JPH0992283A - Carbon material for nonaqueous lithium secondary battery and its manufacture - Google Patents

Carbon material for nonaqueous lithium secondary battery and its manufacture

Info

Publication number
JPH0992283A
JPH0992283A JP7263710A JP26371095A JPH0992283A JP H0992283 A JPH0992283 A JP H0992283A JP 7263710 A JP7263710 A JP 7263710A JP 26371095 A JP26371095 A JP 26371095A JP H0992283 A JPH0992283 A JP H0992283A
Authority
JP
Japan
Prior art keywords
carbon material
carbon
negative electrode
fiber
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7263710A
Other languages
Japanese (ja)
Inventor
Kasuke Nishimura
嘉介 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOCA KK
Original Assignee
PETOCA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOCA KK filed Critical PETOCA KK
Priority to JP7263710A priority Critical patent/JPH0992283A/en
Publication of JPH0992283A publication Critical patent/JPH0992283A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a nonaqueous electrolyte lithium secondary battery with high charge/discharge capacity and high initial charge/ discharge efficiency by using short fibrous carbon fibers as a skeleton, and filling fiber gaps with a powdery carbon material such as milled carbon fibers to form a paper-like sheet. SOLUTION: A negative electrode is constituted with a carbon material A and a carbon material B. The carbon material A is made of short fibrous carbon fibers having a length of 1mm or more but 20mm or less. The ratio of the carbon material A based on the whole carbon material is 5wt.% or more but 30wt.% or less. The ratio of the carbon material B based on the whole carbon material is 70wt.% or more but 95wt.% or less from the ratio of the carbon material A. The carbon material B is at least one selected from finely milled carbon fibers, micro globular carbon material such as meso-carbon micro beads, crushed, purified natural graphite, and artificial graphite fine powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、短繊維状炭素繊維
(炭素材A)を骨格とし、その繊維間隙を炭素繊維ミル
ド等の微粒子状炭素材(炭素材B)で充填したペーパー
状の非水リチウム二次電池用負極材及びその製造方法に
関する。更に詳しくは、本発明によって得られた負極材
を用いたリチウム二次電池は、充放電容量が大きく、高
エネルギー密度を有し、且つ充放電サイクル特性に優れ
ている特徴を有する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paper-like non-woven fabric having a short fibrous carbon fiber (carbon material A) as a skeleton, and the interstices of the fibers are filled with a particulate carbon material (carbon material B) such as carbon fiber milled. TECHNICAL FIELD The present invention relates to a negative electrode material for a water lithium secondary battery and a method for producing the same. More specifically, the lithium secondary battery using the negative electrode material obtained by the present invention is characterized by a large charge / discharge capacity, a high energy density, and excellent charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】一般に、アルカリ金属、例えばリチウム
を負極活物質として用いた二次電池は、高エネルギー密
度及び高起電力である他、非水電解液を用いるために作
動温度範囲が広く、長期保存に優れ、さらに軽量小型で
ある等の多くの利点を有している。従って、このような
非水(電解液)リチウム二次電池は、携帯用電子機器電
源をはじめとして、電気自動車、電力貯蔵用などの高性
能電池としての実用化が期待されている。しかし、現状
の試作電池はリチウム二次電池に期待されている上記特
性を充分に実現しておらず、充放電容量、サイクル寿
命、エネルギー密度などにおいて不十分であった。
2. Description of the Related Art In general, a secondary battery using an alkali metal, for example, lithium as a negative electrode active material has a high energy density and a high electromotive force. It has many advantages such as excellent storage, light weight and small size. Therefore, such a non-aqueous (electrolyte) lithium secondary battery is expected to be put to practical use as a high-performance battery for power supplies for portable electronic devices, electric vehicles, and power storage. However, the current prototype battery does not sufficiently realize the above-mentioned characteristics expected of a lithium secondary battery, and is insufficient in charge / discharge capacity, cycle life, energy density and the like.

【0003】その理由の一つは、二次電池に用いられる
負極にあった。例えば、リチウム二次電池に金属リチウ
ムからなる負極を用いた場合では、充電時に負極表面に
析出するリチウムが針状のデンドライトを形成し、正・
負極間の短絡を起こし易くなるため、サイクル寿命が短
く、安全性が低かった。また、リチウムは反応性が非常
に高く、負極表面付近での電解液の分解反応を起こさせ
るため、この分解反応によって負極表面が変成されて反
復使用による電池容量の低下が発生する恐れがあった。
One of the reasons is the negative electrode used in secondary batteries. For example, when a negative electrode made of metallic lithium is used in a lithium secondary battery, lithium deposited on the negative electrode surface during charging forms a needle-shaped dendrite, and
Since the short circuit between the negative electrodes is likely to occur, the cycle life was short and the safety was low. In addition, since lithium has a very high reactivity and causes a decomposition reaction of the electrolytic solution near the surface of the negative electrode, the decomposition reaction may cause the surface of the negative electrode to be denatured, resulting in a decrease in battery capacity due to repeated use. .

【0004】従来より、このようなリチウム二次電池に
おける課題を解決するために、種々の負極材の検討がな
されている。例えば、リチウム二次電池の負極材とし
て、リチウムを含む合金、例えばリチウム−アルミニウ
ム、ウッド合金等を用いることが検討されている。しか
し、このようなリチウム合金製の負極では、作動温度及
び充放電条件の違いによって結晶構造が変化するなどの
課題があった。また、リチウム二次電池の負極材とし
て、炭素材或いは黒鉛材を利用することが検討されてい
る。例えば、充電時に生成するリチウムイオンを、炭素
材或いは黒鉛材の中の黒鉛層間に取り込み(インターカ
レーション)、いわゆる層間化合物を形成することによ
り、デンドライトの生成を阻止しようとする試みがなさ
れている。
Conventionally, various negative electrode materials have been studied in order to solve the problems in such a lithium secondary battery. For example, the use of an alloy containing lithium, such as lithium-aluminum or wood alloy, as a negative electrode material for a lithium secondary battery has been studied. However, such a lithium alloy negative electrode has a problem that the crystal structure changes depending on the difference in operating temperature and charge / discharge conditions. Further, utilization of a carbon material or a graphite material as a negative electrode material of a lithium secondary battery has been studied. For example, attempts have been made to prevent the generation of dendrites by taking in lithium ions generated during charging (intercalation) between graphite layers in a carbon material or graphite material to form a so-called intercalation compound. .

【0005】この場合、炭素材としては、石炭、コーク
ス、PAN系炭素繊維、等方性ピッチ系炭素繊維等が検
討されている。ところが、これら炭素材は黒鉛結晶子の
大きさが小さく結晶の配列も乱れているため、充放電容
量が不十分であり、充放電時の電流密度を高く設定する
と電解液の分解を生じ、サイクル寿命が低下するなど多
くの課題を有していた。また、現在、天然黒鉛、人造黒
鉛などの黒鉛材料がリチウムイオン二次電池負極材の炭
素材として最も注目され、検討されている。天然黒鉛に
あっては、黒鉛化度が高い場合に、単位重量あたりの充
放電可能容量は相当に大きいが、無理なく取出せる電流
密度が小さく、また高電流密度での充放電を行うと充放
電効率が低下するという課題があった。
In this case, as the carbon material, coal, coke, PAN-based carbon fiber, isotropic pitch-based carbon fiber and the like are being studied. However, since the size of graphite crystallites of these carbon materials is small and the arrangement of crystals is disordered, the charge / discharge capacity is insufficient, and when the current density during charge / discharge is set high, decomposition of the electrolytic solution occurs and the cycle There were many problems such as shortening the life. At present, graphite materials such as natural graphite and artificial graphite have been most noticed and studied as carbon materials for negative electrode materials of lithium ion secondary batteries. With natural graphite, when the degree of graphitization is high, the chargeable / dischargeable capacity per unit weight is considerably large, but the current density that can be taken out reasonably is small, and when charged / discharged at high current density, it is charged. There is a problem that the discharge efficiency is reduced.

【0006】このような材料は、大電流を取出す必要が
あり、且つ充電時間を短縮するために、高電流密度で充
電を行うことが望ましい高負荷電源、例えば駆動モータ
ー等を有する機器用電源の負極に用いるには不適であっ
た。また、従来の人造黒鉛を用いた負極では、黒鉛化度
が高ければ、全体としての黒鉛層間の容量が充分で、大
きな充放電容量を得られるものの、やはり高電流密度で
の充放電には適していなかった。
[0006] Such a material needs to draw a large current, and in order to shorten the charging time, it is desirable to charge the battery at a high current density. It was unsuitable for use as a negative electrode. Moreover, in the negative electrode using the conventional artificial graphite, if the degree of graphitization is high, the capacity between the graphite layers as a whole is sufficient and a large charge / discharge capacity can be obtained, but it is still suitable for charge / discharge at a high current density. Didn't.

【0007】なお、現在では黒鉛材を含む負極を用いた
リチウムイオン二次電池では、充電時の電流密度は20
〜35mA/gが一般的であり、充電容量から見て10
時間程度の充電時間を要する。ところが、高電流密度で
の充電が可能となれば、例えば100mA/gで3時間
程度、600mA/gで30分程度と充電時間の短縮が
可能となるはずである。また、これらの黒鉛系材料には
天然黒鉛、人造黒鉛等が含まれるが、なかでも、特開平
6−168725号公報に開示されているように、メソ
フェーズ系ピッチを出発原料とした短繊維状炭素繊維又
は球状炭素材の黒鉛化処理したものが、諸電池特性の測
定結果から優れることが指摘されている。
At present, in a lithium ion secondary battery using a negative electrode containing a graphite material, the current density during charging is 20.
~ 35mA / g is common, and 10 from the viewpoint of charging capacity.
It takes about time to charge. However, if charging at a high current density becomes possible, it should be possible to shorten the charging time to about 3 hours at 100 mA / g and about 30 minutes at 600 mA / g, for example. Further, these graphite-based materials include natural graphite, artificial graphite and the like. Among them, as disclosed in JP-A-6-168725, a short fibrous carbon starting from mesophase pitch is used. It has been pointed out that the graphitized fiber or spherical carbon material is superior from the measurement results of various battery characteristics.

【0008】負極の製造方法として一般的に行われてい
る方法としては、リチウムを吸蔵・放出可能な炭素質材
を負極活物質とし、これに特殊な結着剤を添加し、有機
溶媒あるいは水溶媒を用いスラリー状とし、厚さ10〜
50μmの銅、ニッケル等からなる金属箔上の片面また
は両面に塗布し、これを圧延、乾燥を行い、厚さ50〜
200μmのシート状物とする方法が広く用いられ、そ
の後、所定の幅・長さにスリットし、正極及びセパレー
ターと共に巻取って管に挿入する方法が一般的である。
しかし、この方法により負極を均一に製造するために
は、用いる負極原料炭素材並びにバインダーの粒度分布
を精度よくコントロールする必要があり、製造コストの
観点からも大量生産に向いた方法とは云い難い。
As a method generally used for manufacturing a negative electrode, a carbonaceous material capable of occluding and releasing lithium is used as a negative electrode active material, a special binder is added thereto, and an organic solvent or water is added. Slurry using solvent, thickness 10
It is applied on one or both sides of a metal foil made of copper, nickel or the like having a thickness of 50 μm, rolled and dried to a thickness of 50-
A method of forming a sheet-like material having a thickness of 200 μm is widely used, and then a method of slitting into a predetermined width and length, winding with a positive electrode and a separator and inserting into a tube is common.
However, in order to uniformly manufacture the negative electrode by this method, it is necessary to accurately control the particle size distribution of the negative electrode raw material carbon material and the binder used, and it is difficult to say that this method is suitable for mass production from the viewpoint of manufacturing cost. .

【0009】また、体積当りの容量を高めるために、す
なわち、負極シートの嵩密度を高くすることが肝要であ
るが、ある適当な範囲にコントロールする必要があり、
未だ十分な製造技術が確立されているとは云い難く、い
たずらに負極材の嵩密度を高くすると、炭素材が電解液
と十分に接触できないため一部の炭素材表面にデンドラ
イトが析出するといった課題が生じる。また、炭素材と
して黒鉛化されたメソカーボンマイクロビーズを用いた
場合には、充放電の繰返しによる炭素材の膨張・収縮の
繰返しが原因と考えられる導電性不良が発生し、長期間
の使用に耐え難いものである。
Further, in order to increase the capacity per volume, that is, it is important to increase the bulk density of the negative electrode sheet, but it is necessary to control it within a certain suitable range,
It is hard to say that sufficient manufacturing technology has been established yet, and if the bulk density of the negative electrode material is unnecessarily increased, the carbon material will not be able to contact the electrolytic solution sufficiently, and as a result, dendrites will precipitate on some carbon material surfaces. Occurs. In addition, when graphitized mesocarbon microbeads are used as the carbon material, poor conductivity occurs due to repeated expansion / contraction of the carbon material due to repeated charging / discharging, resulting in long-term use. It is unbearable.

【0010】一方、特開平7−65861号公報には、
集電体を用いない上記製造方法の改善策として、5mm
程度の短繊維状炭素繊維からなるフェルトまたはペーパ
ーを負極として用いる方法を開示している。しかし、こ
の方法の場合、負極シートの嵩密度が高くならないとい
う課題を有している。さらに、特開平5−283061
号公報には、ニードルコークス粉等の炭素粉80部に繊
維長0.15mmの光学的等方性炭素繊維ミルド20部
を混合した複合炭素材をディスク状に成形して負極とし
て用いることが開示されている。しかし、この場合、多
量の炭素粉と混合する炭素繊維ミルドは極めて短い繊維
長で粉末に近いので、ハンドリング性の良好なペーパー
の作製は困難な状況であり、また嵩密度の均一性に劣る
という課題が残っている。
On the other hand, Japanese Patent Laid-Open No. 7-65861 discloses that
As an improvement measure of the above manufacturing method without using a collector, 5 mm
Disclosed is a method of using as a negative electrode a felt or paper made of a short amount of short fibrous carbon fiber. However, this method has a problem that the bulk density of the negative electrode sheet does not increase. Furthermore, JP-A-5-283061
Japanese Unexamined Patent Publication (Kokai) Publication discloses that a composite carbon material obtained by mixing 80 parts of carbon powder such as needle coke powder with 20 parts of an optically isotropic carbon fiber mill having a fiber length of 0.15 mm is molded into a disk shape and used as a negative electrode. Has been done. However, in this case, since the carbon fiber milled mixed with a large amount of carbon powder has an extremely short fiber length and is close to a powder, it is difficult to produce paper with good handling properties, and the uniformity of bulk density is poor. Challenges remain.

【0011】[0011]

【発明が解決しようとする課題】上記のように、従来の
リチウム二次電池が未だ充放電容量が小さく、初期の充
放電効率が低く、充放電速度が遅く、さらにサイクル寿
命が短いという課題を解決する負極を提供すること及び
効率的な負極の製造方法を提供することを目的とする。
As described above, the conventional lithium secondary battery has a problem that the charge and discharge capacity is still small, the initial charge and discharge efficiency is low, the charge and discharge rate is slow, and the cycle life is short. It is an object of the present invention to provide a solving negative electrode and an efficient method for manufacturing a negative electrode.

【0012】[0012]

【課題を解決するための手段】本発明者は、短繊維状炭
素繊維を骨格とし、その繊維間隙を炭素繊維ミルド等の
粉末状炭素材で充填してペーパー状にすることにより、
適度な嵩密度の均一な負極材を製造することが可能とな
ることを見出し、本発明を完成するに至った。すなわ
ち、本発明は: 負極を構成する炭素材の5wt%以上30wt%以
下が繊維長1mm以上20mm以下の短繊維状炭素繊維
(炭素材A)で、残りの70wt%以上95wt%以下
が炭素繊維ミルド、メソカーボンマイクロビーズ、天然
黒鉛粉末及び人造黒鉛粉末のうちから選択される1種以
上の微粒子状炭素材(炭素材B)であり、且つ形状がペ
ーパー状であることを特徴とする非水リチウム二次電池
用負極材を提供する。また、
Means for Solving the Problems The present inventor uses a short fibrous carbon fiber as a skeleton and fills the interstices of the fiber with a powdery carbon material such as carbon fiber milled to form a paper.
The inventors have found that it is possible to manufacture a uniform negative electrode material having an appropriate bulk density, and have completed the present invention. That is, the present invention: 5 wt% to 30 wt% of the carbon material constituting the negative electrode is a short fibrous carbon fiber (carbon material A) having a fiber length of 1 mm to 20 mm, and the remaining 70 wt% to 95 wt% is carbon fiber. Non-aqueous, characterized in that it is at least one kind of fine particulate carbon material (carbon material B) selected from milled, mesocarbon microbeads, natural graphite powder and artificial graphite powder, and is paper-like in shape Provided is a negative electrode material for a lithium secondary battery. Also,

【0013】 炭素材A及び炭素材Bを構成する炭素
繊維ミルドがメソフェーズピッチを原料としたものであ
る点にも特徴を有する。また、 ペーパーが厚さ50μm以上200μm以下、目付け
50g/m2以上250g/m2以下、嵩密度1.0g/
cm3以上1.5g/cm3以下である点にも特徴を有す
る。また、 負極を構成するペーパー状炭素材が、炭素材Aと炭
素材Bとを原料とし、分散剤とバインダーを添加し抄紙
法により製造される非水リチウム二次電池用負極材の製
造方法を提供する。
Another feature is that the carbon fiber mills constituting the carbon materials A and B are made of mesophase pitch as a raw material. The paper has a thickness of 50 μm or more and 200 μm or less, a basis weight of 50 g / m 2 or more and 250 g / m 2 or less, and a bulk density of 1.0 g /
It is also characterized in that it is not less than cm 3 and not more than 1.5 g / cm 3 . Further, a method for producing a negative electrode material for a non-aqueous lithium secondary battery, in which the paper-like carbon material constituting the negative electrode is produced by a papermaking method by using carbon material A and carbon material B as raw materials, and adding a dispersant and a binder. provide.

【0014】以下、本発明を具体的に説明する。 (A)ペーパー状負極材について 以下、まず、本発明の負極用炭素材を構成する炭素材
A、炭素材Bについて詳細に説明する。 (a)炭素材A 本発明で云う炭素材Aとは、炭素材のみならず黒鉛材も
含み、負極を構成するいわば骨格となるものであり、 ・電解液の浸透流路を確保する。 ・炭素材Bと接触し、炭素材B同士の導電性の橋渡しを
行う。 ・炭素材A同士が均一に交差、接触することにより負極
全体の導電性を高める。 ・炭素材A及び炭素材Bの膨張、収縮の際のクッション
的な役目を担い、充放電の繰返しによる劣化を抑える。 ことを可能とする。
Hereinafter, the present invention will be described specifically. (A) Paper-like Negative Electrode Material First, the carbon materials A and B constituting the negative electrode carbon material of the present invention will be described in detail. (A) Carbon material A The carbon material A as referred to in the present invention includes not only a carbon material but also a graphite material and serves as a so-called skeleton constituting the negative electrode, and secures an electrolyte permeation flow path. -Contact with the carbon material B to bridge the conductivity between the carbon materials B. The conductivity of the entire negative electrode is improved by the carbon materials A crossing and contacting each other uniformly. It plays a cushioning role when the carbon material A and the carbon material B expand and contract, and suppresses deterioration due to repeated charging and discharging. It is possible.

【0015】炭素材Aは、1mm以上20mm以下の長
さの短繊維状炭素繊維からなる。用いられる炭素繊維は
その出発原料が限定されるものではなく、石油ピッチ
系、石炭ピッチ系、合成ピッチ系、PAN系、レーヨン
系、フェノール系等いずれの炭素繊維も使用することが
できるが、リチウムイオンの受入れ性や導電性の観点か
らメソフェースピッチ系炭素繊維が好ましい。黒鉛化度
は、使用する目的により適宜選択できるが、導電性の観
点から少なくとも600℃以上、好ましくは700℃以
上の熱処理が必要である。また、炭素材Aの負極炭素材
全体に占める割合は、5wt%以上30wt%以下、好
ましくは10wt%以上25wt%以下である。5wt
%未満になると、ペーパーの強度が低く取り扱いが困難
になると共に、均一性も劣り嵩密度のコントロールが困
難となる。一方、30wt%を越えると、嵩密度が低下
し容積当りのエネルギー密度が低くなり好ましくない。
The carbon material A is made of short fibrous carbon fibers having a length of 1 mm or more and 20 mm or less. The starting material of the carbon fiber used is not limited, and any carbon fiber such as petroleum pitch-based, coal pitch-based, synthetic pitch-based, PAN-based, rayon-based, and phenol-based carbon fibers can be used. Mesophase pitch-based carbon fibers are preferable from the viewpoint of ion acceptability and conductivity. The degree of graphitization can be appropriately selected depending on the purpose of use, but from the viewpoint of conductivity, heat treatment of at least 600 ° C or higher, preferably 700 ° C or higher is required. The ratio of the carbon material A to the whole negative electrode carbon material is 5 wt% or more and 30 wt% or less, preferably 10 wt% or more and 25 wt% or less. 5wt
If it is less than 0.1%, the strength of the paper is low and it is difficult to handle, and the uniformity is poor and it is difficult to control the bulk density. On the other hand, if it exceeds 30 wt%, the bulk density is lowered and the energy density per volume is lowered, which is not preferable.

