JPH0992907A - Magnetoresistance effect device - Google Patents

Magnetoresistance effect device

Info

Publication number
JPH0992907A
JPH0992907A JP7269129A JP26912995A JPH0992907A JP H0992907 A JPH0992907 A JP H0992907A JP 7269129 A JP7269129 A JP 7269129A JP 26912995 A JP26912995 A JP 26912995A JP H0992907 A JPH0992907 A JP H0992907A
Authority
JP
Japan
Prior art keywords
ferromagnetic layer
layer
magnetization
magnetic field
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7269129A
Other languages
Japanese (ja)
Other versions
JP2746226B2 (en
Inventor
Akihiro Suzuki
哲広 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7269129A priority Critical patent/JP2746226B2/en
Publication of JPH0992907A publication Critical patent/JPH0992907A/en
Application granted granted Critical
Publication of JP2746226B2 publication Critical patent/JP2746226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a linear response and prevent production of Barkhausen noise, by inclining the magnetization of a second ferromagnetic layer at a specific angle to the direction of an applied magnetic field, and inclining the magnetization of a first ferromagnetic layer at a specific angle to the second ferromagnetic layer. SOLUTION: An MR element consists of a first ferromagnetic layer 1, a conducting intermediate layer 2, a second ferromagnetic layer 3 and an antiferromagnetic layer 4. The second ferromagnetic layer 3 is fixed at an angle of 45 deg. to the direction of an applied magnetic field by exchange-coupling with the antiferromagnetic layer 4. The magnetization of the first ferromagnetic layer 1 is inclined at an angle of 135 deg. to the direction of the applied magnetic field, and at angle of 90 deg. to the magnetization direction, by the static magnetic field 3 from the second ferromagnetic layer 3 and a current magnetic field. Hence the direction of the static magnetic field applied to the first ferromagnetic layer 1 from the second ferromagnetic layer 3 is made opposite to the direction of the current magnetic field applied to the layer 1, and both of the magnetic fields can be mutually canceled with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気ヘッド、磁気セ
ンサ等に用いられる磁気抵抗効果素子(以下、MR素子
と称する)に関し、特にスピンバルブ効果(以下、SV
効果と称する)を利用したMR素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element (hereinafter referred to as an MR element) used in a magnetic head, a magnetic sensor, etc., and particularly to a spin valve effect (hereinafter referred to as SV).
(Referred to as an effect).

【0002】[0002]

【従来の技術】磁気抵抗効果を用いたMR素子は、高い
磁界応答感度を有しているため、磁気ヘッド、磁気セン
サ等において盛んに利用されている。従来のMR素子に
おいては、磁気抵抗効果材料として異方性磁気抵抗(以
下、AMRと称する)効果をもつ磁性膜が用いられてい
た。このAMR型のMR素子において、電気抵抗は磁気
抵抗効果材料に供給する電流と磁気抵抗効果材料の磁化
のなす角度の余弦の二乗に比例している。したがって、
線形応答を得るために、印加磁界がゼロのときに電流と
磁化のなす角度を45度に設定するバイアス手段が必要
であった。このバイアス手段としては、磁気抵抗効果材
料に隣接して軟磁性材料を設け、その軟磁性材料との静
磁結合による方法、導電性の材料を設け、そこに分流す
る電流による磁界を用いる方法、これらの方法を組み合
わせた方法が知られている。
2. Description of the Related Art MR elements using the magnetoresistive effect have high magnetic field response sensitivity and are therefore widely used in magnetic heads, magnetic sensors and the like. In a conventional MR element, a magnetic film having an anisotropic magnetoresistive (hereinafter referred to as AMR) effect is used as a magnetoresistive effect material. In this AMR type MR element, the electric resistance is proportional to the square of the cosine of the angle formed by the current supplied to the magnetoresistive material and the magnetization of the magnetoresistive material. Therefore,
In order to obtain a linear response, a bias means was required to set the angle formed by the current and the magnetization to 45 degrees when the applied magnetic field was zero. As the bias means, a soft magnetic material is provided adjacent to the magnetoresistive effect material, a method by magnetostatic coupling with the soft magnetic material, a conductive material is provided, and a magnetic field by a shunt current is used. A method that combines these methods is known.

【0003】最近、さらに高い磁気抵抗効果をもつ材料
として、SV効果材料が用いられいてる。このSV効果
では、強磁性の2層間の電気抵抗が2層の磁化方向間の
角度の余弦として電流方向とは無関係に変化する。例え
ば、図4は特開平4−358310号公報に記載された
MR素子であり、第1の強磁性層21、中間層22、第
2の強磁性層23、反強磁性層24で構成される。そし
て、印加磁界が0のとき、固定された第2の強磁性層2
3の磁化が図示実線矢印のように印加磁界と平行に向い
ており、第1の強磁性層21の磁化は第2の強磁性層2
3の磁化及び印加磁界と図示実線矢印のように直交して
いる。そして、印加された磁界に対して第1の強磁性層
21の磁化は同図の破線矢印のように変化される。
Recently, an SV effect material has been used as a material having a higher magnetoresistive effect. In the SV effect, the electric resistance between the two ferromagnetic layers changes as the cosine of the angle between the magnetization directions of the two layers, regardless of the current direction. For example, FIG. 4 shows an MR element disclosed in Japanese Patent Laid-Open No. 4-358310, which is composed of a first ferromagnetic layer 21, an intermediate layer 22, a second ferromagnetic layer 23, and an antiferromagnetic layer 24. . When the applied magnetic field is 0, the fixed second ferromagnetic layer 2
3, the magnetization of the first ferromagnetic layer 21 is parallel to the applied magnetic field as shown by the solid arrow, and the magnetization of the first ferromagnetic layer 21 is the second ferromagnetic layer 2.
It is orthogonal to the magnetization and the applied magnetic field of No. 3 as shown by the solid line arrow. Then, the magnetization of the first ferromagnetic layer 21 is changed with respect to the applied magnetic field as shown by the broken line arrow in FIG.

【0004】[0004]

【発明が解決しようとする課題】このMR素子におい
て、第1の強磁性層21には、第2の強磁性層23との
静磁結合による磁界、層間の交換結合による磁界、及び
電流磁界がかかっている。したがって、図4のように、
第1の強磁性層21の磁化を第2の強磁性層23と垂直
に保つためには、これらの磁界をうまくバランスさせる
必要がある。この方法として、前記公報においては静磁
結合と層間の交換結合を打ち消す方法、電流の大きさと
方向を適切に選択する方法が開示されている。
In this MR element, the first ferromagnetic layer 21 has a magnetic field due to magnetostatic coupling with the second ferromagnetic layer 23, a magnetic field due to exchange coupling between layers, and a current magnetic field. It depends. Therefore, as shown in FIG.
In order to keep the magnetization of the first ferromagnetic layer 21 perpendicular to that of the second ferromagnetic layer 23, these magnetic fields must be well balanced. As this method, the above publication discloses a method of canceling magnetostatic coupling and exchange coupling between layers, and a method of appropriately selecting the magnitude and direction of the current.

【0005】しかし、それぞれの磁界は高さ方向の分布
が本質的に異なっているため、完全に相殺させることは
困難であった。例えば、静磁結合による静磁界と電流磁
界を相殺させる場合についてみる。図3(a)は第1の
強磁性層における静磁結合による静磁界と電流磁界、及
び磁化の高さ方向の分布を示す図である。これから判る
ように、静磁結合による静磁界と電流磁界とは縦軸に同
じ方向を向けられた特性であるため、2つの磁界を均一
に相殺させることはできず、第1の強磁性層の磁化の高
さ成分は高さ方向の位置の両端部で0を横切ることにな
る。そのため、ここで磁壁が生じ、バルクハウゼンノイ
ズが発生するおそれがある。本発明の目的は、線形応答
を得ることが可能であるとともに、バルクハウゼンノイ
ズの発生を防止したMR素子を提供することにある。
However, it is difficult to completely cancel each magnetic field because the distributions in the height direction are essentially different. For example, let us consider the case of canceling the static magnetic field and the current magnetic field by the magnetostatic coupling. FIG. 3A is a diagram showing a static magnetic field and a current magnetic field due to magnetostatic coupling in the first ferromagnetic layer, and a distribution of magnetization in the height direction. As can be seen from this, the static magnetic field and the current magnetic field due to the magnetostatic coupling have the characteristics in which the same direction is oriented on the vertical axis, and therefore the two magnetic fields cannot be canceled uniformly, and the magnetic field of the first ferromagnetic layer cannot be canceled. The height component of magnetization crosses 0 at both ends of the position in the height direction. Therefore, a domain wall may be generated here, and Barkhausen noise may occur. An object of the present invention is to provide an MR element capable of obtaining a linear response and preventing Barkhausen noise from occurring.

【0006】[0006]

【課題を解決するための手段】本発明のMR素子は、第
1の強磁性層、導電性の中間層、第2の強磁性層、この
第2の強磁性層の磁化を固定する手段を備え、スピンバ
ルブ効果を用いたMR素子であって、第2の強磁性層の
磁化が印加磁界の方向と45度の角度をなし、第1の強
磁性層の磁化が第2の強磁性層の磁化と90度の角度を
なしていることを特徴とする。ここで、第2の強磁性層
の磁化を固定する手段は、第2の強磁性層に直接に接触
される反強磁性層、あるいは第2の強磁性層に直接に接
触される永久磁石層が用いられる。また、これら反強磁
性層や永久磁石に代えて、第2の強磁性層を第1の強磁
性層よりも飽和保磁力が高く設定するように構成しても
よい。
The MR element of the present invention comprises a first ferromagnetic layer, a conductive intermediate layer, a second ferromagnetic layer, and means for fixing the magnetization of the second ferromagnetic layer. An MR element using the spin valve effect, wherein the magnetization of the second ferromagnetic layer forms an angle of 45 degrees with the direction of the applied magnetic field, and the magnetization of the first ferromagnetic layer is the second ferromagnetic layer. It is characterized by making an angle of 90 degrees with the magnetization of. Here, the means for fixing the magnetization of the second ferromagnetic layer is an antiferromagnetic layer that is in direct contact with the second ferromagnetic layer, or a permanent magnet layer that is in direct contact with the second ferromagnetic layer. Is used. Further, instead of the antiferromagnetic layer or the permanent magnet, the second ferromagnetic layer may be set to have a higher coercive force than that of the first ferromagnetic layer.

【0007】また、本発明のMR素子においては、第1
の強磁性層を単一のドメイン状態に保つための縦方向の
バイアス磁界を生じさせる手段を備えており、この手段
としては、第1の強磁性層の縦方向の両側に配置される
永久磁石膜で構成することが可能である。
In the MR element of the present invention, the first
Means for generating a longitudinal bias magnetic field for keeping the ferromagnetic layer of the first ferromagnetic layer in a single domain state, and this means includes permanent magnets arranged on both sides of the first ferromagnetic layer in the longitudinal direction. It can be composed of a membrane.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1は本発明のMR素子の概念構成
を示す斜視図である。このMR素子は、第1の強磁性層
1、導電性の中間層2、第2の強磁性層3、反強磁性層
4から構成される。第2の強磁性層3は反強磁性層4と
の交換結合により印加磁界の方向と45度の角度に固定
される。一方、第1の強磁性層1の磁化は、第2の強磁
性層からの静磁界及び電流磁界により、印加磁界方向に
対して135度で、第2の強磁性層の磁化方向に対して
90度の方向に向く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the conceptual configuration of the MR element of the present invention. This MR element is composed of a first ferromagnetic layer 1, a conductive intermediate layer 2, a second ferromagnetic layer 3 and an antiferromagnetic layer 4. The second ferromagnetic layer 3 is fixed to the direction of the applied magnetic field at an angle of 45 degrees by exchange coupling with the antiferromagnetic layer 4. On the other hand, the magnetization of the first ferromagnetic layer 1 is 135 degrees with respect to the applied magnetic field direction due to the static magnetic field and the current magnetic field from the second ferromagnetic layer, and with respect to the magnetization direction of the second ferromagnetic layer. The direction of 90 degrees.

【0009】このMR素子における、第1の強磁性層1
における静磁結合による静磁界と電流磁界、及び磁化の
高さ方向の分布を図3(b)に示す。この分布では、静
磁結合による静磁界と電流磁界とは縦軸に対して互いに
逆方向に向けられた特性となる。そして、この構成で
は、第1の強磁性層1の磁化を印加磁界の方向に対して
45度に向けるため、これら1つの磁界を加算すること
になり、その結果第1の強磁性層1の磁化の高さ成分は
高さ方向にほぼ均一となり、2つの磁界の高さ方向の分
布の違いによる磁壁が生じることはなく、バルクハウゼ
ンノイズの発生が防止される。
The first ferromagnetic layer 1 in this MR element
3B shows the distribution of the static magnetic field, the current magnetic field, and the magnetization in the height direction by the magnetostatic coupling in FIG. In this distribution, the static magnetic field due to the magnetostatic coupling and the current magnetic field have characteristics in which they are oriented in mutually opposite directions with respect to the vertical axis. In this configuration, since the magnetization of the first ferromagnetic layer 1 is directed at 45 degrees with respect to the direction of the applied magnetic field, these one magnetic fields are added, and as a result, the first ferromagnetic layer 1 The height component of the magnetization is substantially uniform in the height direction, so that the domain wall does not occur due to the difference in the distribution of the two magnetic fields in the height direction, and Barkhausen noise is prevented from occurring.

【0010】図2は本発明のMR素子を磁気ヘッドに適
用した実施形態を示し、ディスク対向面から見た断面図
である。セラミック等の非磁性基板10上に、厚さ2μ
mのNiFeを用いた下シールド11がメッキ法により
成膜され、イオンミリングにより幅60μmにパターン
形成される。その上に、厚さ0.2μmのAl2 3
用いた下シールド間ギャップ12がスパッタリング法に
より成膜される。次に、第1の強磁性層1として、厚さ
10nmのNiFe、中間層2としての厚さ5nmのC
u層、第2の強磁性層3としての厚さ10nmのNiF
eがスパッタリング法により成膜される。さらに、反強
磁性層4として、厚さ50nmのNiMn膜がスパッタ
リング法により成膜される。
FIG. 2 shows an embodiment in which the MR element of the present invention is applied to a magnetic head, and is a cross-sectional view seen from the disk facing surface. 2μ thickness on non-magnetic substrate 10 such as ceramics
The lower shield 11 using NiFe of m is formed by a plating method, and patterned by ion milling to have a width of 60 μm. A lower shield gap 12 using Al 2 O 3 having a thickness of 0.2 μm is formed thereon by a sputtering method. Next, NiFe having a thickness of 10 nm is used as the first ferromagnetic layer 1, and C having a thickness of 5 nm is used as the intermediate layer 2.
NiF of 10 nm thickness as u layer and second ferromagnetic layer 3
e is deposited by a sputtering method. Further, as the antiferromagnetic layer 4, a NiMn film having a thickness of 50 nm is formed by the sputtering method.

【0011】ここで、着磁プロセスにより、第2の強磁
性層3はNiMn層によりMR高さ方向と45度のなす
角度にピンニングされる。その後、ステンシル型のレジ
ストを付けた後、第1の強磁性層1、中間層2、第2の
強磁性層3、反強磁性層4はイオンミリングにより幅2
μmにパターン形成される。さらに、永久磁石の下地層
(図示せず)として厚さ10nmのCr膜と、第1の強
磁性層を単一のドメイン状態に保つために縦方向のバイ
アスを加えるための永久磁石層13として厚さ30nm
のCoCrPt膜と、MR素子に通電を行うためのAu
膜からなる厚さ0.2μmの電極層14がスパッタリン
グされ、その上で前記レジストが除去される。
Here, by the magnetization process, the second ferromagnetic layer 3 is pinned by the NiMn layer at an angle of 45 degrees with the MR height direction. Then, after applying a stencil type resist, the first ferromagnetic layer 1, the intermediate layer 2, the second ferromagnetic layer 3 and the antiferromagnetic layer 4 are formed into a width 2 by ion milling.
patterned to μm. Further, as a base layer (not shown) of the permanent magnet, a Cr film having a thickness of 10 nm, and a permanent magnet layer 13 for applying a longitudinal bias to keep the first ferromagnetic layer in a single domain state Thickness 30nm
CoCrPt film and Au for energizing the MR element
A 0.2 μm thick electrode layer 14 made of a film is sputtered, and the resist is removed thereon.

【0012】次に、この上に厚さ0.24μmのAl2
3 を用いた上シールド間ギャップ15がスパッタリン
グ法により成膜される。そして、その上に厚さ2μmの
NiFeを用いた上シールド16がメッキ法により成膜
され、イオンミリングにより幅60μmにパターン形成
される。これにより、図2の磁気ヘッドが構成される。
Next, a 0.24 μm thick Al 2 film
The upper shield gap 15 using O 3 is formed by the sputtering method. Then, an upper shield 16 made of NiFe having a thickness of 2 μm is formed thereon by a plating method, and a pattern having a width of 60 μm is formed by ion milling. Thereby, the magnetic head of FIG. 2 is constructed.

【0013】この磁気ヘッドを磁気記録ディスク等の磁
気記録媒体に対して記録再生実験を行ったところ、線形
応答性に優れ、高出力で対極性のよい再生波形が得られ
た。
When this magnetic head was subjected to a recording / reproducing experiment on a magnetic recording medium such as a magnetic recording disk, a reproducing waveform having excellent linear response, high output and good anti-polarity was obtained.

【0014】ここで、本発明においては、第2の強磁性
層3における磁化を固定するための前記反強磁性層4に
代えて、これを永久磁石層で構成することも可能であ
る。また、反強磁性層や永久磁石層を用いることなく、
第2の強磁性層3の飽和保磁力を第1の強磁性層1より
も高く設定することで、第2の強磁性層3における磁化
を固定することも可能である。
Here, in the present invention, instead of the antiferromagnetic layer 4 for fixing the magnetization in the second ferromagnetic layer 3, it may be constituted by a permanent magnet layer. Also, without using an antiferromagnetic layer or a permanent magnet layer,
It is also possible to fix the magnetization in the second ferromagnetic layer 3 by setting the coercive force of the second ferromagnetic layer 3 higher than that of the first ferromagnetic layer 1.

【0015】[0015]

【発明の効果】以上説明したように本発明は、スピンバ
ルブ効果を用いたMR素子における第2の強磁性層の磁
化が印加磁界の方向と45度の角度をなし、第1の強磁
性層の磁化が第2の強磁性層の磁化と90度の角度をな
している構成とすることにより、第1の強磁性層にかか
る第2の強磁性層からの静磁界及び電流磁界を逆方向に
して互いに相殺させることができ、線形応答を得るとと
もに、バルクハウゼンノイズの発生を防止したMR素子
を得ることができる。
As described above, according to the present invention, the magnetization of the second ferromagnetic layer in the MR element using the spin valve effect forms an angle of 45 degrees with the direction of the applied magnetic field, and the first ferromagnetic layer is formed. Of the second ferromagnetic layer forms an angle of 90 degrees with the magnetization of the second ferromagnetic layer, so that the static magnetic field and the current magnetic field applied to the first ferromagnetic layer from the second ferromagnetic layer are reversed. Thus, it is possible to cancel each other, obtain a linear response, and obtain an MR element in which Barkhausen noise is prevented from occurring.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示す実施形態の斜視図であ
る。
FIG. 1 is a perspective view of an embodiment showing a basic configuration of the present invention.

【図2】本発明を磁気ヘッドに適用した実施形態の断面
図である。
FIG. 2 is a sectional view of an embodiment in which the present invention is applied to a magnetic head.

【図3】従来及び本発明のそれぞれのにおけるMR素子
の動作原理を説明するための図である。
FIG. 3 is a diagram for explaining the operation principle of the MR element in each of the related art and the present invention.

【図4】従来提案されているMR素子の概念構成を示す
斜視図である。
FIG. 4 is a perspective view showing a conceptual configuration of a conventionally proposed MR element.

【符号の説明】[Explanation of symbols]

1 第1の強磁性層 2 中間層 3 第2の強磁性層 4 反強磁性層 10 非磁性基板 11 下シールド 12 下ギャップ 13 永久磁石層 14 電極層 15 上ギャップ 16 上シールド 1 First Ferromagnetic Layer 2 Intermediate Layer 3 Second Ferromagnetic Layer 4 Antiferromagnetic Layer 10 Nonmagnetic Substrate 11 Lower Shield 12 Lower Gap 13 Permanent Magnet Layer 14 Electrode Layer 15 Upper Gap 16 Upper Shield

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1の強磁性層、導電性の中間層、第2
の強磁性層、この第2の強磁性層の磁化を固定する手段
を備え、スピンバルブ効果を用いた磁気抵抗効果素子で
あって、前記第2の強磁性層の磁化が印加磁界の方向と
45度の角度をなし、前記第1の強磁性層の磁化が前記
第2の強磁性層の磁化と90度の角度をなしていること
を特徴とする磁気抵抗効果素子。
1. A first ferromagnetic layer, a conductive intermediate layer, a second
And a means for fixing the magnetization of the second ferromagnetic layer, the magnetoresistive element using the spin valve effect, wherein the magnetization of the second ferromagnetic layer is the direction of the applied magnetic field. A magnetoresistive element having an angle of 45 degrees, wherein the magnetization of the first ferromagnetic layer forms an angle of 90 degrees with the magnetization of the second ferromagnetic layer.
【請求項2】 第2の強磁性層の磁化を固定する手段
は、第2の強磁性層に直接に接触される反強磁性層であ
る請求項1の磁気抵抗効果素子。
2. The magnetoresistive effect element according to claim 1, wherein the means for fixing the magnetization of the second ferromagnetic layer is an antiferromagnetic layer which is in direct contact with the second ferromagnetic layer.
【請求項3】 第2の強磁性層の磁化を固定する手段
は、第2の強磁性層に直接に接触される永久磁石層であ
る請求項1の磁気抵抗効果素子。
3. The magnetoresistive element according to claim 1, wherein the means for fixing the magnetization of the second ferromagnetic layer is a permanent magnet layer that is in direct contact with the second ferromagnetic layer.
【請求項4】 第1の強磁性層、導電性の中間層、第2
の強磁性層を備え、スピンバルブ効果を用いた磁気抵抗
効果素子であって、前記第2の強磁性層は第1の強磁性
層よりも飽和保磁力が高く設定され、かつその磁化が印
加磁界の方向と45度の角度をなし、前記第1の強磁性
層の磁化が前記第2の強磁性層の磁化と90度の角度を
なしていることを特徴とする磁気抵抗効果素子。
4. A first ferromagnetic layer, a conductive intermediate layer, a second
Is a magnetoresistive element using the spin valve effect, wherein the second ferromagnetic layer is set to have a higher coercive force than the first ferromagnetic layer and its magnetization is applied. A magnetoresistive effect element, characterized in that it forms an angle of 45 degrees with the direction of the magnetic field, and the magnetization of the first ferromagnetic layer forms an angle of 90 degrees with the magnetization of the second ferromagnetic layer.
【請求項5】 第1の強磁性層を単一のドメイン状態に
保つための縦方向のバイアス磁界を生じさせる手段を備
える請求項1ないし4のいずれかの磁気抵抗効果素子。
5. The magnetoresistive effect element according to claim 1, further comprising means for generating a longitudinal bias magnetic field for keeping the first ferromagnetic layer in a single domain state.
【請求項6】 縦方向のバイアス磁界を生じさせる手段
は、第1の強磁性層の縦方向の両側に配置される永久磁
石層である請求項5の磁気抵抗効果素子。
6. The magnetoresistive effect element according to claim 5, wherein the means for generating the longitudinal bias magnetic field is a permanent magnet layer disposed on both sides of the first ferromagnetic layer in the longitudinal direction.
JP7269129A 1995-09-23 1995-09-23 Magnetic field detection method using magnetoresistive element Expired - Lifetime JP2746226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7269129A JP2746226B2 (en) 1995-09-23 1995-09-23 Magnetic field detection method using magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7269129A JP2746226B2 (en) 1995-09-23 1995-09-23 Magnetic field detection method using magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH0992907A true JPH0992907A (en) 1997-04-04
JP2746226B2 JP2746226B2 (en) 1998-05-06

Family

ID=17468100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7269129A Expired - Lifetime JP2746226B2 (en) 1995-09-23 1995-09-23 Magnetic field detection method using magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2746226B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347022B1 (en) 1998-07-24 2002-02-12 Alps Electric Co., Ltd. Spin-valve type magnetoresistive thin film element and spin-valve type magnetoresistive thin film head using the same
US6350487B1 (en) 1997-09-24 2002-02-26 Alps Electric Co., Ltd. Spin-valve type thin film element and its manufacturing method
WO2015182645A1 (en) * 2014-05-30 2015-12-03 株式会社村田製作所 Magnetoresistive element, magnetic sensor and current sensor
WO2015182644A1 (en) * 2014-05-30 2015-12-03 株式会社村田製作所 Magnetoresistive element, magnetic sensor and current sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358310A (en) * 1990-12-11 1992-12-11 Internatl Business Mach Corp <Ibm> Magnetic reluctance sensor utilizing spin valve effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358310A (en) * 1990-12-11 1992-12-11 Internatl Business Mach Corp <Ibm> Magnetic reluctance sensor utilizing spin valve effect

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350487B1 (en) 1997-09-24 2002-02-26 Alps Electric Co., Ltd. Spin-valve type thin film element and its manufacturing method
US6347022B1 (en) 1998-07-24 2002-02-12 Alps Electric Co., Ltd. Spin-valve type magnetoresistive thin film element and spin-valve type magnetoresistive thin film head using the same
WO2015182645A1 (en) * 2014-05-30 2015-12-03 株式会社村田製作所 Magnetoresistive element, magnetic sensor and current sensor
WO2015182644A1 (en) * 2014-05-30 2015-12-03 株式会社村田製作所 Magnetoresistive element, magnetic sensor and current sensor
CN106463612A (en) * 2014-05-30 2017-02-22 株式会社村田制作所 Magnetoresistive element, magnetic sensor and current sensor
JPWO2015182644A1 (en) * 2014-05-30 2017-04-20 株式会社村田製作所 Magnetoresistive element, magnetic sensor and current sensor
JPWO2015182645A1 (en) * 2014-05-30 2017-04-20 株式会社村田製作所 Magnetoresistive element, magnetic sensor and current sensor

Also Published As

Publication number Publication date
JP2746226B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
Tsang et al. Design, fabrication, and performance of spin-valve read heads for magnetic recording applications
US5708358A (en) Spin valve magnetoresistive transducers having permanent magnets
US5612098A (en) Method of forming a thin film magnetic structure having ferromagnetic and antiferromagnetic layers
US6621666B2 (en) Magnetoresistive-effect element having electrode layers oppositely disposed on main surfaces of a magnetoresistive-effect thin film having hard magnetic bias layers with a particular resistivity
EP1184845B1 (en) Magnetoresistive sensor, magnetoresistive head, and magnetic recording/reproducing apparatus
JP2002163809A (en) Method for manufacturing magneto-resistive element and magneto-resistive magnetic head
JPH10162320A (en) Magnetoresistance effect type head and its usage
US5852533A (en) Magnetoresistance effect transducer element with continuous central active area
US6270588B1 (en) Magnetoresistive effect sensor, thin-film magnetic head with the sensor and manufacturing method of the thin-film magnetic head
JPH1196519A (en) Spin valve type thin-film element and its production
JP2746226B2 (en) Magnetic field detection method using magnetoresistive element
JPH1091920A (en) Magneto-resistance effect type head
JP2937237B2 (en) Magnetoresistive head and its initialization method
KR100267411B1 (en) Magnetoresistive head
US6754051B2 (en) Spin valve transducer having partly patterned magnetoresistance element
JP2003077107A (en) Magneto-resistance effect type magnetic head
JP2000011331A (en) Magnetoresistive element and thin film magnetic head
JP2001202605A (en) Method for manufacturing magneto-resistive element
JP2985964B2 (en) Magnetoresistive head and its initialization method
JPH0916918A (en) Magneto-resistance effect head
JP2000076629A (en) Magnetoresistive effect type head, its manufacture and magnetic storage device
JP2002015407A (en) Thin film magnetic head and method of manufacture
US7116534B2 (en) Magnetoresistive head
JPH0877517A (en) Magneto-resistive head and its production
JP2701748B2 (en) Magnetoresistive element and bias applying method thereof