JPH0992977A - Glass ceramic board with built-in capacitor - Google Patents

Glass ceramic board with built-in capacitor

Info

Publication number
JPH0992977A
JPH0992977A JP7267649A JP26764995A JPH0992977A JP H0992977 A JPH0992977 A JP H0992977A JP 7267649 A JP7267649 A JP 7267649A JP 26764995 A JP26764995 A JP 26764995A JP H0992977 A JPH0992977 A JP H0992977A
Authority
JP
Japan
Prior art keywords
powder
capacitor
glass ceramic
built
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7267649A
Other languages
Japanese (ja)
Other versions
JP3127797B2 (en
Inventor
Hiroshi Unno
浩志 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP07267649A priority Critical patent/JP3127797B2/en
Publication of JPH0992977A publication Critical patent/JPH0992977A/en
Application granted granted Critical
Publication of JP3127797B2 publication Critical patent/JP3127797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent glass components such as silica, etc., from diffusing into dielectric layer while it is fired, and to cause it to have a high permittivity and to reduce its dielectric loss, without increasing the number of processes, by sintering conductor paste containing globular Ag powder and flaky Ag powder, and forming capacitor electrodes. SOLUTION: On the occasion of manufacturing a glass ceramic multilayer interconnection board with built-in capacitor, electrodes 21 and a dielectric layer 22, and via-conductors 3 of a capacitor 2, furthermore a desired wiring pattern, etc., according to need, are formed beforehand in a plurality of glass ceramic green sheets constituting insulating layers 1, for example, and then those glass ceramic green sheets are laminated and fired. Here, as a conductor paste for forming the electrodes 21 of the capacitor 2 one containing globular Ag powder and flaky Ag powder is used. It is desirable that the average grain diameter of the globular Ag powder should be about 0.1-1μm, and the average grain diameter (average length diameter) should be about 1-5μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、コンデンサを内蔵
したガラスセラミック基板、特にガラスセラミック絶縁
層、コンデンサ用電極、その他の回路用配線等を同時焼
成して得るコンデンサ内蔵ガラスセラミック基板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass ceramic substrate having a built-in capacitor, and more particularly to a glass ceramic substrate having a built-in capacitor obtained by simultaneously firing a glass ceramic insulating layer, a capacitor electrode, and other circuit wiring.

【0002】[0002]

【従来の技術】ガラス粉末とセラミックフィラーの混合
物から作製したグリーンシートにAgペースト、コンデ
ンサペーストを用いて所定のパターンを形成し、複数枚
積層して800〜1000℃で焼成して得られるコンデ
ンサ内蔵ガラスセラミック基板(多層配線基板)があ
る。このようなコンデンサ内蔵ガラスセラミック基板
は、リード付きコンデンサやチップコンデンサを、基板
上に半田付けしたものに比べて小型高密度化が可能なた
め、電子機器の小型化に貢献するものと期待されてい
る。
2. Description of the Related Art Built-in capacitors obtained by forming a predetermined pattern using Ag paste and capacitor paste on a green sheet made of a mixture of glass powder and ceramic filler, laminating a plurality of sheets and firing at 800 to 1000 ° C. There is a glass ceramic substrate (multilayer wiring substrate). Such a glass-ceramic substrate with a built-in capacitor is expected to contribute to the miniaturization of electronic devices because it can be made smaller and higher in density than a capacitor with a lead or a chip capacitor soldered on the substrate. There is.

【0003】従来、コンデンサ内蔵のセラミック多層配
線基板においては、そのコンデンサに用いる材料とし
て、低温焼成可能な鉛ペロブスカイト系複合材料を主成
分としたものについて数々の研究が行われている。その
代表的なものとして、例えばPb(Mg1/3 Nb2/3
3 、Pb(Fe1/2 Nb1/2 )O3 、Pb(Fe2/3
1/3 )O3 等の材料があり、それらの誘電率は単独で
は各々12000、24000、20000と高い値が
得られている。
Conventionally, in a ceramic multilayer wiring board with a built-in capacitor, as a material used for the capacitor, a lot of researches have been conducted on a material mainly composed of a lead perovskite type composite material which can be fired at a low temperature. As a typical example, for example, Pb (Mg 1/3 Nb 2/3 )
O 3 , Pb (Fe 1/2 Nb 1/2 ) O 3 , Pb (Fe 2/3
There are materials such as W 1/3 ) O 3 and their dielectric constants are as high as 12000, 24000 and 20000, respectively.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の鉛ペロブスカイト系複合材料をガラスセラミック基
板に内蔵すると、焼成時に酸化硼素やシリカなどのガラ
ス成分の誘電体層中への拡散がおこり、焼成後のコンデ
ンサが所望の誘電特性を満たさないことがあった。例え
ば、鉛ペロブスカイト系複合材料Pb(Mg1/3 Nb
2/3 )O3 の誘電率は単独では上記のように12000
であるが、低温焼成基板に内蔵すると30程度に低下し
てしまう。これを改善する方法として、従来たとえばコ
ンデンサ用電極とガラスセラミック絶縁層との間にバリ
ア層を印刷等により設けて拡散を抑制する方法が提案さ
れているが、バリア層を形成するための工程数が増加す
る等の不具合がある。
However, when the above-mentioned conventional lead perovskite composite material is incorporated into a glass ceramic substrate, a glass component such as boron oxide or silica diffuses into the dielectric layer during firing, and after firing, In some cases, the above capacitor did not satisfy the desired dielectric characteristics. For example, a lead perovskite composite material Pb (Mg 1/3 Nb
The dielectric constant of 2/3 ) O 3 is 12000 as above by itself.
However, if it is built in the low temperature firing substrate, it will be reduced to about 30. As a method for improving this, a method of suppressing the diffusion by providing a barrier layer between the capacitor electrode and the glass ceramic insulating layer by printing or the like has been conventionally proposed, but the number of steps for forming the barrier layer is increased. There is a problem such as increase in

【0005】本発明は上記の問題点に鑑みて提案された
もので、上記従来のように工程数を増加させることな
く、焼成時に酸化硼素やシリカなどのガラス成分が誘電
体層中へ拡散するのを防止して、高誘電率で誘電損失の
少ないコンデンサ内蔵のガラスセラミック多層配線基板
を提供することを目的とする。
The present invention has been proposed in view of the above problems, and glass components such as boron oxide and silica are diffused into the dielectric layer during firing without increasing the number of steps as in the prior art. It is an object of the present invention to provide a glass-ceramic multilayer wiring board with a built-in capacitor that prevents the occurrence of the above and has a high dielectric constant and a small dielectric loss.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに本発明によるコンデンサ内蔵ガラスセラミック基板
は、以下の構成としたものである。
In order to achieve the above object, a glass ceramic substrate with a built-in capacitor according to the present invention has the following constitution.

【0007】即ち、ガラスセラミック絶縁層、コンデン
サ用電極、その他の回路用配線等を同時焼成して得るコ
ンデンサ内蔵ガラスセラミック基板において、上記コン
デンサ用電極は、球状Ag粉とフレーク状Ag粉とを含
有する導体ペーストを焼成して形成されていることを特
徴とする。
That is, in a glass ceramic substrate with a built-in capacitor obtained by simultaneously firing a glass ceramic insulating layer, a capacitor electrode, and other circuit wiring, the capacitor electrode contains spherical Ag powder and flaky Ag powder. The conductive paste is formed by firing.

【0008】[0008]

【作用】上記のようにコンデンサ用電極を形成する導体
ペーストに、球状Ag粉とともにフレーク状Ag粉を含
有させたことによって、焼成時に電極層が緻密化され、
ガラス成分の誘電体層中への拡散が抑制される。それに
よって誘電率の低下が防止され、高誘電率で誘電特性の
優れたコンデンサ内蔵ガラスセラミック基板を提供する
ことが可能となる。
By including the spherical Ag powder and the flaky Ag powder in the conductor paste for forming the capacitor electrode as described above, the electrode layer is densified during firing,
Diffusion of the glass component into the dielectric layer is suppressed. As a result, it is possible to provide a glass ceramic substrate with a built-in capacitor that prevents a decrease in the dielectric constant and has a high dielectric constant and excellent dielectric properties.

【0009】なお上記の球状Ag粉とフレーク状Ag粉
の混合比率(重量比率)は、20:80〜80:20の
範囲内、すなわち球状Ag粉20〜80wt%に対し
て、フレークAg粉は80〜20wt%とするのが望ま
しい。フレーク状Ag粉が80wt%を越えるか20w
t%未満であると、電極層があまり緻密化せずガラス成
分が拡散してコンデンサの容量が低下するからである。
The mixing ratio (weight ratio) of the spherical Ag powder and the flake Ag powder is in the range of 20:80 to 80:20, that is, the flake Ag powder is 20 to 80 wt% of the spherical Ag powder. It is desirable to set it to 80 to 20 wt%. Flake-like Ag powder exceeds 80wt% or 20w
When it is less than t%, the electrode layer is not densified so much and the glass component is diffused to reduce the capacitance of the capacitor.

【0010】[0010]

【発明の実施の形態】図1は本発明によるコンデンサ内
蔵ガラスセラミック基板(多層配線基板)の具体的な構
成の一例を示す焼成後の断面図である。図において、1
はガラスセラミックよりなる絶縁層、2はコンデンサで
ある。そのコンデンサ2は一対の電極21と、その両電
極21・21間に介在させた誘電体層22とよりなる。
3は上記各電極21に導電接続させたビア導体である。
1 is a cross-sectional view after firing showing an example of a specific structure of a glass ceramic substrate with a built-in capacitor (multilayer wiring substrate) according to the present invention. In the figure, 1
Is an insulating layer made of glass ceramic and 2 is a capacitor. The capacitor 2 is composed of a pair of electrodes 21 and a dielectric layer 22 interposed between the electrodes 21 and 21.
Reference numeral 3 is a via conductor conductively connected to each electrode 21.

【0011】上記のようなコンデンサを内蔵したガラス
セラミック多層配線基板を製造するに当たっては、例え
ば絶縁層1を構成する複数枚のガラスセラミックグリー
ンシートに予めコンデンサ2の電極21や誘電体層22
およびビア導体3さらに必要に応じて図に省略した所望
の配線パターン等を形成した後、それらのガラスセラミ
ックグリーンシートを積層して焼成する。この場合、コ
ンデンサ2は、例えばセラミックグリーンシート上に電
極21を印刷等で形成した後に、その上に誘電体層22
となる誘電体ペーストを印刷等で形成し、さらにその上
に電極21を印刷等して形成する。またビア導体3は、
ビア孔を形成した後に導体ペーストを充填して形成すれ
ばよい。
In manufacturing a glass ceramic multilayer wiring board having a built-in capacitor as described above, for example, a plurality of glass ceramic green sheets forming the insulating layer 1 are preliminarily formed on the electrodes 21 and the dielectric layer 22 of the capacitor 2.
The via conductor 3 and a desired wiring pattern not shown in the drawing are formed, if necessary, and then the glass ceramic green sheets are laminated and fired. In this case, in the capacitor 2, for example, after the electrode 21 is formed on the ceramic green sheet by printing or the like, the dielectric layer 22 is formed thereon.
Then, a dielectric paste to be used is formed by printing or the like, and the electrode 21 is further formed thereon by printing or the like. The via conductor 3 is
It may be formed by filling the conductive paste after forming the via hole.

【0012】上記のガラスセラミックグリーンシートに
用いるガラスセラミック粉末としては、例えば1100
℃以下で充分に焼結するものを用いればよく、その材質
は適宜であり、ガラス粉末としては、例えば酸化鉛、酸
化亜鉛、アルカリ土類金属酸化物、アルカリ金属酸化物
等を含有するアルミノ硼珪酸ガラスで軟化点が600〜
800℃の非晶質ガラス粉末、あるいは600〜110
0℃で結晶化する結晶化ガラス等が使用できる。又これ
にアルミナ、ジルコン、ムライト、コージェライト、ア
ノーサイト、シリカ等のセラミックフィラーを混合して
もよい。その場合の混合比率は、ガラスセラミック基板
の坑折強度、誘電率、緻密性等の性能を勘案して適宜調
整すればよく、一般的に重量比で約1:1が好ましい。
The glass ceramic powder used for the above glass ceramic green sheet is, for example, 1100.
A material that can be sufficiently sintered at a temperature of ℃ or below may be used, and the material thereof is appropriate, and examples of the glass powder include alumino-boron containing lead oxide, zinc oxide, alkaline earth metal oxides, alkali metal oxides and the like. Silica glass with a softening point of 600-
Amorphous glass powder at 800 ° C, or 600 to 110
Crystallized glass that crystallizes at 0 ° C. can be used. Further, a ceramic filler such as alumina, zircon, mullite, cordierite, anorthite or silica may be mixed therewith. In that case, the mixing ratio may be appropriately adjusted in consideration of performances such as folding strength, dielectric constant, and denseness of the glass ceramic substrate, and generally a weight ratio of about 1: 1 is preferable.

【0013】上記のガラスセラミックグリーンシート
は、ガラスセラミック粉末をスラリーに調整後、ドクタ
ーブレード等を用いてシート状に形成するもので、その
厚さは、作成すべき基板の焼成後の厚さを勘案して適宜
設定すればよく、例えば30〜200μm程度に成形す
る。また上記のスラリーに調整するには、ガラスセラミ
ック粉末にバインダや可塑剤および溶剤を加えて、ボー
ルミルやアトライタ等で混合して得ればよい。そのバイ
ンダとしては、例えばポリビニルブチラール、メタアク
リルポリマ、アクリルポリマ等を使用することができ
る。また可塑剤としてはフタル酸の誘導体等を、また溶
剤としてはアルコール類、ケトン類、塩素系有機溶剤等
をそれぞれ使用することができる。
The above-mentioned glass ceramic green sheet is formed into a sheet by using a doctor blade or the like after adjusting the glass ceramic powder into a slurry, and its thickness is the thickness of the substrate to be prepared after firing. It may be appropriately set in consideration, and for example, it is molded to about 30 to 200 μm. Further, in order to prepare the above-mentioned slurry, a binder, a plasticizer and a solvent may be added to the glass ceramic powder and mixed by a ball mill, an attritor or the like. As the binder, for example, polyvinyl butyral, methacrylic polymer, acrylic polymer or the like can be used. Further, a phthalic acid derivative or the like can be used as the plasticizer, and alcohols, ketones, chlorine-based organic solvents or the like can be used as the solvent.

【0014】上記のようにして作成したガラスセラミッ
クグリーンシートには、前述のように予めコンデンサ2
やビア導体3さらに必要に応じて図に省略した所望の配
線パターン等を形成するもので、特に本発明においては
コンデンサ2の電極21を形成するための導体ペースト
に前述のように球状Ag粉とフレーク状Ag粉とを混合
したものを用いる。
The glass-ceramic green sheet prepared as described above is preliminarily charged with the capacitor 2 as described above.
Or via conductor 3 and a desired wiring pattern not shown in the drawing are formed if necessary. Particularly, in the present invention, the conductor paste for forming the electrode 21 of the capacitor 2 contains the spherical Ag powder as described above. A mixture of flaky Ag powder is used.

【0015】その球状およびフレーク状Ag粉の粒径
は、コンデンサ用電極を例えばスクリーン印刷等で形成
する際にスクリーンを容易に通過できればよく、球状A
g粉の平均粒径は0.1〜1μm程度、フレーク状Ag
粉の平均粒径(平均長径)は1〜5μm程度が好まし
い。またフレーク状Ag粉の長径を厚さで割ったアスペ
クト比は5〜40程度が好ましい。アスペクト比が5未
満または40よりも大きいと電極層を緻密化する効果が
少ないからである。
The particle size of the spherical and flake-shaped Ag powder is such that it can easily pass through the screen when the capacitor electrode is formed by screen printing or the like.
The average particle size of the g powder is about 0.1 to 1 μm, flake-like Ag
The average particle size (average major axis) of the powder is preferably about 1 to 5 μm. The aspect ratio obtained by dividing the major axis of the flake-like Ag powder by the thickness is preferably about 5-40. This is because when the aspect ratio is less than 5 or greater than 40, the effect of densifying the electrode layer is small.

【0016】上記の球状Ag粉とフレーク状Ag粉とを
混合し、これにバインダを混練して導体ペーストを作製
するもので、具体的には例えば球状Ag粉とフレーク状
Ag粉との混合粉末100重量部に対してビヒクルを2
0〜30重量部程度加え、スリーロールミル等で混合す
る。そのビヒクルの特性は、特に限定されないが、エチ
ルセルロース4〜8wt%のターピネオール溶液を使用
することができる。またペーストの粘度は、200〜3
00Pa・Sとすれば印刷に好適である。
The spherical Ag powder and the flake-shaped Ag powder are mixed and a binder is kneaded to prepare a conductor paste. Specifically, for example, a mixed powder of the spherical Ag powder and the flake-shaped Ag powder is mixed. 2 vehicles for 100 parts by weight
Add about 0 to 30 parts by weight and mix with a three-roll mill or the like. The characteristics of the vehicle are not particularly limited, but a 4-8 wt% ethylcellulose terpineol solution can be used. The viscosity of the paste is 200-3
A value of 00 Pa · S is suitable for printing.

【0017】一方、コンデンサ2の誘電体層22を形成
する誘電体ペーストとしては、前述のような鉛ペロブス
カイト系複合材料を主成分としたもの等を用いることが
できる。それらの材料を上記導体ペーストと同様の要領
でペースト状にすればよい。また前記のビア導体3や配
線パターン等を形成する導体ペーストとしては上記と同
様にAg粉等を含有するペーストを用いればよく、その
場合フレーク状のAg粉を含有するものでも含有しない
ものでもいずれでもよい。
On the other hand, as the dielectric paste for forming the dielectric layer 22 of the capacitor 2, the above-mentioned lead perovskite-based composite material as a main component can be used. These materials may be made into a paste in the same manner as the conductor paste. As the conductor paste for forming the via conductor 3 and the wiring pattern, a paste containing Ag powder or the like may be used in the same manner as described above. In that case, it may or may not contain flake-like Ag powder. But it's okay.

【0018】なお、上記のコンデンサ電極21を形成す
るために導体ペーストを印刷等する際の厚さは、あまり
薄いと前記のガラス成分の拡散抑制効果が少なく、あま
り厚いと表面に凹凸がでてしまうので、7〜15μm程
度が望ましい。また誘電体層22を形成するための誘電
体ペーストの厚さは、あまり薄いとショートしてしま
い、厚いと表面に凹凸がでてしまうので、30〜40μ
m程度が望ましい。
When the conductive paste is printed to form the capacitor electrode 21 described above, if the thickness is too thin, the effect of suppressing the diffusion of the above glass components is small, and if it is too thick, the surface becomes uneven. Therefore, about 7 to 15 μm is desirable. If the thickness of the dielectric paste for forming the dielectric layer 22 is too thin, short-circuiting will occur, and if it is thick, the surface will be uneven, so 30-40 μm.
m is desirable.

【0019】次に、上記のようにして予めコンデンサ2
やビア導体3および配線パターン等を形成したガラスセ
ラミックグリーンシートを複数枚積層した後、ホットプ
レス機等で一体化して焼成する。そのときのホットプレ
ス機等による圧力は、例えば50〜300kg/cm
2 、温度は60〜90℃程度とする。また焼成は、例え
ば450〜600℃程度に加熱してバインダ等の有機物
を除去した後、1100℃以下、例えば800から10
00℃で行えばよい。
Next, the capacitor 2 is preliminarily set as described above.
After laminating a plurality of glass ceramic green sheets on which the via conductor 3, the wiring pattern, and the like are formed, they are integrated and fired by a hot press machine or the like. The pressure by the hot press machine at that time is, for example, 50 to 300 kg / cm.
2. The temperature is about 60 to 90 ° C. In addition, firing is performed at a temperature of 1100 ° C. or lower, for example 800 to 10 after heating to 450 to 600 ° C. to remove organic substances such as a binder.
It may be carried out at 00 ° C.

【0020】[0020]

【実施例】前記図1に示すようなコンデンサ内蔵ガラス
セラミック多層配線基板を作製するに当たり、ガラスセ
ラミックグリーンシートを形成するためのガラスセラミ
ック粉末として、下記表1に示す組成のガラス粉末(平
均粒径2.2μm)と、アルミナ粉末(平均粒径1.7
μm)を50:50の比率で混合した。
EXAMPLE In producing a glass ceramic multilayer wiring board with a built-in capacitor as shown in FIG. 1, glass powder having the composition shown in Table 1 below (average particle size) was used as a glass ceramic powder for forming a glass ceramic green sheet. 2.2 μm) and alumina powder (average particle size 1.7)
μm) were mixed in a ratio of 50:50.

【0021】 [0021]

【0022】上記の混合粉末100重量部に対して、ボ
リビニルブチラール9重量部、フタル酸ジイソブチル7
重量部、オレイン酸1重量部、イソプロピルアルコール
40重量部、トリクロロエタン20重量部を加えてボー
ルミルで24時間混合してスラリーを製作した。そのス
ラリーをドクターブレード法でシート状に成形してガラ
スセラミックグリーンシートを作製した。そのガラスセ
ラミックグリーンシートの厚さは232μmであった。
9 parts by weight of poly (vinyl butyral) and 7 parts of diisobutyl phthalate per 100 parts by weight of the above mixed powder.
By weight, 1 part by weight of oleic acid, 40 parts by weight of isopropyl alcohol and 20 parts by weight of trichloroethane were added and mixed in a ball mill for 24 hours to prepare a slurry. The slurry was formed into a sheet by the doctor blade method to prepare a glass ceramic green sheet. The thickness of the glass ceramic green sheet was 232 μm.

【0023】一方、コンデンサ2の電極21を形成する
ための導体ペーストとしては、平均粒径0.1〜1μm
の球状Ag粉と、平均粒径(平均長径)1〜5μm、ア
スペクト比30のフレークAg粉とを種々の割合(重量
比)で混合し、それらの各混合粉末100重量部を、そ
れぞれエチルセルロース6wt%のターピネオール溶液
30重量部とともにスリーロールミルで混練したものを
用いた。
On the other hand, the conductor paste for forming the electrode 21 of the capacitor 2 has an average particle size of 0.1 to 1 μm.
Spherical Ag powder, and flake Ag powder having an average particle size (average major axis) of 1 to 5 μm and an aspect ratio of 30 are mixed at various ratios (weight ratio), and 100 parts by weight of each mixed powder thereof is mixed with ethyl cellulose 6 wt. % Terpineol solution together with 30 parts by weight was used, which was kneaded with a three-roll mill.

【0024】またコンデンサ2の誘電体層22を形成す
るための誘電体ペーストとしては、平均粒径0.3μm
のPb(Mg1/3 Nb2/3 )O3 粉末100重量部をエ
チルセルロース8wt%のターピネオール溶液30重量
部とともにスリーロールミルで混練したものを用いた。
The dielectric paste for forming the dielectric layer 22 of the capacitor 2 has an average particle size of 0.3 μm.
100 parts by weight of Pb (Mg 1/3 Nb 2/3 ) O 3 powder was mixed with 30 parts by weight of a terpineol solution containing 8 wt% of ethyl cellulose in a three-roll mill.

【0025】そして上記の導体ペーストや誘電体ペース
トを、それぞれ印刷等で所望の厚さに形成することによ
ってコンデンサ2の電極21と誘電体層22を形成し
た。なおコンデンサ電極21の厚さはそれぞれ10μm
とし、誘電体層22の厚さは30μmに形成した。
Then, the above-mentioned conductor paste and dielectric paste were formed into desired thicknesses by printing or the like to form the electrodes 21 and the dielectric layer 22 of the capacitor 2. The thickness of each capacitor electrode 21 is 10 μm.
The dielectric layer 22 was formed to have a thickness of 30 μm.

【0026】さらに、ビア導体4は、ガラスセラミック
グリーンシートに形成した直径100μmのスルーホー
ルに導体ペーストを充填して形成した。その導体ペース
トとしては、平均粒径10μmのAg粉末100重量部
を、エチルセルロース5%のターピネオール溶液11重
量部とともにスリーロールミルで混合したものを用い
た。
Further, the via conductor 4 was formed by filling a 100 μm diameter through hole formed in a glass ceramic green sheet with a conductor paste. As the conductor paste, 100 parts by weight of Ag powder having an average particle size of 10 μm was mixed with 11 parts by weight of a terpineol solution containing 5% ethyl cellulose in a three-roll mill.

【0027】上記のようにしてコンデンサ2の電極21
と誘電体層22およびビア導体3を形成するためのペー
ストを予め印刷もしくは充填してなる複数枚のガラスセ
ラミックグリーンシートを互いに積層し、その積層体を
150kg/cm2 、85℃の条件で加圧成形した。次
いで、500℃で3時間保持してバインダを除去した
後、875℃の空気中で20分間焼成してコンデンサ内
蔵のガラスセラミック基板を作製した。
As described above, the electrode 21 of the capacitor 2
And a plurality of glass ceramic green sheets pre-printed or filled with a paste for forming the dielectric layer 22 and the via conductor 3 are laminated on each other, and the laminated body is applied under the condition of 150 kg / cm 2 , 85 ° C. Press formed. Next, after holding at 500 ° C. for 3 hours to remove the binder, it was baked in air at 875 ° C. for 20 minutes to produce a glass ceramic substrate with a built-in capacitor.

【0028】なおコンデンサ2の電極21に用いる導体
ペーストの球状Ag粉とフレーク状Ag粉との混合比率
(重量比率)は、前述のように種々異ならせ、前記の好
適な条件を満たすものと満たさないもの、さらに本発明
のように球状Ag粉とフレーク状Ag粉との両方を用い
ることなく、球状Ag粉またはフレーク状Ag粉のいず
れか一方のみを用いた場合についても上記と同様の要領
でコンデンサ内蔵ガラスセラミック基板を作製した。そ
れらの基板を試料として各基板のコンデンサの誘電特性
を調べた。その結果を下記表2に示す。なお下記表2中
の誘電率εおよび誘電損失tanδは1kHz、室温で
の測定値である。
The mixing ratio (weight ratio) of the spherical Ag powder and the flake-shaped Ag powder of the conductor paste used for the electrode 21 of the capacitor 2 is varied as described above, and the above-mentioned preferable conditions are satisfied. In the same manner as described above, the case of using either spherical Ag powder or flake Ag powder without using both spherical Ag powder and flake Ag powder as in the present invention. A glass ceramic substrate with a built-in capacitor was manufactured. The dielectric properties of the capacitors on each substrate were examined using these substrates as samples. The results are shown in Table 2 below. The dielectric constant ε and the dielectric loss tan δ in Table 2 below are measured values at 1 kHz and room temperature.

【0029】 [0029]

【0030】上記表2中の試料2〜6は、コンデンサ電
極を形成するための導体ペーストに本発明が要件とする
球状Ag粉とフレーク状Ag粉との両方を用いたもので
あるが、試料1および8のように球状Ag粉のみを、ま
た試料7のようにフレーク状Ag粉のみを用いたものに
比べ、誘電率εが高いことが分かる、特に球状Ag粉と
フレーク状Ag粉との混合比率を20:80〜80:2
0の範囲内とした試料3〜5では誘電率が5000以上
に向上し、良好な誘電特性を示している。
Samples 2 to 6 in Table 2 above are those in which both the spherical Ag powder and the flaky Ag powder required by the present invention are used in the conductor paste for forming the capacitor electrode. It is found that the dielectric constant ε is higher than that of the spherical Ag powders 1 and 8 only, and the flaky Ag powders only like the sample 7, in particular the spherical Ag powders and the flaky Ag powders. Mixing ratio 20: 80-80: 2
In Samples 3 to 5 in which the range is 0, the dielectric constant is improved to 5000 or more, and good dielectric properties are exhibited.

【0031】[0031]

【発明の効果】以上のように本発明によるコンデンサ内
蔵ガラスセラミック基板は、コンデンサの電極を形成す
るための導体ペーストに、球状Ag粉とフレーク状Ag
粉とを含有させたことによって、焼結時にガラスセラミ
ックの絶縁体材料成分、特に酸化硼素やシリカなどのガ
ラス成分の誘電体層中への拡散を抑制することができ、
誘電率が高くかつ誘電損失の低いコンデンサにすること
ができる。また前記従来のようにバリア層を印刷等で形
成する場合に比べ、その印刷等の工程が少なくなるため
手間の削減やコストの低下が図れ、なおかつ誘電特性の
よい高品質のセラミック基板を提供することができるも
のである。
As described above, in the glass ceramic substrate with a built-in capacitor according to the present invention, the spherical Ag powder and the flake-shaped Ag powder are added to the conductor paste for forming the electrodes of the capacitor.
By including the powder, it is possible to suppress the diffusion of the insulating material component of the glass ceramic during sintering, particularly glass components such as boron oxide and silica into the dielectric layer,
A capacitor having a high dielectric constant and a low dielectric loss can be obtained. Further, as compared with the conventional case where the barrier layer is formed by printing or the like, the number of steps such as printing is reduced, so that labor and cost can be reduced, and a high-quality ceramic substrate having good dielectric characteristics is provided. Is something that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるコンデンサ内蔵ガラスセラミック
基板の構成例を示す断面図。
FIG. 1 is a cross-sectional view showing a configuration example of a glass ceramic substrate with a built-in capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁層 2 コンデンサ 21 コンデンサ用電極 22 誘電体層 3 ビア導体 1 Insulating Layer 2 Capacitor 21 Capacitor Electrode 22 Dielectric Layer 3 Via Conductor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラスセラミック絶縁層、コンデンサ用
電極、その他の回路用配線等を同時焼成して得るコンデ
ンサ内蔵ガラスセラミック基板において、上記コンデン
サ用電極は、球状Ag粉とフレーク状Ag粉とを含有す
る導体ペーストを焼成して形成されていることを特徴と
するコンデンサ内蔵ガラスセラミック基板。
1. A glass ceramic substrate with a built-in capacitor obtained by simultaneously firing a glass ceramic insulating layer, a capacitor electrode, and other circuit wiring, wherein the capacitor electrode contains spherical Ag powder and flake Ag powder. A glass-ceramic substrate with a built-in capacitor, which is formed by firing a conductive paste.
【請求項2】 前記の球状Ag粉とフレーク状Ag粉と
の配合比率を、20:80〜80:20の範囲内とした
請求項1記載のコンデンサ内蔵ガラスセラミック基板。
2. The glass ceramic substrate with a built-in capacitor according to claim 1, wherein the compounding ratio of the spherical Ag powder and the flake Ag powder is within the range of 20:80 to 80:20.
JP07267649A 1995-09-21 1995-09-21 Glass ceramic substrate with built-in capacitor Expired - Fee Related JP3127797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07267649A JP3127797B2 (en) 1995-09-21 1995-09-21 Glass ceramic substrate with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07267649A JP3127797B2 (en) 1995-09-21 1995-09-21 Glass ceramic substrate with built-in capacitor

Publications (2)

Publication Number Publication Date
JPH0992977A true JPH0992977A (en) 1997-04-04
JP3127797B2 JP3127797B2 (en) 2001-01-29

Family

ID=17447620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07267649A Expired - Fee Related JP3127797B2 (en) 1995-09-21 1995-09-21 Glass ceramic substrate with built-in capacitor

Country Status (1)

Country Link
JP (1) JP3127797B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609009B1 (en) 1999-04-26 2003-08-19 Matsushita Electric Industrial Co., Ltd. Electronic component and radio terminal using the same
KR100790695B1 (en) * 2006-05-19 2008-01-02 삼성전기주식회사 Method of manufacturing the ceramics board for electronic element package
KR100790694B1 (en) * 2006-06-30 2008-01-02 삼성전기주식회사 Method of manufacturing a ltcc board with embedded capacitors
KR100811138B1 (en) * 2001-11-13 2008-03-07 오리온피디피주식회사 method of manufacturing a multilayer circuit board using low temperature cofired ceramic on metal, and a multilayer circuit board manufactured thereby
US7417196B2 (en) 2004-09-13 2008-08-26 Murata Manufacturing Co., Ltd. Multilayer board with built-in chip-type electronic component and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225838A (en) * 1992-08-26 1994-08-16 Hotsuto & Kuule Kk Heat preserving chamber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609009B1 (en) 1999-04-26 2003-08-19 Matsushita Electric Industrial Co., Ltd. Electronic component and radio terminal using the same
KR100811138B1 (en) * 2001-11-13 2008-03-07 오리온피디피주식회사 method of manufacturing a multilayer circuit board using low temperature cofired ceramic on metal, and a multilayer circuit board manufactured thereby
US7417196B2 (en) 2004-09-13 2008-08-26 Murata Manufacturing Co., Ltd. Multilayer board with built-in chip-type electronic component and manufacturing method thereof
KR100790695B1 (en) * 2006-05-19 2008-01-02 삼성전기주식회사 Method of manufacturing the ceramics board for electronic element package
KR100790694B1 (en) * 2006-06-30 2008-01-02 삼성전기주식회사 Method of manufacturing a ltcc board with embedded capacitors

Also Published As

Publication number Publication date
JP3127797B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
US20060162844A1 (en) Multi-component LTCC substrate with a core of high dielectric constant ceramic material and processes for the development thereof
JPH07211132A (en) Conductive paste, and manufacture of laminated ceramic capacitor using same
CA2345764C (en) Capacitance-coupled high dielectric constant embedded capacitors
KR101086804B1 (en) Low-temperature fired ceramic circuit board
JP2001220224A (en) Dielectric ceramic and laminated ceramic electric part
US20060163768A1 (en) Multi-component LTCC substrate with a core of high dielectric constant ceramic material and processes for the development thereof
JP2004186339A (en) Conductive paste for internal electrode of multilayer electronic component and multilayer electronic component using the same
JPH0992978A (en) Glass ceramic board with built-in capacitor
JP3127797B2 (en) Glass ceramic substrate with built-in capacitor
JP4385726B2 (en) Conductive paste and method for producing multilayer ceramic capacitor using the same
JPH11273987A (en) Vehicle for paste for internal electrode of laminated ceramic capacitor and paste using the vehicle
JPH03108203A (en) Conductive paste and wiring board
JPH0721832A (en) Conductive paste and manufacture of multilayer ceramic electronic parts using the paste
JPH1092226A (en) Conductive composition
JP2001243837A (en) Dielectric paste and method of manufacturing ceramic circuit board by using it
JP3231892B2 (en) Method for manufacturing multilayer substrate
JP2860734B2 (en) Multilayer ceramic component, method for manufacturing the same, and internal conductor paste
JPH0878267A (en) Inner electrode paste and multilayer ceramic capacitor employing it
JP4018898B2 (en) Multilayer ceramic electronic components
JPS6229843B2 (en)
JP4817855B2 (en) Capacitor built-in wiring board and manufacturing method thereof
JP3817758B2 (en) Glass ceramic multilayer substrate
JP3330817B2 (en) Multilayer ceramic parts
JP2000058375A (en) Laminated ceramic electronic component and manufacture thereof
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001010

LAPS Cancellation because of no payment of annual fees