【0016】繊維長は1mm以上20mm以下、好まし
くは、2mm以上15mm以下である。繊維長が1mm
未満になると、嵩密度のコントロールが困難になると共
に、導電性が低下する。一方、いたずらに繊維長が長く
なると、例えば20mmを越えると負極の嵩密度が低く
なり好ましくない。従って、1mm以上20mm以下、
好ましくは2mm以上15mm以下にチョップ化した短
繊維状炭素繊維を用いることが望ましい。繊維長を測定
するには、負極材を空気存在下で400℃、3時間程度
加熱し、バインダーを除去した後、SEMあるいは光学
顕微鏡で観察することにより、測定することが可能であ
る。
The fiber length is 1 mm or more and 20 mm or less, preferably 2 mm or more and 15 mm or less. Fiber length is 1 mm
If it is less than the above range, it becomes difficult to control the bulk density and the conductivity decreases. On the other hand, if the fiber length is unnecessarily long, for example, if it exceeds 20 mm, the bulk density of the negative electrode becomes low, which is not preferable. Therefore, 1 mm or more and 20 mm or less,
It is desirable to use short fibrous carbon fibers chopped to preferably 2 mm or more and 15 mm or less. The fiber length can be measured by heating the negative electrode material in the presence of air at 400 ° C. for about 3 hours to remove the binder, and then observing with a SEM or an optical microscope.

【0017】(b)炭素材B 本発明で云う炭素材Bは、炭素材のみならず黒鉛材も含
み、炭素繊維ミルドのように微細にミルド化(粉砕)さ
れた炭素繊維、メソカーボンマイクロビーズのような微
小球状の炭素材、天然に産出された黒鉛すなわち天然黒
鉛を粉砕精製したもの、及び人工的に作られた電極材の
削りカス等の微粉状の人造黒鉛の1種又は2種以上の組
合せからなる。なかでも、本発明では、炭素繊維ミル
ド、特にメソフェーズピッチ系炭素繊維で黒鉛化処理し
たものが好ましく用いられる。
(B) Carbon Material B The carbon material B referred to in the present invention includes not only carbon material but also graphite material, and carbon fibers finely milled (crushed) like carbon fiber milled, mesocarbon microbeads. One or more kinds of fine spherical artificial graphite such as micro spherical carbon material, naturally produced graphite, that is, natural graphite crushed and refined, and artificially made shavings of electrode material It consists of a combination of. Among them, in the present invention, a carbon fiber milled product, particularly a product obtained by graphitizing with a mesophase pitch carbon fiber is preferably used.

【0018】また、炭素材Bの負極炭素材全体に占める
割合は、前記炭素材Aの割合から、70wt%以上95
wt%以下、好ましくは75wt%以上90wt%以下
である。なお、本発明の炭素繊維ミルドとは、炭素繊維
をミルド化(粉砕)し繊維長を1mm未満としたものを
指し、例えば炭素材Aにも相当する繊維長が20mm〜
1mmである炭素繊維チョップとは異なる。さらに、本
発明の炭素繊維ミルドは、後述のような理由から、平均
粒径を5μm以上100μm以下に調整されたものが望
ましい。
The ratio of the carbon material B to the entire negative electrode carbon material is 70 wt% or more and 95% or more based on the ratio of the carbon material A.
It is not more than wt%, preferably not less than 75 wt% and not more than 90 wt%. The carbon fiber milled of the present invention refers to a carbon fiber milled (crushed) to have a fiber length of less than 1 mm. For example, the carbon length corresponding to the carbon material A is 20 mm to
Unlike carbon fiber chops, which is 1 mm. Further, the carbon fiber mill of the present invention is preferably adjusted to have an average particle size of 5 μm or more and 100 μm or less for the reason described below.

【0019】(c)炭素材A、Bの純度;本発明の炭素
材A、Bは、高純度のものであることが充放電効率を高
くする上で望ましい。使用する炭素材は出発原料にもよ
るが、窒素、酸素、硫黄或いは種々の金属成分等の炭素
以外の元素を含む。二次電池において、リチウムは炭素
以外の元素、例えば、硫黄、窒素、ハロゲン等の元素と
反応してリチウム化合物を形成するため、この様な不純
物を多く含む炭素材を負極材に用いると、負極の充放電
効率、特に、初回の充放電効率が著しく低下する。これ
ら不純物の総量は1,000ppm以下、好ましくは3
00ppm以下、さらに好ましくは100ppm以下に
抑えることが肝要である。一般に、炭素材の純度はその
出発原料によるところが大きく、天然黒鉛よりも炭素繊
維等の人工的にコントロールされたものが好ましい。ま
た、不純物は、処理温度との相関が大きく、高温で処理
すればするほど純度が高くなり、炭素系よりも黒鉛系の
方が純度の観点からは優れる。
(C) Purity of carbon materials A and B: It is desirable that the carbon materials A and B of the present invention are of high purity in order to improve charge / discharge efficiency. The carbon material to be used contains elements other than carbon such as nitrogen, oxygen, sulfur or various metal components depending on the starting material. In a secondary battery, lithium reacts with an element other than carbon, for example, an element such as sulfur, nitrogen or halogen to form a lithium compound. Therefore, when a carbon material containing a large amount of such impurities is used as a negative electrode material, The charging / discharging efficiency of, particularly, the initial charging / discharging efficiency is significantly reduced. The total amount of these impurities is 1,000 ppm or less, preferably 3
It is important to suppress the concentration to 00 ppm or less, and more preferably 100 ppm or less. Generally, the purity of a carbon material depends largely on its starting material, and an artificially controlled carbon fiber or the like is preferable to natural graphite. Further, the impurities have a large correlation with the processing temperature, and the higher the temperature is, the higher the purity becomes. The graphite type is superior to the carbon type in terms of the purity.

【0020】(d)炭素繊維 <炭素繊維の原料>本発明に用いる炭素材A及び炭素材
Bを構成する炭素繊維ミルドは、出発原料が特に限定さ
れるものではない。例えばアクリル樹脂、フェノール樹
脂、ポリアミド樹脂等のポリマー物質や、ナフタレン、
フェナントレン等の縮合多環炭化水素化合物や石油、石
炭系ピッチ等を挙げることができる。特に、石油系ピッ
チ、石炭系ピッチの使用、好ましくは光学的異方性ピッ
チ、すなわちメソフェーズピッチを用いることが良い。
このメソフェースピッチとしてはメソフェーズ含有量1
00%のものが好ましいが、紡糸可能ならば特に限定さ
れるものでない。原料ピッチの軟化点は特に限定される
ものではないが、紡糸温度との関係から、軟化点が低く
また不融化反応速度の速いものが、トータル製造コスト
及び安定性の面で有利である。この観点から、原料ピッ
チの軟化点は230℃以上350℃以下、好ましくは2
50℃以上310℃以下である。
(D) Carbon Fiber <Raw Material of Carbon Fiber> The starting materials of the carbon fiber mills constituting the carbon materials A and B used in the present invention are not particularly limited. For example, polymer materials such as acrylic resin, phenol resin, polyamide resin, naphthalene,
Examples thereof include condensed polycyclic hydrocarbon compounds such as phenanthrene, petroleum, and coal-based pitch. In particular, it is preferable to use a petroleum pitch or a coal pitch, preferably an optically anisotropic pitch, that is, a mesophase pitch.
This mesophase pitch has a mesophase content of 1
The content is preferably 00%, but is not particularly limited as long as spinning is possible. The softening point of the raw material pitch is not particularly limited, but one having a low softening point and a high infusibilization reaction rate is advantageous in terms of total production cost and stability in view of the relationship with the spinning temperature. From this viewpoint, the softening point of the raw material pitch is 230 ° C. or higher and 350 ° C. or lower, preferably 2
The temperature is 50 ° C or higher and 310 ° C or lower.

【0021】<紡糸>原料ピッチを溶融紡糸する方法は
特に限定されるものではなく、メルトスピニング、メル
トブロー、遠心紡糸、渦流紡糸等種々の方法を使用する
ことが出来るが、紡糸時の生産性や得られる繊維の品質
の観点から、メルトブロー法が好ましい。この時の紡糸
孔の大きさは0.1mmφ以上0.5mmφ以下、好ま
しくは0.15mmφ以上0.3mmφ以下である。ま
た、紡糸速度は毎分500m以上、好ましくは毎分15
00m以上、さらに好ましくは毎分2000m以上であ
る。また、ノズル吐出後のピッチ繊維の冷却速度は1×
105℃/秒以上が好ましい。
<Spinning> The method of melt spinning the raw material pitch is not particularly limited, and various methods such as melt spinning, melt blowing, centrifugal spinning, and vortex spinning can be used. From the viewpoint of the quality of the obtained fiber, the melt blow method is preferable. At this time, the size of the spinning holes is 0.1 mmφ or more and 0.5 mmφ or less, preferably 0.15 mmφ or more and 0.3 mmφ or less. The spinning speed is 500 m / min or more, preferably 15 min / min.
00 m or more, more preferably 2000 m or more per minute. Moreover, the cooling rate of the pitch fiber after the nozzle discharge is 1 ×
It is preferably 10 5 ° C / sec or more.

【0022】紡糸温度は原料ピッチにより変化するが、
原料ピッチの軟化点以上でピッチが変質しない温度以下
であれば良く、通常300℃以上400℃以下(好まし
くは380℃以下)である。なかでも、本発明に用いる
炭素繊維としては、数十ポイズ以下という低粘度で紡糸
し、且つ、高速冷却することにより、黒鉛層面が繊維表
面に開口しつつも、黒鉛層面が繊維円周状に沿った疑似
オニオン層が繊維表層に形成されるように配列させたメ
ソフェーズ系炭素繊維が最も好ましい。このようにし
て、製造された炭素繊維は、600mA/g程度の高速
で充放電を行っても容量低下が少なく、さらに、充放電
を繰り返しても容量低下は殆どないという長所を示す。
さらに、この炭素繊維は、表面からのリチウムイオンの
出入が容易なため繊維長による充放電速度やサイクル特
性に及ぼす影響も少なく、ミルド形態のみならず比較的
繊維長の長い状態でも負極材として使用できる利点を有
する。
Although the spinning temperature changes depending on the raw material pitch,
It may be at a temperature not lower than the softening point of the raw material pitch and not deteriorating the pitch, and usually 300 ° C or higher and 400 ° C or lower (preferably 380 ° C or lower). Among them, the carbon fiber used in the present invention is spun at a low viscosity of several tens poise or less, and by high-speed cooling, while the graphite layer surface is open to the fiber surface, the graphite layer surface becomes a fiber circumferential shape. Most preferred is a mesophase-based carbon fiber arranged so that a pseudo onion layer is formed on the surface of the fiber. The carbon fiber produced in this manner has the advantage that the capacity does not decrease even when charging / discharging at a high speed of about 600 mA / g, and the capacity does not decrease even if charging / discharging is repeated.
In addition, this carbon fiber has little effect on the charge / discharge rate and cycle characteristics due to the fiber length because lithium ions can easily get in and out from the surface, and it can be used as a negative electrode material not only in a milled form but also in a relatively long fiber length state. It has the advantage that it can.

【0023】<不融化>不融化方法としては、二酸化窒
素や酸素等の酸化性ガス雰囲気中で加熱処理する方法
や、硝酸やクロム酸等の酸化性水溶液中で処理する方
法、さらには、光やγ線等による重合処理方法も可能で
ある。より簡便な不融化方法は、空気中で150℃から
300℃に加熱処理する方法であり、その時の平均昇温
速度は3℃/分以上、好ましくは5℃/分以上である。
<Insolubilization> Examples of the infusibilization method include heat treatment in an atmosphere of an oxidizing gas such as nitrogen dioxide or oxygen, a method of treating in an oxidizing aqueous solution of nitric acid, chromic acid, or the like. A polymerization treatment method using γ-rays or the like is also possible. A simpler infusibilizing method is a method of heat-treating in air from 150 ° C to 300 ° C, and the average heating rate at that time is 3 ° C / minute or more, preferably 5 ° C / minute or more.

【0024】<炭化あるいは黒鉛化>不融化処理を施し
た繊維は、不活性ガス中や或いは酸化性ガスの非存在下
で加熱処理することにより炭化繊維や黒鉛化繊維とする
ことができる。この時の昇温速度や保持時間は特に限定
されるものでない。また、黒鉛化度をより発達させるた
めには、ホウ素化合物を添加して焼成する方法が有効で
ある。ホウ素化合物の添加は、通常固形のホウ素化合物
を炭素材に直接添加する方法及びホウ素化合物を溶媒溶
液とし浸漬する方法等が取られる。ホウ素化合物の添加
量は、炭素材に対しホウ素として15重量%以下、好ま
しくは、1〜10重量%である。1重量%未満ではホウ
素添加の効果が薄く、15重量%を越えるとコストに対
しての効果が低下する。
<Carbonization or Graphitization> The infusibilized fiber can be heat-treated in an inert gas or in the absence of an oxidizing gas to be a carbonized fiber or a graphitized fiber. The heating rate and the holding time at this time are not particularly limited. Further, in order to further develop the degree of graphitization, a method of adding a boron compound and firing is effective. The boron compound is usually added by a method of directly adding a solid boron compound to the carbon material, a method of dipping the boron compound in a solvent solution, or the like. The boron compound is added in an amount of 15% by weight or less, preferably 1 to 10% by weight, based on the carbon material. If it is less than 1% by weight, the effect of adding boron is weak, and if it exceeds 15% by weight, the effect on cost is lowered.

【0025】処理としては、必要に応じてホウ素を添加
した後、2,200℃以上、好ましくは2,400℃以
上の温度での黒鉛化処理が好ましい。なお、この時使用
するホウ素は、炭素繊維に一部残留するが、1重量%程
度までは、負極材として悪影響を与えないので、前述の
不純物の総和の制限から除外することができる。
The treatment is preferably a graphitization treatment at a temperature of 2,200 ° C. or higher, preferably 2,400 ° C. or higher after adding boron as necessary. It should be noted that the boron used at this time remains partially in the carbon fibers, but does not adversely affect the negative electrode material up to about 1% by weight, so it can be excluded from the above-mentioned limitation of the total amount of impurities.

【0026】<短繊維状炭素繊維(炭素材A)>このよ
うにして得られた炭素繊維は、鋭利な刃物を用いた常法
によるカッティングで所定の長さにカットすることがで
きる。また、綿状のまま水の中に入れ、撹拌羽やポンプ
の回転羽を有効に利用することにより比較的簡単に裁断
することも可能である。
<Short Fibrous Carbon Fiber (Carbon Material A)> The carbon fiber thus obtained can be cut into a predetermined length by cutting by a conventional method using a sharp blade. It is also possible to relatively easily cut by putting the cotton-like shape in water and effectively using stirring blades and rotary blades of a pump.

【0027】<炭素材Bを構成する炭素繊維ミルド>本
発明による炭素材Bを構成する炭素繊維ミルドを製造す
る方法としては、前述の炭素材Aの製造と同様にメソフ
ェーズピッチを紡糸し不融化し、さらに所定の温度で熱
処理した後、ビクトリーミル、ジェットミル、クロスフ
ローミル等でミルド化し、さらに必要に応じ黒鉛化する
ことが有効である。ここに用いる炭素繊維ミルドは、繊
維間に充填し嵩密度の向上とともにリチウムイオンの受
容容量のアップをすることが目的であり、また、炭素繊
維をミルド化する利点として、通常の炭素繊維は、繊維
表面からのリチウムイオンの進入が困難であり、繊維断
面方向からの出入りのみであるため、充放電速度を早く
すると容量低下が著しい傾向を示すが、ミルド化し繊維
長を短くすると、すなわち繊維断面表面積が大きくな
り、断面方向からのリチウムイオンの出入りが容易にな
り容量低下が起こりにくくなる点も加味され好ましい。
ただし、炭素繊維をいたずらに微粉化すると、逆に活性
な黒鉛層の露出が増加し、電解液との反応性を増加させ
るために容量低下等のデメリットが生じるので、過度に
微粉砕することは好ましくない。
<Carbon Fiber Milled Material Constituting Carbon Material B> As a method for producing the carbon fiber milled material constituting the carbon material B according to the present invention, the mesophase pitch is spun and infusibilized in the same manner as in the production of the carbon material A described above. It is effective to heat-treat at a predetermined temperature, mill it with a Victory mill, jet mill, cross-flow mill, etc., and graphitize it if necessary. The carbon fiber mill used here is for the purpose of filling between the fibers to improve the bulk density and increasing the lithium ion receiving capacity, and as an advantage of milling the carbon fiber, a normal carbon fiber is Since it is difficult for lithium ions to enter from the fiber surface and only enters and exits from the fiber cross section direction, there is a tendency for the capacity to decrease remarkably when the charge / discharge rate is increased, but when milled and the fiber length is shortened, that is, the fiber cross section It is preferable because the surface area becomes large, lithium ions can easily come in and out from the cross-sectional direction, and the capacity is less likely to decrease.
However, if the carbon fibers are finely pulverized, the active graphite layer is exposed to the contrary, and the reactivity with the electrolytic solution is increased, which causes disadvantages such as a decrease in capacity. Not preferable.

【0028】このため、炭素繊維のミルド化は、炭素繊
維ミルドの平均粒径が、5μm以上100μm以下、好
ましくは5μm以上50μm以下となるように実施する
必要がある。平均粒径が100μmを越えると、充填嵩
密度の向上効果が低く、また前述のミルド化の利点も小
さくなり、さらにペーパー作製時繊維同士が絡み付き易
く、ペーパーの厚みを増す傾向が見られ好ましくない。
一方、平均粒径が5μm未満になると、前述のとおり繊
維の活性な表面がいたずらに多くなり、電解液の分解を
引き起こし易く好ましくない。炭素繊維のミルド化を効
率良く行うためには、上記方法に共通することである
が、例えばプレートを取り付けたローターを高速に回転
することにより、繊維軸に対し直角方向に炭素繊維を寸
断する方法が適切である。
Therefore, it is necessary to mill the carbon fiber so that the average particle diameter of the carbon fiber milled is 5 μm or more and 100 μm or less, preferably 5 μm or more and 50 μm or less. When the average particle size exceeds 100 μm, the effect of improving the bulk density of packing is low, the advantage of the above-mentioned milling becomes small, and the fibers tend to be entangled with each other during the production of paper, which tends to increase the thickness of paper, which is not preferable. .
On the other hand, when the average particle size is less than 5 μm, the active surface of the fiber is unnecessarily increased as described above, which is likely to cause decomposition of the electrolytic solution, which is not preferable. In order to efficiently perform milling of carbon fibers, it is common to the above methods, for example, a method of cutting the carbon fibers in a direction perpendicular to the fiber axis by rotating a rotor equipped with a plate at high speed. Is appropriate.

【0029】炭素繊維ミルドの平均粒径は、ローターの
回転数、プレートの角度及びローターの周辺に取り付け
られたフィルターの目の大きさ等を調整することにより
コントロールすることが可能である。該ミルド化には、
ヘンシェルミキサーやボールミル、擂潰機等による方法
もあるが、これらの方法によると繊維の直角方向への加
圧力が働き、繊維軸方向への縦割れの発生が多くなり好
ましくない。また、この方法はミルド化に長時間を要
し、適切なミルド化方法とは云い難い。
The average particle diameter of the carbon fiber mill can be controlled by adjusting the number of rotations of the rotor, the angle of the plate, the size of the mesh of the filter attached around the rotor, and the like. For the milling,
There are also methods using a Henschel mixer, a ball mill, a crusher, etc., but these methods are not preferable because the pressing force in the direction perpendicular to the fiber acts and vertical cracks occur in the axial direction of the fiber. In addition, this method requires a long time for milling, and it cannot be said that it is an appropriate milling method.

【0030】次に、炭素繊維ミルドを黒鉛化する方法と
しては、不融化処理したまま、あるいは不融化後250
℃以上1,500℃以下の温度で不活性ガス中で一次熱
処理(軽度炭化)した後、ミルド化し、その後2,20
0℃以上で二次熱処理(黒鉛化)することが有効であ
る。250℃以上1,500℃以下で一次熱処理した後
ミルド化し、さらに2,200℃以上で二次熱処理する
ことによりミルド化後の繊維の縦割れが防げると共に、
ミルド化時に新たに表面に露出した黒鉛層面がより高温
の二次熱処理時に縮重合・環化反応が進み、その表面の
活性度が低下することも、電解液の分解を阻止する上で
効果がある。
Next, as a method of graphitizing the carbon fiber milled, 250 as it is or after infusibilizing treatment.
After primary heat treatment (mild carbonization) in an inert gas at a temperature of ℃ or more and 1,500 ℃ or less, it is milled and then 2,20
Secondary heat treatment (graphitization) at 0 ° C or higher is effective. By performing primary heat treatment at 250 ° C or higher and 1500 ° C or lower and then milling, and further performing secondary heat treatment at 2,200 ° C or higher, longitudinal cracking of the fiber after milling can be prevented, and
The graphite layer surface newly exposed on the surface during milling undergoes polycondensation / cyclization reaction during the secondary heat treatment at a higher temperature, which reduces the activity of the surface, which is also effective in preventing decomposition of the electrolytic solution. is there.

【0031】また、1,500℃以上の温度で不活性ガ
ス中で熱処理(炭化或いは黒鉛化)後にミルド化する
と、繊維軸方向に発達した黒鉛層面に沿って開裂が発生
し易くなり、製造された炭素繊維ミルドの全表面積中に
占める破断面表面積の割合が大きくなり、破断黒鉛層面
における電子の極在化による電解液の分解が起こり好ま
しくない(以下、黒鉛化処理された炭素繊維ミルドを特
に「黒鉛繊維ミルド」という)。
Further, when heat-treated (carbonized or graphitized) in an inert gas at a temperature of 1,500 ° C. or higher and then milled, cracks are likely to occur along the graphite layer surface developed in the fiber axis direction, which is produced. The ratio of the fracture surface area to the total surface area of the carbon fiber milled is increased, and the electrolyte is decomposed due to the localization of electrons on the fractured graphite layer surface, which is not preferable (hereinafter, the graphitized carbon fiber milled is particularly preferable. "Graphite fiber milled").

【0032】(e)その他の炭素材B <メソカーボンマイクロビーズ>メソカーボンマイクロ
ビーズの製造方法としては種々報告されているが、脱硫
減圧軽油の熱分解(FCC)により副生する石油系ピッ
チを原料とし、特開平2−49095号公報に開示され
た方法によりメソカーボンマイクロビーズを作製する方
法も有効な製造方法のひとつである。ここに用いるメソ
マイクロビーズは、繊維間に充填し嵩密度の向上ととも
にリチウムイオンの受容容量のアップをすることが目的
であり、そのため、マイクロビーズのサイズとしては、
平均粒径が2μm以上70μm以下、好ましくは3μm
以上50μm以下である。
(E) Other carbon materials B <Mesocarbon microbeads> Various methods for producing mesocarbon microbeads have been reported. However, petroleum pitch produced as a by-product by thermal decomposition (FCC) of desulfurized vacuum gas oil is used. A method of producing mesocarbon microbeads as a raw material by the method disclosed in JP-A-2-49095 is also one of the effective production methods. The meso-microbeads used here are intended to be filled between fibers to improve the bulk density and increase the lithium ion receiving capacity. Therefore, as the size of the microbeads,
Average particle size is 2 μm or more and 70 μm or less, preferably 3 μm
It is 50 μm or less.

【0033】<天然黒鉛><人造黒鉛> さらに、炭素材Bとして、天然黒鉛や人造黒鉛を用いる
ことが出来る。天然黒鉛や人造黒鉛を炭素材Bとして、
単味であるいはそれらを混合して用いることも出来る
が、充放電効率が悪くなったり、あるいは充放電速度を
高められない等の問題があり好ましくなく、本発明の炭
素繊維ミルドと混合し用いることが好ましい。特に、短
繊維状炭素繊維(炭素材A)と炭素繊維ミルド(炭素材
B)の混合系を構成する際、繊維間の空隙を充填し、導
電性を改善しサイクル特性、初期効率、容量を向上する
目的で、平均粒径が30μm以下、好ましくは20μm
以下の超微粉化処理した天然黒鉛、人造黒鉛を用いるこ
とが有効である。
<Natural graphite><Artificialgraphite> Further, as the carbon material B, natural graphite or artificial graphite can be used. Using natural graphite or artificial graphite as the carbon material B,
Although they can be used alone or as a mixture thereof, there is a problem that the charge / discharge efficiency is deteriorated or the charge / discharge rate cannot be increased, which is not preferable, and the mixture with the carbon fiber milled product of the present invention is used. Is preferred. In particular, when forming a mixed system of short fibrous carbon fibers (carbon material A) and carbon fiber milled (carbon material B), the voids between the fibers are filled to improve conductivity and improve cycle characteristics, initial efficiency, and capacity. For the purpose of improvement, the average particle size is 30 μm or less, preferably 20 μm
It is effective to use the following ultrafine-pulverized natural graphite and artificial graphite.

【0034】(f)炭素材A、Bの負極炭素材中の含有
率の測定 作製された負極用シート中の炭素材Aと炭素材Bの重量
割合は、バインダーを燃焼除去した残炭素材を、150
メッシュの目開きの金網を張った篩いで5分間強制振動
させ、金網上に残った篩上部と金網を通過した篩下部の
それぞれの重量を測定し求めることが簡便である。篩上
部及び篩下部をSEM観察すると、前者のものはすべて
繊維長1mm以上20mm以下の炭素繊維であり、一方
後者には、繊維長1mm以上の炭素繊維はほとんど発見
することはできなかった。
(F) Measurement of Content of Carbon Materials A and B in Negative Electrode Carbon Material The weight ratio of carbon material A and carbon material B in the prepared negative electrode sheet is the residual carbon material obtained by burning and removing the binder. , 150
It is convenient to forcibly vibrate for 5 minutes using a sieve with an open mesh of mesh and measure the weight of each of the upper part of the screen remaining on the mesh and the lower part of the screen passing through the mesh to determine the weight. When the upper part and the lower part of the screen were observed by SEM, all of the former were carbon fibers having a fiber length of 1 mm or more and 20 mm or less, while carbon fibers having a fiber length of 1 mm or more could hardly be found in the latter.

【0035】さらに、この篩上部の比率は、シートを抄
紙時に投入した短繊維状炭素繊維の比率とよく一致し
た。すなわち、投入した短繊維状炭素繊維は抄紙時に微
粉砕されること無く1mm以上20mm以下の繊維長を
保持することが示された。なお、バインダーの燃焼除去
は、空気存在下で400℃で3時間加熱処理する方法で
行う。この条件下では炭素繊維は、殆ど重量減少せずバ
インダーのみが選択的に酸化除去される。
Further, the ratio of the upper part of the sieve was in good agreement with the ratio of the short fibrous carbon fibers added to the sheet at the time of papermaking. That is, it was shown that the short fibrous carbon fibers that were put into the fiber retain a fiber length of 1 mm or more and 20 mm or less without being pulverized during papermaking. The binder is burned and removed by a method of heat treatment at 400 ° C. for 3 hours in the presence of air. Under this condition, the carbon fiber undergoes almost no weight reduction, and only the binder is selectively oxidized and removed.

【0036】(g)負極炭素材の形状 さらに、本発明の負極炭素材は、炭素材A、炭素材Bを
混合分散してペーパー状の形状とすることが必要であ
る。本発明のペーパー状負極材は、具体的には、厚さが
50μm以上200μm以下、好ましくは70μm以上
180μm以下;目付けが50g/m2 以上250g/
2 以下、好ましくは80g/m2 以上230g/m2
以下;嵩密度(目付け/厚さ)が1.0g/cm3 以上
1.5g/cm3 以下、好ましくは1.1g/cm3
上1.4g/cm3 以下であることが望ましい。
(G) Shape of Negative Electrode Carbon Material Further, the negative electrode carbon material of the present invention is required to be mixed and dispersed with the carbon material A and the carbon material B to form a paper-like shape. Specifically, the paper-like negative electrode material of the present invention has a thickness of 50 μm to 200 μm, preferably 70 μm to 180 μm; and a basis weight of 50 g / m 2 to 250 g /
m 2 or less, preferably 80 g / m 2 or more and 230 g / m 2
Or less; it is desirable that the bulk density (unit weight / thickness) is 1.0 g / cm 3 or more and 1.5 g / cm 3 or less, preferably 1.1 g / cm 3 or more and 1.4 g / cm 3 or less.

【0037】充放電容量を増加させるには、炭素材を高
密度に充填し、ペーパーの厚さが厚いほうが有利である
が、いたずらに嵩密度を1.5g/cm3 を越えて高く
し、またペーパーの厚みを200μmを越えて増加させ
ると、炭素材へのリチウムイオンの出入りの容易性が低
下し、またシートの均一性も低下する傾向が見られる。
また、嵩密度を1.0g/cm3 未満といたずらに小さ
くし、ペーパーの厚みを50μm未満と減少させると、
リチウムイオンの出入性は向上するが、単位容積当りの
十分な充放電容量が確保できなくなり不利である。従っ
て、本発明では、上記範囲が好適である。また、本発明
のように負極炭素材をペーパー状にすることにより、従
来技術の項に記載のように集電体を用いない負極が構成
でき、構造の簡素化、軽量化、製造工程の簡略化等製造
コストの低減が期待でき、さらに、本発明の構成によ
り、単位容積当たりの充放電容量の増加も期待できる。
In order to increase the charge / discharge capacity, it is advantageous that the carbon material is densely packed and the paper is thick, but the volume density is unnecessarily increased to more than 1.5 g / cm 3 . Further, when the thickness of the paper is increased to more than 200 μm, the ease with which lithium ions enter and leave the carbon material decreases, and the uniformity of the sheet tends to decrease.
Further, if the bulk density is unnecessarily reduced to less than 1.0 g / cm 3 and the paper thickness is reduced to less than 50 μm,
Although the lithium ion transferability is improved, a sufficient charge / discharge capacity per unit volume cannot be secured, which is disadvantageous. Therefore, in the present invention, the above range is preferable. In addition, by forming the negative electrode carbon material into a paper shape as in the present invention, a negative electrode that does not use a current collector can be formed as described in the section of the prior art, which simplifies the structure, reduces the weight, and simplifies the manufacturing process. It can be expected that the manufacturing cost will be reduced, and that the structure of the present invention will increase the charge / discharge capacity per unit volume.

【0038】(B)ペーパー状負極材の製造について 本発明による炭素材Aと炭素材Bとから構成されるペー
パー状の負極材の製造方法としては、両者が混合・分散
した薄いペーパー状のものが製造できるなら特に制限さ
れないが、従来から用いられている塗布(炭素材と結着
材を有機溶媒あるいは水溶媒を用いにスラリー状に分散
し、金属箔上に塗布する)方式でも製造可能である。し
かし、ペーパー状の負極材をより大量に品質を安定さ
せ、且つ、安価に製造するためには抄紙法が有効であ
る。すなわち、所定の炭素材A、炭素材B、及びバイン
ダー成分を加え、大量の水溶媒中で均一撹拌し、濃度1
〜2%程度の希釈紙料液とする。この紙料液は、抄紙機
の分配装置に導かれ、目的とする紙の目付け、抄紙速度
に合わせてすき幅いっぱいの均一な紙料液の流れとな
る。分配装置を出た希釈紙料液は、すき網上を進む間に
濾水されて湿紙の層を形成し、次いですき網を離れて毛
布に乗り、上下のプレスロールの間をとおるさいに圧搾
脱水され、さらに乾燥部に導かれて徐々に乾燥される。
その後、必要に応じて熱プレス等の処理を行い、巻取機
に巻き取る。
(B) Manufacture of Paper Negative Electrode Material A method of manufacturing a paper negative electrode material composed of carbon material A and carbon material B according to the present invention is a thin paper material in which both are mixed and dispersed. It is not particularly limited as long as it can be manufactured, but it can also be manufactured by a conventionally used coating method (dispersing a carbon material and a binder in a slurry using an organic solvent or a water solvent and coating them on a metal foil). is there. However, the papermaking method is effective for producing a large quantity of paper-like negative electrode material with stable quality and at low cost. That is, a predetermined carbon material A, carbon material B, and a binder component were added and uniformly stirred in a large amount of water solvent to obtain a concentration of 1
Use a diluted stock solution of about 2%. This stock solution is guided to the distribution device of the paper machine, and becomes a uniform flow of stock solution having a full width according to the target weight of the paper and the paper making speed. The diluted stock solution exiting the distributor is drained to form a layer of wet paper as it travels over the plow screen, then leaves the plow screen and rides on a blanket, passing between the upper and lower press rolls. It is squeezed and dehydrated, then guided to a drying section and gradually dried.
Then, if necessary, a treatment such as hot pressing is performed, and the product is wound on a winder.

【0039】<分散剤の使用>通常、炭素繊維は水に濡
れ難く、そのため水中では炭素繊維同士が集合し分散し
難い。また、炭素繊維束中に含まれる小さな気泡が抜け
難く炭素繊維束が浮く等の問題が見られることもあり、
炭素繊維を均一に分散させるために撹拌を強くしたり、
長時間を要することもある。しかし、これは、元来非常
に脆い炭素繊維をいたずらに短く粉砕することになり好
ましい方法ではない。炭素繊維の分散性を良くするため
には、エステル類、アルコール類等の非イオン系界面活
性剤からなる分散剤を用いることが有効である。この分
散剤は、水溶媒中に添加することも出来るが、予め炭素
繊維の繊維表面に付着させておく方法がより分散を迅速
に進める上で好ましい。
<Use of Dispersant> Normally, carbon fibers are difficult to be wet with water, so that carbon fibers are difficult to aggregate and disperse in water. In addition, small bubbles contained in the carbon fiber bundle may be difficult to escape, and there may be problems such as floating of the carbon fiber bundle.
Intensify stirring to disperse the carbon fibers evenly,
It may take a long time. However, this is not a preferable method since it unnecessarily crushes carbon fibers that are very brittle in nature. In order to improve the dispersibility of the carbon fiber, it is effective to use a dispersant composed of a nonionic surfactant such as esters and alcohols. This dispersant can be added to a water solvent, but a method of adhering the dispersant to the fiber surface of the carbon fiber in advance is preferable in order to accelerate the dispersion more rapidly.

【0040】<各種添加剤の使用>さらに、各種の炭素
材を水溶媒中でより長時間均一に分散させるためには、
溶媒の比重、粘度を高めることも有効な方法である。例
えば、水溶媒中にエチレングリコール等の多価アルコー
ル類や各種塩類を加え、溶媒である水と各種炭素材と分
離を抑制する方法も有効である。この場合、用いる添加
剤は、最終的に負極特性として悪影響を及ぼさないこと
が必須であり、水洗い等で簡便に除去出来るものが好ま
しい。
<Use of Various Additives> Further, in order to uniformly disperse various carbon materials in a water solvent for a longer time,
Increasing the specific gravity and viscosity of the solvent is also an effective method. For example, it is also effective to add a polyhydric alcohol such as ethylene glycol or various salts to a water solvent to suppress the separation of water as a solvent and various carbon materials. In this case, it is essential that the additive to be used does not adversely affect the final negative electrode characteristics, and it is preferable that the additive can be easily removed by washing with water.

【0041】<バインダーの使用>また、炭素材Aと炭
素材Bを結着させるバインダーとしては、プロピレンカ
ーボネート、エチレンカーボネート等の電解液に不溶で
あり、電気化学的にも安定であり、100℃程度の耐熱
性を有し、疎水性であり、且つ、リチウムイオンの移動
を妨げないものが好ましい。具体的には、バインダーは
熱融着性で繊維状のものが好ましく、繊維状の形態で炭
素材を包含し、加熱することによりバインダー繊維同士
の交絡点で融着し、炭素材を固定するものが好ましい。
すなわち、膜状に炭素材を固定するのではなく、あたか
もメッシュ織物の中に炭素材を保持するような形態が好
ましい。例えば、ポリエステル繊維、ポリエチレン繊
維、PET繊維等が好適である。バインダーの使用量は
多いほど炭素材の結着は良好となるが、バインダー自体
電池の負極材として何ら寄与しないので、使用量が増加
すると単位重量(及び容積)当りの電池容量を低下さ
せ、さらに導電性が低下する等、電池の性能を劣化させ
る方向にある。このため、バインダーの使用量は、バイ
ンダーの種類で幾分変化するが、概ね炭素材に対して好
ましくは15wt%以下、さらに好ましくは10wt%
以下である。
<Use of Binder> Further, the binder for binding the carbon materials A and B is insoluble in an electrolytic solution such as propylene carbonate and ethylene carbonate, is electrochemically stable, and is 100 ° C. It is preferable that the resin has heat resistance to some extent, is hydrophobic, and does not hinder the movement of lithium ions. Specifically, the binder is preferably heat-fusible and fibrous, and the carbon material is contained in a fibrous form, and the carbon material is fused at the entanglement points of the binder fibers by heating to fix the carbon material. Those are preferable.
That is, it is preferable that the carbon material is not fixed in a film shape, but the carbon material is held in the mesh fabric. For example, polyester fiber, polyethylene fiber, PET fiber and the like are suitable. The larger the amount of the binder used, the better the binding of the carbon material, but since the binder itself does not contribute to the negative electrode material of the battery, an increase in the amount used decreases the battery capacity per unit weight (and volume), and There is a tendency to deteriorate the battery performance such as a decrease in conductivity. Therefore, although the amount of the binder used varies somewhat depending on the type of the binder, it is preferably 15 wt% or less, and more preferably 10 wt% with respect to the carbon material.
It is the following.

【0042】<その他の処理>このようにして、得られ
た炭素材ペーパーは、そのままでも負極材として用いら
れるが、例えば、銅やニッケル等の金属箔に導電性接着
剤を用いて接着する方法や、片面に金属類を蒸着するこ
とも有効である。
<Other Treatments> The carbon material paper thus obtained can be used as it is as a negative electrode material. For example, a method of bonding it to a metal foil such as copper or nickel using a conductive adhesive. It is also effective to vapor-deposit metal on one side.

【0043】(C)電池への組立について <電解液>本発明による炭素材を負極に用いてリチウム
イオン二次電池を作成する場合には、電解液としてはリ
チウム塩を溶解し得るものであればよいが、特に非プロ
トン性の誘電率が大きい有機溶媒が好ましい。上記有機
溶媒としては、例えば、プロピレンカーボネート、エチ
レンカーボネート、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、ジオキソラン、4−メチル−ジオキ
ソラン、アセトニトリル、ジメチルカーボネート、メチ
ルエチルカーボネート、ジエチルカーボネート等を挙げ
ることができる。これらの溶媒を単独あるいは適宜混合
して用いることが可能である。
(C) Assembly to Battery <Electrolyte Solution> When a lithium ion secondary battery is prepared by using the carbon material according to the present invention as a negative electrode, the electrolyte solution should be one that can dissolve a lithium salt. However, an aprotic organic solvent having a large dielectric constant is preferable. Examples of the organic solvent include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyl-dioxolane, acetonitrile, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like. These solvents can be used alone or in a suitable mixture.

【0044】<電解質>電解質としては、安定なアニオ
ンを生成するリチウム塩、例えば、過塩素酸リチウム、
ホウフッ化リチウム、六塩化アンチモン酸リチウム、六
フッ化アンチモン酸リチウム(LiPF6 )等が好適で
ある。
<Electrolyte> As the electrolyte, a lithium salt which produces a stable anion, for example, lithium perchlorate,
Lithium borofluoride, lithium hexachloroantimonate, lithium hexafluoroantimonate (LiPF 6 ) and the like are preferable.

【0045】<正極>また、リチウムイオン二次電池の
正極としては、例えば、酸化クロム、酸化チタン、酸化
コバルト、五酸化バナジウム等の金属酸化物や、リチウ
ムマンガン酸化物(LiMn2 4 )、リチウムコバル
ト酸化物(LiCoO2 )、リチウムニッケル酸化物
(LiNiO2 )等のリチウム金属酸化物;硫化チタ
ン、硫化モリブデン等の遷移金属のカルコゲン化合物;
及びポリアセチレン、ポリパラフェニレン、ポリピロー
ル等の導電性を有する共役系高分子物質等を用いること
が出来る。
<Positive Electrode> As the positive electrode of the lithium ion secondary battery, for example, metal oxides such as chromium oxide, titanium oxide, cobalt oxide and vanadium pentoxide, lithium manganese oxide (LiMn 2 O 4 ), Lithium metal oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ); chalcogen compounds of transition metals such as titanium sulfide and molybdenum sulfide;
Further, a conjugated polymer substance having conductivity such as polyacetylene, polyparaphenylene, polypyrrole, or the like can be used.

【0046】<セパレータ>これらの正極と負極との間
に合成繊維製又はガラス繊維製の不織布、織布やポリオ
レフィン系多孔質膜、ポリテトラフルオロエチレンの不
織布等のセパレータを設ける。本発明の二次電池は、前
記セパレータ、集電体、ガスケット、封口板、ケース等
の電池構成要素と本発明の特定の負極を用い、常法に従
って円筒型、角型、ペーパー型、或いはボタン型等の形
態のリチウムイオン二次電池に組立てることができる。
<Separator> A separator made of a synthetic fiber or glass fiber non-woven fabric, a woven fabric, a polyolefin-based porous membrane, a polytetrafluoroethylene non-woven fabric, or the like is provided between the positive electrode and the negative electrode. The secondary battery of the present invention is a cylindrical type, a square type, a paper type, or a button according to a conventional method using battery components such as the separator, current collector, gasket, sealing plate, and case and a specific negative electrode of the present invention. It can be assembled into a lithium ion secondary battery in the form of a mold or the like.

【0047】[0047]

【作用】このように比較的短い繊維長の炭素繊維(炭素
材A)を骨格とし、炭素繊維ミルド等の微粒子状の炭素
材Bを充填した炭素材は、嵩密度を均一にコントロール
出来るため、電解液の浸透が容易となり、充放電速度が
向上されるばかりでなく、大量に性能の均一な負極材を
安価に提供することができる。
Since the carbon material having the carbon fiber (carbon material A) having a relatively short fiber length as the skeleton and the fine carbon material B such as carbon fiber milled as described above is filled, the bulk density can be uniformly controlled. Not only the penetration of the electrolytic solution becomes easy and the charge / discharge rate is improved, but also a large amount of a negative electrode material having uniform performance can be provided at low cost.

【0048】[0048]

【実施例】以下、実施例により更に具体的に説明する
が、これらは本発明の範囲を制限するものではない。 (実施例1)光学的に異方性で比重1.25の石油系メ
ソフェーズピッチを原料として、幅3mmのスリットの
中に直径0.2mmφの紡糸孔を一列に500個有する
口金を用い、スリットから加熱空気を噴出させて、溶融
ピッチを牽引して平均直径13μmのピッチ繊維を製造
した。この時、紡糸温度は360℃、吐出量は0.8g
/H・分であった。紡出された繊維を、捕集部分が20
メッシュのステンレス製金網で出来たベルトの背面から
吸引しつつベルト上に捕集した。この捕集したマットを
空気中、室温から300℃まで平均昇温速度6℃/分で
昇温して不融化処理を行った後、1,000℃で炭化処
理した。この炭素繊維を平均長10mmの長さにチョッ
プ化した。この短繊維状炭素繊維(炭素材A)に分散剤
としてポリエーテルエステルを1wt%散布した。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but these do not limit the scope of the present invention. (Example 1) Using a petroleum-based mesophase pitch having an optical anisotropy and a specific gravity of 1.25 as a raw material, a spinneret having 500 spinning holes having a diameter of 0.2 mmφ in a row in a slit having a width of 3 mm was used. A heated air was ejected from the above to draw the molten pitch to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature is 360 ° C and the discharge rate is 0.8g.
/ H · min. The collected portion of the spun fiber is 20
It was collected on the belt while sucking from the back of the belt made of mesh metal mesh. The collected mat was heated in the air from room temperature to 300 ° C. at an average heating rate of 6 ° C./min to infusibilize it, and then carbonized at 1,000 ° C. This carbon fiber was chopped to have an average length of 10 mm. 1 wt% of a polyether ester was dispersed as a dispersant on the short fibrous carbon fibers (carbon material A).

【0049】一方、1,000℃で炭化処理した炭素繊
維をクロスフローミルで粉砕し平均粒径17μmの炭素
繊維ミルドを得た。この炭素繊維ミルドを、2,900
℃まで3℃/分の速度で昇温し、さらに2,900℃で
1時間保持し、黒鉛繊維ミルド(炭素材B)を得た。こ
の炭素材A及び炭素材Bを用い、タッピ式抄紙機を用
い、負極シートを作製した。すなわち、ポリエチレンオ
キシドを増粘剤として0.2wt%加えた水溶媒中に、
短繊維状炭素繊維(炭素材A)と黒鉛繊維ミルド(炭素
材B)をそれぞれ10:90の重量比で所定量投入し、
バインダーとしてPET繊維を炭素材に対して10wt
%となるよう加え、撹拌均一混合した。下部バルブを開
放し、水溶媒を抜き出した後、テトロン性の濾紙上に堆
積した上記炭素材A、BとPET繊維の均一混合物を熱
プレス処理し、PET繊維を部分熱融着させ負極ペーパ
ーを得た。
On the other hand, carbon fibers carbonized at 1,000 ° C. were pulverized by a cross flow mill to obtain carbon fiber mills having an average particle size of 17 μm. This carbon fiber mill is 2,900
The temperature was raised to 3 ° C / min at 3 ° C / min, and the temperature was maintained at 2,900 ° C for 1 hour to obtain a graphite fiber milled material (carbon material B). A negative electrode sheet was produced using the carbon material A and the carbon material B using a tapping paper machine. That is, in a water solvent containing 0.2 wt% of polyethylene oxide as a thickener,
A predetermined amount of short fibrous carbon fibers (carbon material A) and graphite fiber milled (carbon material B) were added at a weight ratio of 10:90, respectively,
PET fiber as binder is 10 wt% with respect to carbon material
% So as to be mixed uniformly with stirring. After opening the lower valve and extracting the water solvent, the homogeneous mixture of the carbon materials A and B and the PET fiber deposited on the Tetoron filter paper is heat-pressed to partially heat-bond the PET fiber to form a negative electrode paper. Obtained.

【0050】減圧乾燥後のペーパーの厚み、目付け、嵩
密度は、それぞれ、90μm、120g/m2 、1.3
3g/cm3 であった。このペーパーの一部を切り出
し、ニッケルメッシュに挟み負極とし、3極セルで充放
電試験を行った。試験は、陽極に金属リチウムを用い、
エチレンカーボネート(EC)/ジメチルカーボネート
(DMC)を1/1に調整した混合炭酸エステル溶媒
に、電解質として過塩素酸リチウム(LiClO 4 )を
1モルの濃度で溶解させた電解液中で実施し、充放電容
量特性を測定した。充放電容量特性の測定は、100m
A/gの定電流下で行い、放電容量は電池電圧が2Vに
低下するまでの容量として10回繰返し測定した。その
測定結果を表1に示す。
The thickness, basis weight and bulk density of the paper after drying under reduced pressure are 90 μm, 120 g / m 2 and 1.3, respectively.
It was 3 g / cm 3 . A part of this paper was cut out, sandwiched between nickel meshes to serve as a negative electrode, and a charge / discharge test was conducted in a 3-electrode cell. The test uses metallic lithium for the anode,
It was carried out in an electrolytic solution in which lithium carbonate perchlorate (LiClO 4 ) as an electrolyte was dissolved at a concentration of 1 mol in a mixed carbonate ester solvent in which ethylene carbonate (EC) / dimethyl carbonate (DMC) was adjusted to 1/1, The charge / discharge capacity characteristics were measured. Charge / discharge capacity characteristic is 100m
It was carried out under a constant current of A / g, and the discharge capacity was repeatedly measured 10 times as the capacity until the battery voltage dropped to 2V. The measurement results are shown in Table 1.

【0051】初回の放電容量306mAh/g、充放電
効率92%、2回目の放電容量302mAh/g、充放
電効率100%といずれも高い値を示した。この時の負
極体積当りの初回放電容量は、407mAh/cm3
優れたものであった。なお、電極特性評価に使った残り
のペーパーをマッフル炉中で空気存在下400℃で3時
間加熱し、バインダーを燃焼除去後150メッシュの目
開きの篩いを用い5分間振動させ、篩上部及び篩下部の
2成分に分離した。篩上には、繊維長1mm以上のもの
しか確認されず、また篩上部の炭素材の重量と篩下部の
炭素材の重量比は1:9でありそれぞれ炭素材Aと炭素
材Bとして投入した重量比と一致した。
The first discharge capacity was 306 mAh / g, the charge / discharge efficiency was 92%, the second discharge capacity was 302 mAh / g, and the charge / discharge efficiency was 100%, which were all high values. At this time, the initial discharge capacity per negative electrode volume was 407 mAh / cm 3 , which was excellent. The remaining paper used for the electrode characteristic evaluation was heated in a muffle furnace at 400 ° C for 3 hours in the presence of air, and after the binder was burned and removed, it was vibrated for 5 minutes using a sieve with a mesh of 150 mesh, and the upper portion of the sieve and the sieve were sieved. Separated into the lower two components. Only fibers having a fiber length of 1 mm or more were confirmed on the screen, and the weight ratio of the carbon material above the screen and the carbon material below the screen was 1: 9, and the carbon material was charged as carbon material A and carbon material B respectively. Consistent with the weight ratio.

【0052】(実施例2)炭素材の構成を、実施例1と
同様の炭素材Aを5wt%、炭素材Bとして実施例1と
同様の黒鉛繊維ミルドを90wt%、及び平均粒径8μ
mの人造黒鉛粉を5wt%とした以外実施例1と同様に
して負極ペーパーを作製した。得られたペーパーの特性
および電池特性を実施例1と同様に測定し、その測定結
果を表1に示す。
(Example 2) The composition of the carbon material is as follows: 5% by weight of carbon material A similar to that of Example 1, 90% by weight of graphite fiber mill similar to that of Example 1 as carbon material B, and average particle diameter 8μ.
A negative electrode paper was produced in the same manner as in Example 1 except that the artificial graphite powder of m was 5 wt%. The characteristics and battery characteristics of the obtained paper were measured in the same manner as in Example 1, and the measurement results are shown in Table 1.

【0053】(実施例3)脱硫減圧軽油の熱分解(FC
C)により副生する石油系ピッチを原料とし、特開平2
−49095号公報に開示された方法によりメソカーボ
ンマイクロビーズを作製し、実施例1と同様に2,90
0℃で黒鉛化した。得られた黒鉛化メソカーボンマイク
ロビーズを篩い分離し、レーザー回折式粒度測定装置に
より平均粒径9μmの炭素材を得た。焼成温度を750
℃に変更した以外実施例1と同様の炭素材Aを20wt
%、炭素材Bとして実施例1と同様の黒鉛繊維ミルドを
70wt%、及び上記メソカーボンマイクロビーズ10
wt%で炭素材を構成し、ポリエチレン繊維バインダー
を全炭素材に対して5wt%含むペーパーを作製した。
得られたペーパーの特性および電池特性を実施例1と同
様に測定し、その測定結果を表1に示す。また、ペーパ
ー中の炭素材Aと炭素材Bの重量比を、実施例1と同様
にして測定した結果、投入時の重量比とよく一致した。
(Example 3) Desulfurization Reduced pressure gas oil pyrolysis (FC
Using petroleum pitch produced as a by-product in C) as a raw material
No. 4,49095, the mesocarbon microbeads were prepared by the method disclosed in
Graphitized at 0 ° C. The obtained graphitized mesocarbon microbeads were separated by sieving and a carbon material having an average particle size of 9 μm was obtained by a laser diffraction type particle size measuring device. 750 firing temperature
20 wt% of carbon material A similar to that of Example 1 except that the temperature was changed to ° C.
%, 70 wt% of the same graphite fiber milled as in Example 1 as the carbon material B, and the mesocarbon microbeads 10 described above.
A carbon material was constituted by wt% and a paper containing a polyethylene fiber binder in an amount of 5 wt% with respect to the total carbon material was produced.
The characteristics and battery characteristics of the obtained paper were measured in the same manner as in Example 1, and the measurement results are shown in Table 1. Further, the weight ratio of the carbon material A and the carbon material B in the paper was measured in the same manner as in Example 1, and as a result, it was in good agreement with the weight ratio at the time of charging.

【0054】(実施例4)実施例1と同様にして得られ
た、短繊維状炭素繊維と炭素繊維ミルドを2,900℃
まで3℃/分の速度で昇温し、さらに2,900℃で1
時間保持し、炭素材Aとしての短繊維状黒鉛繊維と、炭
素材Bとしての黒鉛繊維ミルドを得た。炭素材Aとして
この短繊維状黒鉛繊維を30wt%、炭素材Bとして黒
鉛繊維ミルドを60wt%、及び平均粒径8μmの天然
黒鉛を10wt%加え、実施例1と同様にして負極ペー
パーを作製した。得られたペーパーの特性および電池特
性を実施例1と同様に測定し、その測定結果を表1に示
す。
(Example 4) Short carbon fibers and a carbon fiber mill obtained in the same manner as in Example 1 were treated at 2,900 ° C.
Up to 3 ° C / min, and then at 2,900 ° C for 1
By holding for a time, short fibrous graphite fibers as the carbon material A and graphite fiber milled as the carbon material B were obtained. As a carbon material A, 30 wt% of this short fibrous graphite fiber, as a carbon material B, 60 wt% of graphite fiber milled, and 10 wt% of natural graphite having an average particle size of 8 μm were added, and a negative electrode paper was prepared in the same manner as in Example 1. . The characteristics and battery characteristics of the obtained paper were measured in the same manner as in Example 1, and the measurement results are shown in Table 1.

【0055】(実施例5)石油系の等方性ピッチを原料
とし、実施例1と同様にして平均長10mm、1200
℃焼成の等方性炭素繊維からなる炭素材Aを得た。ま
た、同じく実施例1と同様にして得た1,000℃焼成
メソフェーズ系炭素繊維ミルドに重量比5wt%の炭化
ホウ素を添加し、2,900℃で黒鉛化処理を行い炭素
材Bとしての黒鉛繊維ミルドを得た。炭素材Aを15w
t%、炭素材Bを85wt%とし実施例1と同様に負極
ペーパーを作製した。得られたペーパーの特性および電
池特性を実施例1と同様に測定し、その測定結果を表1
に示す。
(Example 5) Using petroleum-based isotropic pitch as a raw material, the average length was 10 mm and 1200 in the same manner as in Example 1.
A carbon material A made of isotropic carbon fiber fired at ℃ was obtained. Similarly, to a 1,000 ° C. calcined mesophase carbon fiber milled product obtained in the same manner as in Example 1, 5 wt% of boron carbide was added, and graphitization treatment was performed at 2,900 ° C. to obtain graphite as the carbon material B. A fiber mill was obtained. 15w carbon material A
A negative electrode paper was prepared in the same manner as in Example 1 with t% and carbon material B at 85 wt%. The characteristics and battery characteristics of the obtained paper were measured in the same manner as in Example 1, and the measurement results are shown in Table 1.
Shown in

【0056】(比較例1)実施例1と同様の炭素材Aを
35wt%、実施例1と同様の炭素材Bを65wt%と
しバインダーとしてPET繊維を炭素材に対して10w
t%となるようにして、実施例1と同様にして負極材ペ
ーパーを作製した。得られたペーパーの厚み、目付け、
嵩密度は、それぞれ、130μm、120g/m2
0.92g/cm3であった。実施例1と同様にして3
極セルによる充放電特性を測定したところ、初回の放電
容量300mAh/g、充放電効率87%、2回目の放
電容量280mAh/g、充放電効率98%と実施例1
に比べ若干劣るものであった。特に、負極シート容積当
りの初回放電容量は、276mAh/cm3と劣るもの
であった。
(Comparative Example 1) 35 wt% of carbon material A similar to that of Example 1 and 65 wt% of carbon material B similar to that of Example 1 were used.
A negative electrode material paper was prepared in the same manner as in Example 1 so that the content was t%. Thickness of the obtained paper, basis weight,
The bulk densities are 130 μm, 120 g / m 2 ,
It was 0.92 g / cm 3 . 3 as in Example 1
When the charge / discharge characteristics of the polar cell were measured, the first discharge capacity was 300 mAh / g, the charge / discharge efficiency was 87%, the second discharge capacity was 280 mAh / g, and the charge / discharge efficiency was 98%.
It was slightly inferior to. In particular, the initial discharge capacity per negative electrode sheet volume was inferior at 276 mAh / cm 3 .

【0057】(比較例2)実施例1と同様の炭素材Aを
3wt%、実施例1と同様の炭素材Bを97wt%用
い、タッピ式抄紙を行ったところ、出来たペーパーはテ
トロン製濾紙から離型出来ないほど強度的に弱いもので
あった。
(Comparative Example 2) Using 3 wt% of the same carbon material A as in Example 1 and 97 wt% of the same carbon material B as in Example 1, tappy papermaking was carried out. The resulting paper was Tetoron filter paper. The strength was so weak that it could not be released from the mold.

【0058】(比較例3)実施例1と同様の炭素材Aを
15wt%、炭素材Bとして実施例1と同様の黒鉛繊維
ミルドを80wt%、及び平均粒径8μmの天然黒鉛を
5wt%加え、バインダーとしてPET繊維を炭素材に
対して10wt%となるようにして、実施例1と同様に
負極材ペーパーを作製した。得られたペーパーの厚み、
目付け、嵩密度は、それぞれ、230μm、270g/
2 、1.17g/cm3 であった。実施例1と同様に
して3極セルによる充放電特性を測定したところ、初回
の放電容量230mAh/g、充放電効率85%であ
り、負極シート容積当りの初回放電容量は、269mA
h/cm3であった。
(Comparative Example 3) 15 wt% of carbon material A similar to that of Example 1, 80 wt% of graphite fiber milled similar to that of Example 1 as carbon material B, and 5 wt% of natural graphite having an average particle size of 8 μm were added. A negative electrode material paper was prepared in the same manner as in Example 1, except that PET fiber was used as a binder in an amount of 10 wt% with respect to the carbon material. The thickness of the obtained paper,
The basis weight and the bulk density are 230 μm and 270 g /, respectively.
It was m 2 and 1.17 g / cm 3 . When the charge / discharge characteristics of the 3-electrode cell were measured in the same manner as in Example 1, the initial discharge capacity was 230 mAh / g and the charge / discharge efficiency was 85%, and the initial discharge capacity per negative electrode sheet volume was 269 mA.
It was h / cm 3 .

【0059】[0059]

【表1】 注):使用したすべての炭素材Aの平均繊維長は10m
mである。
[Table 1] Note): The average fiber length of all carbon materials A used is 10 m
m.

【0060】[0060]

【発明の効果】本発明により、短繊維状炭素繊維(炭素
材A)の骨格形成とその繊維間を微粒子状の炭素材Bで
効率よく充填することにより、電解液の均一な浸透が容
易になり、充放電容量が大きく、初期の充放電効率が高
く、且つ充放電サイクル特性に優れた非水電解液系リチ
ウム二次電池用負極に適した、炭素材を提供することを
可能にした。
According to the present invention, the skeleton formation of short fibrous carbon fibers (carbon material A) and the efficient filling of the space between the fibers with the particulate carbon material B facilitates uniform permeation of the electrolytic solution. Thus, it is possible to provide a carbon material having a large charge / discharge capacity, high initial charge / discharge efficiency, and excellent charge / discharge cycle characteristics, which is suitable for a negative electrode for a non-aqueous electrolyte lithium secondary battery.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極を構成する炭素材の5wt%以上3
0wt%以下が繊維長1mm以上20mm以下の短繊維
状炭素繊維(炭素材A)で、残りの70wt%以上95
wt%以下が炭素繊維ミルド、メソカーボンマイクロビ
ーズ、天然黒鉛粉末及び人造黒鉛粉末のうちから選択さ
れる1種以上の微粒子状炭素材(炭素材B)であり、且
つ形状がペーパー状であることを特徴とする非水リチウ
ム二次電池用負極材。
1. At least 5 wt% of the carbon material constituting the negative electrode 3
0 wt% or less is a short fibrous carbon fiber (carbon material A) having a fiber length of 1 mm or more and 20 mm or less, and the remaining 70 wt% or more 95
Less than or equal to wt% is one or more kinds of fine particulate carbon material (carbon material B) selected from carbon fiber milled, mesocarbon microbeads, natural graphite powder and artificial graphite powder, and has a paper-like shape A negative electrode material for a non-aqueous lithium secondary battery, which is characterized by:
【請求項2】 炭素材A及び炭素材Bを構成する炭素繊
維ミルドがメソフェーズピッチを原料としたものである
ことを特徴とする請求項1記載の非水リチウム二次電池
用負極材。
2. The negative electrode material for a non-aqueous lithium secondary battery according to claim 1, wherein the carbon fiber mills constituting the carbon material A and the carbon material B are made of mesophase pitch as a raw material.
【請求項3】 ペーパーが厚さ50μm以上200μm
以下、目付け50g/m2 以上250g/m2 以下、嵩
密度1.0g/cm3 以上1.5g/cm3以下である
ことを特徴とする請求項1又は2記載の非水リチウム二
次電池用負極材。
3. The paper has a thickness of 50 μm or more and 200 μm or more.
The non-aqueous lithium secondary battery according to claim 1 or 2, which has a basis weight of 50 g / m 2 or more and 250 g / m 2 or less and a bulk density of 1.0 g / cm 3 or more and 1.5 g / cm 3 or less. Negative electrode material.
【請求項4】 負極を構成するペーパー状炭素材が、炭
素材Aと炭素材Bとを原料とし、分散剤とバインダーを
添加し抄紙法により製造されることを特徴とする非水リ
チウム二次電池用負極材の製造方法。
4. A non-aqueous lithium secondary material characterized in that the paper-like carbonaceous material constituting the negative electrode is produced by a papermaking method using carbonaceous material A and carbonaceous material B as raw materials and adding a dispersant and a binder. Manufacturing method of negative electrode material for battery.
JP7263710A 1995-09-19 1995-09-19 Carbon material for nonaqueous lithium secondary battery and its manufacture Pending JPH0992283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7263710A JPH0992283A (en) 1995-09-19 1995-09-19 Carbon material for nonaqueous lithium secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7263710A JPH0992283A (en) 1995-09-19 1995-09-19 Carbon material for nonaqueous lithium secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH0992283A true JPH0992283A (en) 1997-04-04

Family

ID=17393249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7263710A Pending JPH0992283A (en) 1995-09-19 1995-09-19 Carbon material for nonaqueous lithium secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH0992283A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011161A2 (en) * 1998-11-25 2000-06-21 PETOCA Ltd. Graphite Materials for negative electrode used in lithium secondary battery
JP2001032163A (en) * 1999-06-22 2001-02-06 Johnson Matthey Plc Non-woven fiber web
JP2002536565A (en) * 1999-02-15 2002-10-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Non-woven web
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
JP2012074323A (en) * 2010-09-30 2012-04-12 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
WO2014087911A1 (en) * 2012-12-07 2014-06-12 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
WO2016158823A1 (en) * 2015-03-27 2016-10-06 株式会社クレハ Carbonaceous molding for cell electrode, and method for manufacturing same
US10388956B2 (en) 2014-03-20 2019-08-20 Kureha Corporation Carbonaceous molded article for electrodes and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011161A2 (en) * 1998-11-25 2000-06-21 PETOCA Ltd. Graphite Materials for negative electrode used in lithium secondary battery
EP1011161A3 (en) * 1998-11-25 2000-08-16 PETOCA Ltd. Graphite Materials for negative electrode used in lithium secondary battery
JP2002536565A (en) * 1999-02-15 2002-10-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Non-woven web
JP2001032163A (en) * 1999-06-22 2001-02-06 Johnson Matthey Plc Non-woven fiber web
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
JP2012074323A (en) * 2010-09-30 2012-04-12 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
WO2014087911A1 (en) * 2012-12-07 2014-06-12 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP2014132549A (en) * 2012-12-07 2014-07-17 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
US20150333316A1 (en) * 2012-12-07 2015-11-19 Sumitomo Bakelite Co., Ltd. Negative-electrode material, negative-electrode active material, negative electrode, and alkali metal ion battery
US10388956B2 (en) 2014-03-20 2019-08-20 Kureha Corporation Carbonaceous molded article for electrodes and method of manufacturing the same
WO2016158823A1 (en) * 2015-03-27 2016-10-06 株式会社クレハ Carbonaceous molding for cell electrode, and method for manufacturing same
JPWO2016158823A1 (en) * 2015-03-27 2017-10-26 株式会社クレハ Carbonaceous molded body for battery electrode and method for producing the same

Similar Documents

Publication Publication Date Title
KR100567113B1 (en) Lithium secondary battery
JP5823790B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4477522B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the negative electrode active material
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5081375B2 (en) Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH08315820A (en) Carbon fiber for secondary battery negative electrode material and manufacture thereof
JP3540478B2 (en) Anode material for lithium ion secondary battery
JP3276983B2 (en) Anode material for lithium secondary battery and method for producing the same
EP0644603B1 (en) Negative electrode for use in a secondary battery
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP2004185975A (en) Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JPH0992283A (en) Carbon material for nonaqueous lithium secondary battery and its manufacture
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JP2002329494A (en) Graphite material for negative electrode of lithium ion secondary battery and production process thereof
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JP2003077473A (en) Graphite material for lithium ion secondary battery negative electrode
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode