the method of determining the measurement condition from the sum of weights, the following method is also possible. That is, the number of times of measurement in each zone is set in advance. For example, if the detection result is level 1 for three consecutive times, the measurement is started, and if the detection result is level 2, it is set to level 2 for 10 consecutive times. If so, start the measurement. Furthermore, in the case of level 1, it stays only once, and when it is detected the second time, level 2
Even if it changes to, it will be level 1 on the 3rd and 4th times.
The measurement condition may be changed depending on the transition state between the regions indicating the accuracy state, such as performing the measurement when returning to the step 1, and not performing the measurement when the level is 2 or higher. Set the optimum conditions. Thereby, highly reliable measurement can be performed.

【0027】また、図1の光学系を上下、左右、前後に
駆動する駆動装置を設け、位置合わせ検出結果を基に予
め設定した測定条件に従って駆動装置を駆動し、自動的
に位置合わせ及び測定を行うようにすれば、検者が粗ア
ライメントを行った時点で測定スイッチを押すことによ
り、自動的に被検眼Eとの位置合わせを行って測定を行
う全自動眼科装置が実現できる。更に、検者を必要とせ
ずに、被検者自身で粗アライメントを行って測定する自
己測定眼科装置も容易に実現することができる。
Further, a driving device for driving the optical system of FIG. 1 up, down, left and right, front and back is provided, and the driving device is driven according to preset measurement conditions based on the alignment detection result, and the alignment and measurement are automatically performed. By performing the above, it is possible to realize a fully automatic ophthalmologic apparatus that automatically performs the alignment with the eye E to be measured by pressing the measurement switch when the examiner performs the rough alignment. Furthermore, it is possible to easily realize a self-measurement ophthalmologic apparatus that performs rough alignment by the subject himself or herself without requiring an examiner.

【0028】[0028]

【発明の効果】以上説明したように本発明に係る眼科装
置は、被検眼と装置との位置合わせを所定方向で逐次に
検知し、その検知結果に基づいて被検眼の情報を得る条
件を変化させるようにすることにより、被検眼の状態に
よって位置合わせ状態が良い場合には迅速に位置合わせ
を行い、状態が悪い場合には時間を掛けて正確な位置合
わせ状態になるように調整することができ、被検眼の角
膜の状態に拘らず常に位置合わせ誤差を検知することが
できるので、誤判断を防止して信頼度の高い眼科測定を
行うことができる。
As described above, the ophthalmologic apparatus according to the present invention sequentially detects the alignment between the eye to be inspected and the apparatus in a predetermined direction, and changes the condition for obtaining information on the eye to be inspected based on the detection result. By doing so, when the alignment condition is good depending on the condition of the eye to be inspected, it is possible to quickly perform the alignment, and when the alignment condition is bad, it is possible to take time to adjust so that the alignment condition is accurate. Since it is possible to always detect the alignment error regardless of the state of the cornea of the eye to be inspected, it is possible to prevent misjudgment and perform highly reliable ophthalmological measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の斜視図である。FIG. 1 is a perspective view of an embodiment.

【図2】複数開口を有する絞りの正面図である。FIG. 2 is a front view of a diaphragm having a plurality of openings.

【図3】開口と光偏向部材の側面図である。FIG. 3 is a side view of an opening and a light deflecting member.

【図4】位置合わせ完了時の撮像素子上の画像の説明図
である。
FIG. 4 is an explanatory diagram of an image on the image sensor when the alignment is completed.

【図5】位置合わせ誤差と重みの説明図である。FIG. 5 is an explanatory diagram of alignment error and weight.

【図6】従来例の光学系の構成図である。FIG. 6 is a configuration diagram of a conventional optical system.

【図7】位置合わせ検知状態の説明図である。FIG. 7 is an explanatory diagram of an alignment detection state.

【図8】被検眼の動きと測定のタイミングの説明図であ
る。
FIG. 8 is an explanatory diagram of the movement of the eye to be inspected and the timing of measurement.

【符号の説明】[Explanation of symbols]

11 対物レンズ 12 ハーフミラー 13 複数開口絞り 14 結像レンズ 15 撮像素子 16 投影レンズ 17 光源 18 演算回路 19b、19c 光偏向部材 11 Objective Lens 12 Half Mirror 13 Plural Aperture Stop 14 Imaging Lens 15 Imaging Element 16 Projection Lens 17 Light Source 18 Arithmetic Circuit 19b, 19c Light Deflection Member

フロントページの続き (72)発明者 嶋下 聡 神奈川県川崎市中原区今井上町53番地 キ ヤノン株式会社小杉事業所内 (72)発明者 正木 俊文 神奈川県川崎市中原区今井上町53番地 キ ヤノン株式会社小杉事業所内Front page continued (72) Inventor Satoshi Shimashita 53 Imaiue-cho, Nakahara-ku, Kawasaki-shi, Kanagawa Canon Inc. Kosugi Plant (72) Inventor Toshifumi Masaki 53 Imaiue-cho, Nakahara-ku, Kawasaki-shi, Kanagawa Canon Inc. Kosugi Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検眼と装置との位置合わせ状態を逐次
に検知する位置検出手段を有し、該位置検出手段から得
られる位置合わせ誤差に基づいて自動的に被検眼の情報
を得る眼科装置において、前記被検眼の情報を得るため
の条件を前記位置合わせ誤差の状態に応じて異ならせて
設定する条件設定手段を有することを特徴とする眼科装
置。
1. An ophthalmologic apparatus having position detection means for sequentially detecting the alignment state between the eye to be inspected and the apparatus, and automatically obtaining information on the eye to be inspected based on the alignment error obtained from the position detection means. 2. The ophthalmologic apparatus according to claim 1, further comprising a condition setting unit that sets a condition for obtaining the information of the eye to be inspected differently according to the state of the alignment error.
【請求項2】 前記条件設定手段は、予め前記位置合わ
せ誤差に応じて設定された重みを前記位置検出手段の信
号から算出して逐次に加算する演算手段と、該加算され
た結果を予め設定された値と比較する比較手段とから成
る請求項1に記載の眼科装置。
2. The condition setting means calculates a weight preset according to the alignment error from the signal of the position detecting means and sequentially adds the weight, and presets the added result. An ophthalmologic apparatus according to claim 1, comprising a comparison means for comparing the calculated value.
【請求項3】 前記予め設定された重みを変更する入力
手段を有する請求項1に記載の眼科装置。
3. The ophthalmologic apparatus according to claim 1, further comprising input means for changing the preset weight.
【請求項4】 前記被検眼の情報を得る条件を、前記位
置合わせ誤差に応じて設定された複数の領域と、該領域
内の滞在時間とにより変化させるようにした請求項1に
記載の眼科装置。
4. The ophthalmology according to claim 1, wherein the condition for obtaining the information of the eye to be inspected is changed depending on a plurality of regions set according to the alignment error and a staying time within the regions. apparatus.
【請求項5】 前記装置を駆動する駆動手段を設け、前
記位置検出手段の検出結果に基づいて前記駆動手段を駆
動して前記被検眼と前記装置との位置合わせを行う請求
項1に記載の眼科装置。
5. The driving means for driving the device is provided, and the driving means is driven based on the detection result of the position detecting means to align the eye to be inspected with the device. Ophthalmic equipment.
【請求項6】 被検眼と装置との位置合わせ状態を逐次
に検知する位置検知手段と、該位置検知手段から得られ
る位置合わせ状態が所定条件を満足するか否かに基づい
て自動的に被検眼情報を得るための制御手段とを有し、
該制御手段は前記位置検知手段から得られる位置合わせ
状態が、位置合わせ誤差の程度に応じて異なる度合いで
所定条件を満足するか否かの判断に使用することを特徴
とする眼科装置。
6. A position detecting means for sequentially detecting a state of alignment between an eye to be inspected and an apparatus, and automatically detecting whether or not the state of alignment obtained from the position detecting means satisfies a predetermined condition. Having a control means for obtaining optometry information,
An ophthalmologic apparatus characterized in that the control means is used to judge whether or not the alignment state obtained from the position detection means satisfies a predetermined condition at different degrees depending on the degree of the alignment error.
JP27695495A 1995-09-29 1995-09-29 Ophthalmic equipment Expired - Fee Related JP3625323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27695495A JP3625323B2 (en) 1995-09-29 1995-09-29 Ophthalmic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27695495A JP3625323B2 (en) 1995-09-29 1995-09-29 Ophthalmic equipment

Publications (2)

Publication Number Publication Date
JPH0994227A true JPH0994227A (en) 1997-04-08
JP3625323B2 JP3625323B2 (en) 2005-03-02

Family

ID=17576733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27695495A Expired - Fee Related JP3625323B2 (en) 1995-09-29 1995-09-29 Ophthalmic equipment

Country Status (1)

Country Link
JP (1) JP3625323B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346764A (en) * 2000-06-08 2001-12-18 Topcon Corp Eyeground camera
US6685318B2 (en) 2000-02-24 2004-02-03 Canon Kabushiki Kaisha Ophthalmologic apparatus
JP2010162424A (en) * 2010-05-07 2010-07-29 Canon Inc Ophthalmic apparatus
JP4700785B2 (en) * 2000-05-30 2011-06-15 キヤノン株式会社 Ophthalmic equipment
WO2014203625A1 (en) * 2013-06-18 2014-12-24 オリンパスメディカルシステムズ株式会社 Endoscope system and method of controlling endoscope system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685318B2 (en) 2000-02-24 2004-02-03 Canon Kabushiki Kaisha Ophthalmologic apparatus
JP4700785B2 (en) * 2000-05-30 2011-06-15 キヤノン株式会社 Ophthalmic equipment
JP2001346764A (en) * 2000-06-08 2001-12-18 Topcon Corp Eyeground camera
JP2010162424A (en) * 2010-05-07 2010-07-29 Canon Inc Ophthalmic apparatus
WO2014203625A1 (en) * 2013-06-18 2014-12-24 オリンパスメディカルシステムズ株式会社 Endoscope system and method of controlling endoscope system
CN104981198A (en) * 2013-06-18 2015-10-14 奥林巴斯株式会社 Endoscope system and control method for endoscope system
EP2926714A4 (en) * 2013-06-18 2016-07-13 Olympus Corp Endoscope system and method of controlling endoscope system
US9579011B2 (en) 2013-06-18 2017-02-28 Olympus Corporation Endoscope system that controls laser output of laser probe and control method for endoscope system

Also Published As

Publication number Publication date
JP3625323B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP4824400B2 (en) Ophthalmic equipment
EP1935330A1 (en) Ophthalmologic apparatus
JPH0265836A (en) Visual axis detector and camera equipped therewith
US20030097053A1 (en) Noncontact ophthalmotonometer
JP4533013B2 (en) Ophthalmic equipment
KR101637944B1 (en) Ophthalmologic apparatus and alignment method
KR100603005B1 (en) Ophthalmologic apparatus
JP4136690B2 (en) Ophthalmic equipment
JPH0966027A (en) Opthalmologic system
US6164778A (en) Corneal endothelial cell photographing apparatus
JP3625323B2 (en) Ophthalmic equipment
US5042940A (en) Optical measuring apparatus for examining eye
JPH02264632A (en) Sight line detector
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPH0975308A (en) Corneal endothelial cell photographing device
JP4136691B2 (en) Ophthalmic equipment
JPH08562A (en) Position detector for ophthalmological equipment
JPH035810B2 (en)
JP3068625B2 (en) Ophthalmic equipment
JP3085679B2 (en) Eye refractometer
JP4412998B2 (en) Eye refractive power measuring device
JP2001231753A (en) Opthalmometer
JPH1043137A (en) Ophthalmologic device
JPH1043136A (en) Ophthalmologic device
JP3497007B2 (en) Ophthalmic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees