JPH0990433A - Liquid crystal display element and its production - Google Patents

Liquid crystal display element and its production

Info

Publication number
JPH0990433A
JPH0990433A JP24456095A JP24456095A JPH0990433A JP H0990433 A JPH0990433 A JP H0990433A JP 24456095 A JP24456095 A JP 24456095A JP 24456095 A JP24456095 A JP 24456095A JP H0990433 A JPH0990433 A JP H0990433A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrodes
voltage
gap
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24456095A
Other languages
Japanese (ja)
Inventor
Yuzo Hisatake
雄三 久武
Masumi Okamoto
ますみ 岡本
Ryoichi Watanabe
良一 渡辺
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24456095A priority Critical patent/JPH0990433A/en
Publication of JPH0990433A publication Critical patent/JPH0990433A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid crystal display element of OCB mode constitution for which TFT switching elements and MIM elements used for large-capacity display are usable and with which the time for rising is shortened and the lower voltage for maintaining bent arrangement is necessitated. SOLUTION: The circumferences of a space regulating bodies (spacers) 16 for determining the inter-electrode spacing of the electrodes 13, 14 of the liquid crystal display element which is spray arrangement at the time of non- impression of the voltage and attains the bent arrangement by impression of the voltage are made into the bent arrangement at the time of not impressing the voltage. After a heated liquid crystal compsn. of an isotropic phase is packed into the spacing between the electrodes, the element is cooled in the state of impressing the voltage on the electrodes to cause phase transition in the nematic liquid crystal layer 20, by which the liquid crystal molecules in contact with the boundary 16a of the space regulating bodies 16 are attracted to the direction along the electric field and are perpendicularly oriented to attain the bent arrangement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子、とくに液
晶分子がベント配列した液晶表示素子およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having liquid crystal molecules in a bent arrangement and a method for manufacturing the same.

【0002】[0002]

【従来の技術】実用化されている代表的な液晶表示素子
に用いられる液晶はネマティック液晶であり、その動作
方式に、複屈折モードと旋光モードがある。
2. Description of the Related Art A liquid crystal used in a typical liquid crystal display device that has been put into practical use is a nematic liquid crystal, and its operation system includes a birefringence mode and an optical rotation mode.

【0003】捩じれネマティック液晶を用いた複屈折モ
ードの液晶の代表はSTN方式であり、急峻な電気光学
特性まを持つことから、単純マトリクス構造で大容量表
示を得ることができる。一方、旋光モードの代表である
TN方式では高コントラスト比を示すことから、TFT
などのスイッチング素子を用いたアクティブマトリクス
構造の大容量表示の素子を実現している。
A typical birefringence mode liquid crystal using a twisted nematic liquid crystal is the STN system, which has steep electro-optical characteristics, so that a large capacity display can be obtained with a simple matrix structure. On the other hand, the TN method, which is a representative of the optical rotation mode, shows a high contrast ratio.
A large-capacity display element having an active matrix structure using a switching element such as is realized.

【0004】これらの素子は電極上の配向膜により液晶
分子配列を基板にほぼ水平な方向に、ややプレチルト角
をもって配列させており、基板に対して斜め方向から観
察したときに、角度や方角により特性が変化するいわゆ
る視角依存性がある。
In these devices, the alignment film on the electrodes causes the liquid crystal molecules to be aligned in a direction substantially horizontal to the substrate with a slight pretilt angle. There is a so-called viewing angle dependence in which the characteristics change.

【0005】この視角依存性は、液晶分子を基板に対し
て垂直方向に配列することにより改善されるが、その一
例として逆向き傾斜配向ネマティック液晶セル(電気通
信学会論文誌、VOL.J63-C NO.1, 1980/01/25)が提案さ
れている(OCBモード、Optically Compensated Bir
efringence mode )。
This viewing angle dependence is improved by arranging liquid crystal molecules in a direction perpendicular to the substrate. As an example thereof, a reverse tilted nematic liquid crystal cell (Journal of the Institute of Electrical Communication, VOL.J63-C NO.1, 1980/01/25) has been proposed (OCB mode, Optically Compensated Bir)
efringence mode).

【0006】このOCBモードは図9(a)に示すよう
に、対向する電極1、2間に挟む液晶分子3が、ねじれ
ずにしかも各電極面で逆方向にプレチルト角α0 を有す
るように配列され、液晶層中間部で液晶分子3cが電極
に垂直になるような配置になっているモード(ベント配
列)で、液晶層の上半分とした半分が常時対称な形状に
なっている。このモードは電極1、2間に一定の電圧が
印加された状態で生じるものであり、電圧無印加状態で
は、図9(b)に示すように液晶層中間部の液晶分子3
cが電極に対して平行になるいわゆるスプレイ配列に戻
る。
In this OCB mode, as shown in FIG. 9A, the liquid crystal molecules 3 sandwiched between the opposing electrodes 1 and 2 are arranged so as not to be twisted and to have a pretilt angle α 0 in the opposite direction on each electrode surface. In the mode (vent arrangement) in which the liquid crystal molecules 3c are perpendicular to the electrodes in the middle portion of the liquid crystal layer, the upper half of the liquid crystal layer is always symmetrical. This mode occurs when a constant voltage is applied between the electrodes 1 and 2, and when no voltage is applied, as shown in FIG. 9B, the liquid crystal molecules 3 in the middle part of the liquid crystal layer are formed.
It returns to a so-called splay arrangement in which c is parallel to the electrodes.

【0007】OCBモードは上記のように液晶分子配列
が層を中心に対称的であるために視角を傾けても視角特
性は対称となり、さらに2軸の位相差板で補償すること
により、視角依存性がない表示が得られる。
In the OCB mode, since the liquid crystal molecule arrangement is symmetrical about the layer as described above, even if the viewing angle is tilted, the viewing angle characteristics become symmetrical, and by compensating with the biaxial retardation plate, the viewing angle dependence is obtained. It is possible to obtain a display with no effect.

【0008】このようにOCBモードは視角特性が優れ
ているが、上述のように、ベント配列を維持するために
常時一定の電圧を印加しておかなくてはならない。スプ
レイ配列からベント配列に転移させるには大きなエネル
ギーが必要であり、実際には駆動電圧を越える電圧を印
加しなくてはならない。大容量画素で高精細表示を行う
場合、TFTスイッチング素子が必要となるが、このT
FTでは印加できない高電圧が必要になる。また転移に
要する時間は1分以上を必要とし、ディスプレイを立ち
あげてから表示が出るまでが長くなる。
As described above, the OCB mode has excellent viewing angle characteristics, but as described above, a constant voltage must be constantly applied in order to maintain the vent arrangement. A large amount of energy is required to transfer from the splay array to the bent array, and in practice, a voltage exceeding the driving voltage must be applied. A TFT switching element is required for high-definition display with large-capacity pixels.
The FT requires a high voltage that cannot be applied. In addition, the time required for the transfer requires one minute or more, and it takes a long time after the display is started up until the display is displayed.

【0009】さらにまた、ベント配列を維持する電圧を
常時印加するが、駆動電圧を低くするには、維持電圧を
駆動電圧範囲の下限にして電圧設定をする。しかし、安
定なベント配列のための最小限の維持電圧は例えば2.
5Vと高いものであり、結果として駆動電圧が高いもの
となる。
Furthermore, the voltage for maintaining the vent arrangement is always applied, but in order to lower the drive voltage, the sustain voltage is set to the lower limit of the drive voltage range. However, the minimum sustaining voltage for a stable vent arrangement is eg 2.
It is as high as 5 V, resulting in a high drive voltage.

【0010】[0010]

【発明が解決しようとする課題】OCBモード表示は、
STNモードやTNモード表示に比べて視角特性に優
れ、高応答性である利点があるが、大容量表示において
無印加電圧時のスプレイ配列からベント配列に転移させ
る高印加電圧に耐える実用的なスイッチング素子がない
こと、ベント配列に立ちあげる時間が1分以上と長いこ
とと、ベント配列を維持する印加電圧が2.5Vと高
く、その結果、駆動電圧が高くなることが問題となって
いる。
The OCB mode display is as follows.
Compared with STN mode and TN mode display, it has excellent viewing angle characteristics and high responsiveness, but in large-capacity display, practical switching that withstands high applied voltage to transfer from spray arrangement to vent arrangement at no applied voltage There are problems that there are no elements, that the time required to rise to the vent arrangement is as long as 1 minute or more, and that the applied voltage for maintaining the vent arrangement is as high as 2.5V, resulting in a high drive voltage.

【0011】したがって、大容量表示に用いるTFTス
イッチング素子やMIM素子が使用できること、立ちあ
げ時間が短縮されること、ベント配列維持電圧が低くて
すむOCBモード構成が望まれ、本発明はこの構成を提
供することを目的とする。
Therefore, an OCB mode configuration that can use a TFT switching element or MIM element used for large-capacity display, shortens the start-up time, and requires a low vent array maintenance voltage is desired. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】本発明は、互いに間隔を
置いて配置された第1および第2の電極と、これら電極
間に配置され電極間の間隙を規制する間隙規制体と、前
記間隙に配置された液晶層とを有し、前記液晶層は前記
電極面上で液晶分子がプレチルト角を有するように、か
つ両電極面上で前記各プレチルト角が逆方向で、かつ液
晶分子のプレチルト方向が平行になるように配列され、
前記電極間の電圧が無印加の状態でスプレイ配列をな
し、電圧印加状態でベント配列をなしている液晶表示素
子において、前記間隙規制体は前記液晶層に接する界面
で液晶分子の一部を前記電極面に垂直な方向に配向させ
てなる液晶表示素子を得るものである。
According to the present invention, there are provided first and second electrodes spaced apart from each other, a gap regulator disposed between the electrodes to regulate a gap between the electrodes, and the gap. A liquid crystal layer disposed on the electrode surface so that the liquid crystal molecules have a pretilt angle on the electrode surface, and the pretilt angles are opposite to each other on both electrode surfaces, and the pretilt angle of the liquid crystal molecule is large. Arranged so that the directions are parallel,
In a liquid crystal display device in which a splay arrangement is formed when a voltage between the electrodes is not applied and a vent arrangement is formed when a voltage is applied, the gap regulator defines a portion of liquid crystal molecules at an interface in contact with the liquid crystal layer. A liquid crystal display device obtained by orienting in a direction perpendicular to the electrode surface.

【0013】さらに、間隙規制体が、間隙と等しい厚み
に設定されたパターン形成した膜を得るものである。
Further, the gap regulator is to obtain a patterned film having a thickness equal to the gap.

【0014】さらに、間隙と等しい厚みに設定したパタ
ーン形成した膜として、間隙と等しい粒径に設定した微
粒子を混入したものを得るものである。
Further, as a patterned film having a thickness equal to that of the gap, fine particles having a grain size equal to that of the gap are mixed.

【0015】さらに、電圧無印加状態において第1およ
び第2の電極間で液晶層の液晶分子をスプレイ配列さ
せ、間隙規制体周囲の領域をベント配列としてなるもの
を得るものである。
Further, the liquid crystal molecules of the liquid crystal layer are splay-arranged between the first and second electrodes in a state in which no voltage is applied, and the region around the gap regulator is bent-arranged.

【0016】さらに、第1および第2の電極の各面を一
定方向に配向処理し、これら面を間隙規制体を介して対
面させて電極間に間隙を形成する工程と、液晶組成物を
液体状態に加熱して、前記間隙に充填する工程と、前記
第1および第2の電極間に電圧を印加しながら前記液体
状態の液晶組成物を液晶状態になるまで冷却すること工
程とを具備することを特徴とする液晶表示素子の製造方
法を提供するものである。
Further, a step of orienting the respective surfaces of the first and second electrodes in a certain direction and making these surfaces face each other through a gap control member to form a gap between the electrodes, and a liquid crystal composition as a liquid. And a step of cooling the liquid crystal composition in the liquid state to a liquid crystal state while applying a voltage between the first and second electrodes. The present invention provides a method for manufacturing a liquid crystal display device characterized by the above.

【0017】[0017]

【作用】本発明は電極間の液晶層の液晶分子をベント配
列させる構成において、間隙規制体に液晶分子配列機能
を付与するものである。ここに基板間隙規制体とは、一
対の電極付き基板を各電極を対向するように一定の間隙
をあけて対峙させ、この間に液晶層を充填し挟持する場
合に、電極間隙部分に間隙間隔が一定になるように基板
面に分布させる微小な粒状、繊維状または層状のスペー
サである。間隙が一定になることにより液晶層の厚みが
一定に規制され、均一な特性の表示が可能になる。通
常、この間隙規制体(以下スペーサと称する)は電極す
なわち基板間の間隙保持のためのものであるから、液晶
層による光制御を妨げこそすれ、役に立たない。
According to the present invention, in the structure in which the liquid crystal molecules in the liquid crystal layer between the electrodes are arranged in a bent arrangement, the gap regulator is provided with a liquid crystal molecule aligning function. Here, the substrate gap regulator means that a pair of substrates with electrodes are opposed to each other with a certain gap so that the electrodes face each other. It is a fine granular, fibrous or layered spacer distributed on the substrate surface so as to be constant. When the gap is constant, the thickness of the liquid crystal layer is regulated to be constant, and it is possible to display uniform characteristics. Usually, this gap regulator (hereinafter referred to as a spacer) is for maintaining a gap between the electrodes, that is, the substrates, so that it interferes with the light control by the liquid crystal layer and is not useful.

【0018】本発明によれば、スペーサが液晶層に接す
る面を、液晶分子の配列が基板に対して垂直成分をもつ
ような配向面に形成して、スペーサに接する液晶分子を
基板面に対してほぼ垂直な配向にし、この領域にベント
配列を形成する。
According to the present invention, the surface of the spacer in contact with the liquid crystal layer is formed into an alignment surface in which the alignment of the liquid crystal molecules has a vertical component with respect to the substrate, and the liquid crystal molecules in contact with the spacer are in contact with the surface of the substrate. To a nearly vertical orientation, forming a vent array in this region.

【0019】ベント配列は両電極面の配向処理方向が基
板面に水平な一定の方向望ましくは同一方向にあるた
め、この面に接する液晶層は、正の誘電異方性を持つた
めほぼ水平な方向に、実際にはあるプレチルト角をもっ
て整列し、スプレイ配列となる。
In the vent arrangement, the orientation treatment directions of both electrode surfaces are constant in a horizontal direction to the substrate surface, preferably in the same direction. Therefore, the liquid crystal layer in contact with this surface has a positive dielectric anisotropy and thus is substantially horizontal. Direction, the lines are actually aligned with a certain pretilt angle to form a splay array.

【0020】しかしながら、上述のスペーサ機能により
スペーサに接する液晶層の分子は垂直配向になってお
り、電極に電圧を印加しない状態において、液晶層の層
厚の中央部で水平配向の分子と垂直配向の分子が共存す
ることなる。
However, due to the above-described spacer function, the molecules of the liquid crystal layer in contact with the spacer are vertically aligned, and in the state where no voltage is applied to the electrodes, the molecules of the liquid crystal layer are vertically aligned with the molecules of the horizontal alignment in the central part of the layer thickness. The molecules of will coexist.

【0021】このような分子配向の共存状態の作用を説
明する前に、従来構成を説明する。
Prior to explaining the function of such a coexisting state of molecular orientation, the conventional constitution will be described.

【0022】図9(b)に示すように、両電極1、2面
におけるプレチルト角α0 は等しく、したがって電圧を
印加しない状態で液晶分子3の配列は電極間のプレチル
ト角α0 が等しく層中間央の分子3cが電極面に平行な
スプレイ配列となっている。この分子配列に電界を印加
すると液晶分子3は両基板のいずれかのプレチルト角に
したがって配向する。このため、図9(c)のようにデ
ィスプレーの立ち上げの過程で一方の電極1の面にした
がったスプレー分子配列31 と他方の電極2面にしたが
ったスプレー分子配列32 とが混在し、さらに電圧を高
めると、一部の液晶分子がベント配列33 に変化して、
図9(d)のように表示面に分布する。これらの異なる
分子配列31 、32 、33 領域の境界にはディスクリネ
ーションラインDLが発生する。このような各種配列の
領域は不安定で複雑なパターンで発生し、この状態から
図9(a)の層中間の分子3cが電極面に垂直になるベ
ント配列に完全に転移させるには、さらに電圧を高めて
デイスクリネーションラインを消滅させる必要があり、
その分、余分なエネルギーを必要とする。このように従
来のOCBモードの表示素子はスプレイ配列からベント
配列に転移させるのに多大なエネルギーが必要であっ
た。
As shown in FIG. 9 (b), the pretilt angles α0 on the two surfaces of the electrodes 1 and 2 are equal. Therefore, in the state where no voltage is applied, the liquid crystal molecules 3 are arranged such that the pretilt angle α0 between the electrodes is equal and the middle of the layer is centered. The molecules 3c are in a splay array parallel to the electrode surface. When an electric field is applied to this molecular arrangement, the liquid crystal molecules 3 are aligned according to one of the pretilt angles of both substrates. Therefore, as shown in FIG. 9C, the spray molecule array 31 according to the surface of one electrode 1 and the spray molecule array 32 according to the surface of the other electrode 2 are mixed in the process of starting up the display, and further, When the voltage is increased, some liquid crystal molecules change to the bent arrangement 33,
It is distributed on the display surface as shown in FIG. A disclination line DL is generated at the boundary between these different molecular arrangement regions 31, 32 and 33. Such regions of various arrangements are generated in an unstable and complicated pattern, and in order to completely transfer the molecules 3c in the middle of the layer of FIG. 9 (a) to the bent arrangement perpendicular to the electrode surface from this state, It is necessary to increase the voltage to eliminate the discrimination line,
That requires extra energy. As described above, the conventional OCB mode display element requires a large amount of energy to transfer from the spray arrangement to the bent arrangement.

【0023】図1は本発明の作用を説明するものであ
る。図において、観察側基板である第1の基板11とそ
の対向基板である第2の基板12は各対向面に透明な第
1の電極13、第2の電極14を有しており、各電極面
13A、14Aに配向膜15a、15bを塗布してい
る。これら対向する電極13、14間にスペーサ16を
介在させて基板間隙を一定にしており、この間隙に液晶
層20が配置される。さらに第1の基板11の表面に補
償用位相差板17と偏光板18が貼付してあり、第2の
基板12の面に偏光板19が貼付してある。
FIG. 1 illustrates the operation of the present invention. In the figure, a first substrate 11 that is an observation-side substrate and a second substrate 12 that is an opposing substrate thereof have transparent first electrodes 13 and second electrodes 14 on their respective opposing surfaces. Alignment films 15a and 15b are applied to the surfaces 13A and 14A. A spacer 16 is interposed between the electrodes 13 and 14 facing each other to make the substrate gap constant, and the liquid crystal layer 20 is arranged in this gap. Further, a compensating retardation plate 17 and a polarizing plate 18 are attached to the surface of the first substrate 11, and a polarizing plate 19 is attached to the surface of the second substrate 12.

【0024】図2に示すように、各電極面の配向膜の配
向処理方向F、Rは同一方向であり、電源30から電圧
が印加されない状態では、図1の右側および図2(a)
で示すように液晶層20の液晶分子21は両電極13、
14面上の液晶分子21aは同じプレチルト角α0 で配
向される。この場合、電極間で液晶分子はツイストされ
ず、さらに、スペーサ16がない領域では、液晶層20
の中間部分で液晶分子21cは両電極面に平行に配列さ
れる。すなわち電圧無印加状態で液晶分子はスプレイ配
列になっている。
As shown in FIG. 2, the alignment treatment directions F and R of the alignment films on the respective electrode surfaces are the same, and when no voltage is applied from the power supply 30, the right side of FIG. 1 and FIG.
As shown by, liquid crystal molecules 21 of the liquid crystal layer 20 have both electrodes 13,
The liquid crystal molecules 21a on the 14th surface are aligned with the same pretilt angle α0. In this case, the liquid crystal molecules are not twisted between the electrodes, and further, in the region where the spacer 16 is absent, the liquid crystal layer 20 is formed.
The liquid crystal molecules 21c are arranged in parallel with both electrode surfaces in the middle part of. That is, the liquid crystal molecules are in a splay alignment in the state where no voltage is applied.

【0025】一方、スペーサ16のある領域およびその
近傍は、図1右側のように液晶分子21cがスペーサ1
6(図2(b))の液晶に接する界面16aにそって延
び基板や電極面にほぼ垂直な配向を形成する。
On the other hand, in the region where the spacer 16 is present and in the vicinity thereof, the liquid crystal molecules 21c are arranged in the spacer 1 as shown on the right side of FIG.
6 (FIG. 2 (b)) extends along the interface 16a in contact with the liquid crystal to form an alignment substantially vertical to the substrate or electrode surface.

【0026】電源30により電極間に電圧が印加された
状態で、図1左側に示すように液晶分子21は電極面上
の液晶分子21a、21b(図2(a))を除いて印加
される電界にほぼ沿って液晶分子が並びはじめ、液晶層
20の中間部分で液晶分子21cのうち、スペーサ16
に近い分子は垂直配向の分子21cを核として垂直方向
に配向方向を転移する。
With the voltage applied between the electrodes by the power supply 30, the liquid crystal molecules 21 are applied except for the liquid crystal molecules 21a and 21b (FIG. 2A) on the electrode surface as shown on the left side of FIG. The liquid crystal molecules start to line up substantially along the electric field, and the spacer 16 of the liquid crystal molecules 21c is formed in the middle portion of the liquid crystal layer 20.
Molecules close to are vertically oriented with the vertically oriented molecule 21c as a nucleus.

【0027】さらに高い電圧を印加すると、図1の左側
部分に示すように、液晶層20の中間部の液晶分子21
cのすべてが印加電界方向に沿って電極13、14面に
ほぼ垂直な方向に配列する。この配列はベント配列であ
る。
When a higher voltage is applied, the liquid crystal molecules 21 in the middle portion of the liquid crystal layer 20 as shown in the left side portion of FIG.
All of c are arranged in the direction substantially perpendicular to the surfaces of the electrodes 13 and 14 along the direction of the applied electric field. This sequence is a bent sequence.

【0028】以上のように、本発明の分子配列の水平、
垂直共存状態の液晶層においては、電極面全面に分布し
た例えば粒状のスペーサ周囲の液晶分子が垂直配向にな
っているために、電極間に電圧を印加すると、これらを
核として、周囲のスプレイ配列の液晶分子がベント配列
に転移する。このため低電圧かつ短時間にスプレイ配列
からベント配列に転移が完了する。
As described above, the molecular arrangement of the present invention is
In the liquid crystal layer in the vertical coexistence state, for example, liquid crystal molecules around the granular spacers, which are distributed over the entire surface of the electrode, are vertically aligned. Liquid crystal molecules of are transferred to the bent arrangement. Therefore, the transfer from the spray arrangement to the bent arrangement is completed at a low voltage and in a short time.

【0029】すなわち、初期的にベント配列の領域が存
在するので、この領域を核として全体が容易にベント配
列に転移する。しかも、ベント配列に転移した後は、弱
い印加電圧でも初期的にベント配列領域が存在する分、
スプレイ配列には転移しにくくなり、結果的に安定した
ベント相列が低電圧で維持できるものである。
That is, since the region of the vent sequence initially exists, the entire region is easily transferred to the vent sequence using this region as a nucleus. Moreover, after the transition to the bent array, the bent array region initially exists even with a weak applied voltage,
It becomes difficult to transfer to the spray arrangement, and as a result, a stable bent phase train can be maintained at a low voltage.

【0030】スペーサ壁部の液晶に接する界面16aの
配向処理はラビングによらず次のようにして行う。
The alignment treatment of the interface 16a of the spacer wall portion in contact with the liquid crystal is performed as follows regardless of rubbing.

【0031】電極面に配向膜を形成し、ラビングにより
配向処理F、Rを施した後、基板間にスペーサ16を配
置して基板周囲を封止して空セルをつくり、基板間隙に
液晶を充填する工程で、充填する液晶組成物を液晶転移
温度以上の温度に保持して液体状態(液晶分子配列がラ
ンダムな状態)として充填する。この状態では未だスペ
ーサ界面での液晶分子配列は決定されない。
After forming an alignment film on the electrode surface and performing alignment treatments F and R by rubbing, spacers 16 are arranged between the substrates to seal the periphery of the substrates to form empty cells, and liquid crystal is filled in the gaps between the substrates. In the filling step, the liquid crystal composition to be filled is held at a temperature equal to or higher than the liquid crystal transition temperature to be filled in a liquid state (state in which liquid crystal molecule alignment is random). In this state, the alignment of liquid crystal molecules at the spacer interface is not yet determined.

【0032】液晶は界面がラビング処理されてしない場
合は、最初に界面に触れたときに液晶分子が界面に吸着
され、その状態に分子配列が規定される。そこで加熱さ
れてアイソトロピック相(液体状態)になっている液晶
組成物を充填後、電極間に液晶層がベント配列を形成し
得る電圧を印加した状態で、液体状態の液晶を冷却す
る。液晶が液体状態から液晶状態に相転移するとき、液
晶層の分子配列はベント配列になっている。したがって
スペーサ界面にはベント配列状態で液晶分子が吸着す
る。すなわち基板面にほぼ垂直な配列になる。
When the interface of the liquid crystal is not rubbed, the liquid crystal molecules are adsorbed to the interface when the interface is first touched, and the molecular arrangement is defined in that state. Then, after being filled with the liquid crystal composition which is heated to the isotropic phase (liquid state), the liquid crystal in the liquid state is cooled in a state where a voltage that allows the liquid crystal layer to form a vent arrangement is applied between the electrodes. When the liquid crystal undergoes a phase transition from the liquid state to the liquid crystal state, the molecular alignment of the liquid crystal layer is bent alignment. Therefore, liquid crystal molecules are adsorbed to the spacer interface in a bent arrangement state. That is, the array is almost vertical to the substrate surface.

【0033】この結果、スペーサ付近の領域の周辺の液
晶層の液晶分子配列はベント配列となり、電圧を印加し
ない状態に戻してもこの配列は維持される。
As a result, the alignment of the liquid crystal molecules in the liquid crystal layer around the region near the spacer becomes a bent alignment, and this alignment is maintained even if the voltage is not applied.

【0034】一方、スペーサがない領域は基板の配向処
理にしたがって液晶分子が配列するから、電圧を印加し
ない状態ではスペーサ領域のベント配列と、これに影響
を受けない領域のスプレイ配列とが混在した構造にな
る。
On the other hand, since the liquid crystal molecules are aligned in the region without spacers according to the alignment treatment of the substrate, the vent alignment in the spacer region and the splay alignment in the region not affected by this are mixed when no voltage is applied. Become a structure.

【0035】本発明に用いるスペーサとして代表的なも
のは次のものである。
Typical spacers used in the present invention are as follows.

【0036】図3(a)に示すスペーサ16は球状の微
粒子であり、材料としてポリスチレン、シリカ、アルミ
ナがある。一般的には静電気を利用した乾式散布、揮発
性のある液体を溶媒として噴霧器で散布する湿式散布な
どにより基板上に形成する。
The spacer 16 shown in FIG. 3 (a) is a spherical fine particle, and its material is polystyrene, silica, or alumina. Generally, it is formed on the substrate by dry spraying using static electricity, wet spraying with a sprayer using a volatile liquid as a solvent.

【0037】図3(b)に示すスペーサ16は基板間隙
と等しい厚みに設定したパターン形成した膜であり、レ
ジスト材料などをフォトリソグラフィ法によりパターン
形成したり、印刷法によりパターン形成したり、レジス
トパターン形成後、電着法によりパターン形成して得る
ものである。
The spacer 16 shown in FIG. 3 (b) is a patterned film having a thickness equal to the substrate gap. The resist material is patterned by a photolithography method, a printing method, or a resist. It is obtained by forming a pattern by an electrodeposition method after forming the pattern.

【0038】図3(c)に示すスペーサ16は円柱状の
微粒子であり、一般にはファイバーと呼ばれるもので、
材料としてシリカが使われる。この散布も球状微粒子と
同様にして行う。
The spacer 16 shown in FIG. 3C is a cylindrical fine particle, which is generally called a fiber.
Silica is used as the material. This spraying is performed in the same manner as the spherical fine particles.

【0039】図3(b)のパターンによるスペーサ膜
(スペーサ柱)は膜厚を制御すれば容易に基板間隙を均
一に制御することが可能であり、形成手段がパターン形
成によるものなので、配置する平面的位置や密度が自由
に制御できるので分布させる個数が多すぎたり少なすぎ
たりする問題は発生しない。また、所望の位置に形成で
きる点を含めると、本発明において図3(a)、(c)
の微粒子よりも優れている。
The spacer film (spacer pillar) according to the pattern of FIG. 3B can be easily arranged to control the substrate gap uniformly by controlling the film thickness, and the forming means is formed by patterning. Since the planar position and density can be controlled freely, there is no problem of distributing too many or too few. In addition, when a point that can be formed at a desired position is included, in the present invention, as shown in FIGS.
Better than the fine particles of.

【0040】例えばスペーサ柱を電極が対向した領域に
ベント配列転移の必要数だけ配置すると、ベント配列転
移が効率よくなされて、作用を確実に得ることができ
る。
For example, when the spacer columns are arranged in the region where the electrodes face each other by the required number of vent arrangement transitions, the vent arrangement transitions are efficiently performed, and the action can be reliably obtained.

【0041】このようなスペーサ柱の膜厚を所望に形成
するには、膜の中に基板間隙に等しい粒径の図3
(a)、(c)に示すような微粒子を混入すればよい。
微粒子混入のスペーサ柱を図4に示す。
In order to form such a spacer pillar film thickness to a desired value, it is necessary to form a film having a grain size equal to the substrate gap in the film as shown in FIG.
Fine particles as shown in (a) and (c) may be mixed.
FIG. 4 shows a spacer column containing fine particles.

【0042】図4(a)は膜16c自体の厚みは微粒子
16b径よりも薄く形成して成膜した場合の構造を示
し、基板間隙規制の機能は微粒子が受け持っている。
FIG. 4A shows a structure in which the film 16c itself is formed thinner than the diameter of the fine particles 16b to form a film, and the fine particles have a function of regulating the substrate gap.

【0043】図4(b)は膜16c自体の膜厚が混入微
粒子16bの径と等しい場合であり、微粒子を混入した
膜の材料を微粒子径よりも厚い膜厚で成膜した後、基板
とは別の平板を重ねて膜材料を硬化させ、その後、平板
を取り去ることにより得ることができる。
FIG. 4B shows the case where the film thickness of the film 16c itself is equal to the diameter of the mixed fine particles 16b, and after the film material containing the fine particles is formed with a film thickness larger than the fine particle diameter, the film is formed on the substrate. Can be obtained by stacking another flat plate to cure the membrane material and then removing the flat plate.

【0044】[0044]

【実施例】【Example】

(実施例1)図5は本発明をMIMスイッチング素子を
用いたマトリクス型液晶表示素子に適用した実施例を示
す。
(Embodiment 1) FIG. 5 shows an embodiment in which the present invention is applied to a matrix type liquid crystal display element using an MIM switching element.

【0045】図において、観察側基板としてガラス製の
第1の基板11と対向基板としてガラス製の第2の基板
12を間隔を置いて配置し、各基板の対向する面に第1
の電極13と第2の電極14を配置する。第1の電極1
3はITOの透明な複数の画素電極(300 μm×300 μ
m幅)13aを480×360画素のマトリクス配置に
したもので、各画素電極13aはMIMスイッチング素
子13bを備えており、このスイッチング素子を介して
電極の周りに配線された信号線13cに接続される。な
お、図示破線で囲む領域が1画素領域である。
In the figure, a first glass substrate 11 serving as an observation side substrate and a second glass substrate 12 serving as a counter substrate are arranged at intervals, and the first substrate 11 is provided on the facing surface of each substrate.
The electrode 13 and the second electrode 14 are arranged. First electrode 1
3 is a plurality of transparent ITO pixel electrodes (300 μm × 300 μ)
m width 13a in a matrix arrangement of 480 × 360 pixels, each pixel electrode 13a is provided with a MIM switching element 13b, and is connected to a signal line 13c wired around the electrode via this switching element. It The area surrounded by the broken line in the drawing is a one-pixel area.

【0046】ITOでできた第2の電極14は第2の基
板12上に幅350 μmのストライプ状に配置され、画素
電極13aに対向して配置され、画素電極と交差する領
域を画素領域とするもので、第2の電極14に走査信号
が印加されるようになっている。
The second electrodes 14 made of ITO are arranged on the second substrate 12 in a stripe shape having a width of 350 μm, are arranged so as to face the pixel electrodes 13a, and a region intersecting with the pixel electrodes is referred to as a pixel region. However, the scanning signal is applied to the second electrode 14.

【0047】両電極13、14上には、4°のプレチル
ト角α0 が得られる配向膜15a、5b(オプトマーA
L−3456、(株)日本合成ゴム製)を塗布し焼成し
た後、図4の矢印F、Rで示す同一方向にラビング配向
処理を施した。MIM素子付き第1の基板11にスペー
サ16として粒径7.5μmの球状微粒子(ミクロパー
ルSP、(株)積水ファインケミカル製)を散布密度1
00個/mm2 となるよう乾式散布法にて散布し、有効
表示領域の周辺に5mm幅の開口部を設けた周辺シール
パターンをスクリーン印刷法にて形成した。ここで用い
たシール材料は1液性エポキシ樹脂(XN−21、三井
東圧化学(株)製)である。
On both electrodes 13 and 14, alignment films 15a and 5b (Optomer A) having a pretilt angle α0 of 4 ° are obtained.
L-3456 (manufactured by Japan Synthetic Rubber Co., Ltd.) was applied and fired, and then subjected to rubbing alignment treatment in the same direction as indicated by arrows F and R in FIG. Spherical fine particles having a particle size of 7.5 μm (Micropearl SP, manufactured by Sekisui Fine Chemical Co., Ltd.) were dispersed as a spacer 16 on the first substrate 11 with an MIM element at a density of 1
It was sprayed by a dry spraying method so as to have a density of 00 pieces / mm 2, and a peripheral seal pattern having an opening with a width of 5 mm was formed around the effective display area by a screen printing method. The sealing material used here is a one-component epoxy resin (XN-21, manufactured by Mitsui Toatsu Chemicals, Inc.).

【0048】しかる後、前記2枚の基板を電極面が対向
するようにして重ね合わせて、基板間隙がスペーサ16
の粒径と等しくなるよう加圧しながら180℃で2時間
焼成し、本実施例の液晶表示素子に用いる空セルを得
た。
After that, the two substrates are superposed so that the electrode surfaces face each other, and the substrate gap is reduced by the spacer 16.
While being pressed so as to have a particle diameter equal to that of the above, it was baked at 180 ° C. for 2 hours to obtain an empty cell used for the liquid crystal display element of this example.

【0049】しかる後、空セルを真空チャンバー内に入
れ、液晶材料として正の誘電異方性を示すネマティック
液晶材料(ZLI−4801−100、(株)メルクジ
ャパン製。Δn=0.1055。Δε=+4.9。ネマ
ティック−液体状態相転移温度67℃)に黒色の染料
(LA103/4、(株)三菱化学製)を2.0wt%
添加した液晶組成物を、前記空セルを共に100℃に加
熱し、液晶組成物を液体状態として、減圧注入法にて前
記空セル注入し液晶層20とした。続いて、セルの温度
を100℃に保ったまま、前記周辺シールパターンの開
口部を紫外線硬化樹脂(UV−1000、(株)ソニー
ケミカル製)にて封止し、この状態で基板のMIMスイ
ッチング素子13bを用いてアイソトロピック相(液体
状態)の液晶層20に10Vの電圧を印加して、印加し
たまま、セルの温度が20℃となるまで徐冷してネマテ
ィック液晶相に相転移し、本実施例の液晶表示素子に用
いる液晶セルを得た。この方法で液晶分子は電極面上で
4°のプレチルト角を有するように、各電極13a、1
4で互いに逆方向でプレチルト方向が平行になるように
スプレイ配列し、スペーサ界面で液晶分子の一部が電極
面に垂直な方向に配列する。
Thereafter, an empty cell was placed in a vacuum chamber, and a nematic liquid crystal material (ZLI-4801-100, manufactured by Merck Japan Ltd.) having a positive dielectric anisotropy as a liquid crystal material, Δn = 0.1055. = + 4.9. 2.0 wt% of a black dye (LA103 / 4, manufactured by Mitsubishi Chemical Corporation) was added to the nematic-liquid state phase transition temperature of 67 ° C.
The liquid crystal composition added was heated to 100 ° C. in both the empty cells to make the liquid crystal composition in a liquid state, and the empty cells were injected by a reduced pressure injection method to form a liquid crystal layer 20. Subsequently, while maintaining the cell temperature at 100 ° C., the opening of the peripheral seal pattern is sealed with an ultraviolet curing resin (UV-1000, manufactured by Sony Chemical Co., Ltd.), and in this state, MIM switching of the substrate is performed. A voltage of 10 V is applied to the liquid crystal layer 20 in the isotropic phase (liquid state) by using the element 13b, and while being applied, the cell is gradually cooled until the temperature of the cell reaches 20 ° C. A liquid crystal cell used for the liquid crystal display element of this example was obtained. In this way, the liquid crystal molecules have a pretilt angle of 4 ° on the electrode surface so that each electrode 13a, 1
In 4, the spray alignment is performed so that the pretilt directions are opposite to each other and parallel to each other, and a part of the liquid crystal molecules is aligned in the direction perpendicular to the electrode surface at the spacer interface.

【0050】得られた液晶セルの観察側の第1の基板1
3面に2軸光学補償フィルムとしてPC位相差板17
((株)日東電工製)をその屈折率の最も大きい方位が
セルのラビング処理方向Fと直交するように基板面に張
り合わせ、さらに、この位相差板17上と、セルの第2
の基板14面にそれぞれ偏光板18、19を互いに偏光
軸が直交しラビング処理方向、位相差板17の最大屈折
率方位と45°の角度をなすように張り合わせて本実施
例の液晶表示素子を得た。
Observation-side first substrate 1 of the obtained liquid crystal cell
PC retardation film 17 as a biaxial optical compensation film on three surfaces
(Manufactured by Nitto Denko Co., Ltd.) is attached to the substrate surface such that the azimuth having the largest refractive index is orthogonal to the rubbing processing direction F of the cell, and further on the retardation plate 17 and the second cell of the cell.
Polarizing plates 18 and 19 are attached to the surface of the substrate 14 so that their polarization axes are orthogonal to each other so as to form a rubbing direction and an angle of 45 ° with the maximum refractive index azimuth of the retardation plate 17 to form the liquid crystal display device of this embodiment. Obtained.

【0051】この素子に電圧を印加し、全画素の電極間
に1乃至5Vの電圧を印加し、表示領域全面がベント配
列になるまでの時間を測定したところ、0.8秒と極め
て早かった。測定結果を下表に実施例2、3と比較例
1、2の結果とともに示す。
A voltage was applied to this element, a voltage of 1 to 5 V was applied between the electrodes of all pixels, and the time until the entire display area was bent was measured. The result was 0.8 seconds, which was extremely fast. . The measurement results are shown in the table below together with the results of Examples 2 and 3 and Comparative Examples 1 and 2.

【0052】[0052]

【表1】 [Table 1]

【0053】また、印加電圧が1.5Vでも容易にベン
ト配列に転移しており、この印加電圧1.5Vの状態を
1時間保ったところ、スプレイ配列への転移は生じなか
った。これらの結果から、本実施例の液晶表示素子は
1,5V〜4Vの範囲で駆動できることが確認された。
Further, even when the applied voltage was 1.5 V, the transition to the bent array was easy, and when the state of the applied voltage of 1.5 V was maintained for 1 hour, the transition to the spray array did not occur. From these results, it was confirmed that the liquid crystal display device of this example can be driven in the range of 1,5V to 4V.

【0054】また、印加電圧1.5V〜4Vで駆動し、
観察角度に対するコントラスト比の変化を測定したとこ
ろ、正面でコントラスト比50:1、また30°コーン
の視角でコントラスト比が最小20:1となり良好な視
角依存性の改善が見られた。
Driving with an applied voltage of 1.5 V to 4 V,
When the change of the contrast ratio with respect to the observation angle was measured, the contrast ratio was 50: 1 at the front and the contrast ratio was 20: 1 at the viewing angle of 30 ° cone, which was a good improvement in the viewing angle dependency.

【0055】(比較例1)実施例1における液晶組成物
を空セルに充填する工程(液晶注入工程)を、実施例1
同様、真空チャンバーを用いた減圧注入法にて行った。
本比較例では、実施例1と同様の材料、製法、条件にて
作成した空セル、および液晶組成物を用い、前記空セ
ル、液晶組成物ともに加熱しないで20℃にて空セルに
ネマティック液晶相の液晶組成物を充填した。これ以外
の工程は実施例1と同様にして従来のOCBモードであ
る液晶表示素子を得た。
Comparative Example 1 The step of filling the empty cell with the liquid crystal composition in Example 1 (liquid crystal injecting step) was carried out in Example 1.
Similarly, it was carried out by a reduced pressure injection method using a vacuum chamber.
In this comparative example, an empty cell and a liquid crystal composition prepared by using the same material, manufacturing method, and conditions as in Example 1 were used, and the empty cell and the liquid crystal composition were both heated without heating the nematic liquid crystal in the empty cell at 20 ° C. The liquid crystal composition of the phase was filled. Other steps were the same as in Example 1 to obtain a conventional OCB mode liquid crystal display element.

【0056】実施例1同様に、表示領域全面がベント配
列となるまでの時間を測定した結果、駆動電圧5Vとし
ても、表示領域全面がベント配列となるまでの時間は5
分30秒と極めて遅かった。
As in Example 1, as a result of measuring the time until the entire display area is in the bent array, the time until the entire display area is in the bent array is 5 even when the driving voltage is 5V.
It was a very late 30 minutes.

【0057】また、全面がベント配列になった後、印加
電圧を2.0Vとしたところ、約1分で一部の画素がス
プレイ配列に転移した。
When the applied voltage was set to 2.0 V after the entire surface was in the bent arrangement, some pixels were transferred to the spray arrangement in about 1 minute.

【0058】さらに、MIM素子は、5Vよりも大きな
電圧を印加することができないので、本例の素子の駆動
電圧は2.5V〜5Vの範囲で駆動せざるを得ず、この
範囲で得られる表示の観察角度に対するコントラスト比
の変化は、正面でコントラスト比15:1、30°コー
ンの視角ではコントラスト比10:1以上と正面コント
ラスト比が低いために視角特性が実施例1の素子よりも
劣化していた。
Further, since the MIM element cannot apply a voltage higher than 5V, the driving voltage of the element of this example is inevitably driven in the range of 2.5V to 5V, and it can be obtained in this range. The change of the contrast ratio with respect to the viewing angle of the display is 15: 1 at the front and the contrast ratio is 10: 1 or more at the viewing angle of a 30 ° cone, and the viewing angle characteristic is lower than that of the device of Example 1 because the front contrast ratio is low. Was.

【0059】(実施例2)実施例1に用いたMIM素子
付き基板11、12を用い、実施例1同様、基板に配向
膜15a、15bとしてオプトマーAL−3456
((株)日本合成ゴム製。プレチルト角4°)を塗布
し、焼成した後、図5に示す方向にラビング配向処理
F、Rを施した。しかる後、図に示すITOストライプ
電極付きガラス基板12に、レジスト材料OFPR−5
000((株)東京応化製)を膜厚7.5μmとなるよ
うスピンナーで塗布し、焼成した後、図6に示すような
ストライプ電極ピッチの1/2間隔でかつストライプ間
およびストライプ中央にスペーサ膜16dが位置するよ
うに、角柱状パターンとなるようマスクを用いて露光、
現像し、スペーサ16dとした。しかる後、実施例1同
様、に有効表示領域の周辺に5mm幅の開口部を設けた
周辺シールパターンをスクリーン印刷法にて形成した。
ここで用いたシール材料は、実施例1同様、XN−21
である。
(Example 2) Using the substrates 11 and 12 with MIM elements used in Example 1, as in Example 1, alignment films 15a and 15b were formed on the substrate as Optomer AL-3456.
(Manufactured by Japan Synthetic Rubber Co., Ltd., pretilt angle 4 °) was applied and baked, and then rubbing alignment treatments F and R were applied in the directions shown in FIG. After that, the resist material OFPR-5 was applied to the glass substrate 12 with the ITO stripe electrode shown in the figure.
000 (manufactured by Tokyo Ohka Co., Ltd.) was applied by a spinner to a film thickness of 7.5 μm and baked, and then spacers were formed at half intervals of the stripe electrode pitch as shown in FIG. Exposure using a mask to form a prismatic pattern so that the film 16d is positioned,
It was developed to be a spacer 16d. Thereafter, as in Example 1, a peripheral seal pattern having an opening of 5 mm width was formed around the effective display area by a screen printing method.
The sealing material used here is XN-21 as in Example 1.
It is.

【0060】しかる後、前記2枚の基板を電極面が対向
するようにして重ね合わせて、電極の間隙が柱状スペー
サ16dの高さと等しくなるよう加圧しながら180℃
で2時間焼成し、本実施例の液晶表示素子に用いる空セ
ルを得た。
Thereafter, the two substrates are superposed so that their electrode surfaces face each other, and 180 ° C. while pressurizing so that the gap between the electrodes becomes equal to the height of the columnar spacer 16d.
After firing for 2 hours, an empty cell used for the liquid crystal display device of this example was obtained.

【0061】しかる後、前記空セルを用いて、実施例1
同様の材料、製法によって液晶表示素子を作製した。
Then, using the empty cell, Example 1
A liquid crystal display element was manufactured by using the same material and manufacturing method.

【0062】この素子に電圧を印加し、全画素の電極間
に1〜5Vの電圧を印加し、表示領域全面がベント配列
になるまでの時間を測定した。
A voltage was applied to this element and a voltage of 1 to 5 V was applied between the electrodes of all the pixels, and the time until the entire display area was bent arrangement was measured.

【0063】本実施例では素子の駆動電圧5Vにおい
て、表示領域全面がベント配列になるまでの時間は0.
5秒と極めて早かった。
In this embodiment, when the device driving voltage is 5 V, the time required for the entire display region to be in the bent arrangement is 0.
It was extremely fast at 5 seconds.

【0064】また、印加電圧が1.5Vでも容易にベン
ト配列に転移しており、この印加電圧1.5Vの状態を
1時間保ったところ、スプレイ配列への転移は発生しな
かった。これらの結果から、本実施例の液晶表示素子は
1,5V〜4Vの範囲で駆動できることが確認された。
Further, even when the applied voltage was 1.5 V, the transition to the bent array was easy, and when the state of the applied voltage of 1.5 V was maintained for 1 hour, the transition to the spray array did not occur. From these results, it was confirmed that the liquid crystal display device of this example can be driven in the range of 1,5V to 4V.

【0065】また、印加電圧1.5V〜4Vで駆動し、
観察角度に対するコントラスト比の変化を測定したとこ
ろ、正面でコントラスト比100:1と実施例1以上に
優れたコントラスト比であった。これはスペーサを各画
素電極ごとに1個しか配置しなかったことによるもので
ある。また30°コーンの視角でコントラスト比が2
5:1以上となり良好な視角依存性の改善が見られた。
Driving with an applied voltage of 1.5 V to 4 V,
When the change in the contrast ratio with respect to the observation angle was measured, the contrast ratio on the front side was 100: 1, which was an excellent contrast ratio over that of Example 1. This is because only one spacer was arranged for each pixel electrode. Also, the contrast ratio is 2 at a viewing angle of 30 ° cone.
It was 5: 1 or more, and a good improvement in viewing angle dependence was observed.

【0066】(比較例2)実施例2における基板間隙材
形成工程をラビング処理工程前に行い、間隙規制体が形
成された後に実施例2同様にしてラビング処理を行っ
た。これ以外の製法、材料、条件は実施例2同様にし
て、従来のOCBモードである液晶表示素子を得た。
Comparative Example 2 The substrate gap material forming step in Example 2 was performed before the rubbing treatment step, and the rubbing treatment was performed in the same manner as in Example 2 after the gap regulator was formed. Except for this, the manufacturing method, materials, and conditions were the same as in Example 2 to obtain a conventional OCB mode liquid crystal display element.

【0067】実施例2同様に、表示領域全面がベント配
列となるまでの時間を測定した結果、駆動電圧5Vとし
ても、表示領域全面がベント配列となるまでの時間は8
分30秒と極めて遅かった。
As in Example 2, the time until the entire display area is bent is measured. As a result, the time until the entire display area is bent is 8 even when the driving voltage is 5V.
It was a very late 30 minutes.

【0068】また、表示領域全面がベント配列となった
後、印加電圧を2.0Vとしたところ、約30秒で、一
部の画素がスプレイ配列に転移してしまった。
When the applied voltage was set to 2.0 V after the entire display area was in the bent arrangement, some pixels were transferred to the spray arrangement in about 30 seconds.

【0069】またMIM素子では、液晶層に5Vより大
きい電圧を印加できないので、結果的にこの液晶表示素
子は印加電圧2.5〜5Vでの駆動をせざるおえなくな
った。 印加電圧2.5〜5Vにて前記液晶表示素子を
駆動し、観察角度に対するコントラスト比の変化を測定
したところ、正面でコントラスト比15:1、30°コ
ーンの視角ではコントラスト比10:1以上と正面コン
トラスト比が低いことに起因し、視角特性が、比較例1
同様、実施例1、2より悪くなっていた。
Further, in the MIM element, since a voltage higher than 5V cannot be applied to the liquid crystal layer, this liquid crystal display element consequently has to be driven at an applied voltage of 2.5 to 5V. The liquid crystal display device was driven at an applied voltage of 2.5 to 5 V, and the change in the contrast ratio with respect to the observation angle was measured. The contrast ratio was 15: 1 at the front, and the contrast ratio was 10: 1 or more at the viewing angle of 30 ° cone. Due to the low front contrast ratio, the viewing angle characteristics were
Similarly, it was worse than in Examples 1 and 2.

【0070】(実施例3)図7に示すようなITOの隙
間のない共通電極13およびR,G,Bのカラーフィル
ター21をもつ基板11およびTFT素子14a付き基
板12を作製した。なお、図5と同符号の部分は同様部
分を示す。
Example 3 As shown in FIG. 7, a common electrode 13 having no ITO gap, a substrate 11 having R, G, and B color filters 21 and a substrate 12 with a TFT element 14a were prepared. The same reference numerals as those in FIG. 5 indicate the same parts.

【0071】図7(b)はTFT素子付き基板12の構
造を示すもので、各色フィルターRGBごとの画素電極
14R 14G 14B が各TFT14aを介して電極周囲
に配線された走査線22、信号線23に接続される。図
7(c)はITO共通電極付きカラーフィルター基板1
1の構造を示すもので、カラーフィルタ21R 、21G
、21B が電極14R 、14G 、14B に対応して配
置され、その周囲をブラックマトリクス層24が囲み、
これらフィルタ上に共通電極13を形成している。
FIG. 7B shows the structure of the substrate 12 with a TFT element, in which the pixel electrodes 14R 14G 14B for the respective color filters RGB are wired around the electrodes via the respective TFTs 14a, and the scanning line 22 and the signal line 23. Connected to. FIG. 7C shows a color filter substrate 1 with an ITO common electrode.
1 shows the structure of the color filter 21R, 21G
, 21B are arranged corresponding to the electrodes 14R, 14G, 14B, and a black matrix layer 24 surrounds them.
The common electrode 13 is formed on these filters.

【0072】これら2枚の基板を用い、双方の基板に、
配向膜15a、15bとして、オプトマーAL−345
6((株)日本合成ゴム製。プレチルト角4°)を塗布
し、このうちITO共通電極付きガラス基板11に、実
施例1で用いたスペーサ16である粒径7.5μmの球
状微粒子(ミクロパールSP、(株)積水ファインケミ
カル製)を実施例2で用いたレジスト材料(OFPR−
5000、(株)東京応化製)に重量比1:5で混入
し、拡販した後、基板全面に印刷法で膜厚10μmとな
るよう印刷し、平らなガラス基板を対向させ、重ね合わ
せて加圧し、基板間隙が前記球状微粒子の粒径7.5μ
mとなるようにして60℃30分の焼成を行った。しか
る後、前記素ガラス基板を剥離し、実施例2同様にし
て、図8に示すようなパターンとなるようマスクを用い
て露光、現像し、柱状の間隙規制体16eとした。しか
る後、有効表示領域の周辺に5mm幅の開口部を設けた
周辺シールパターンをスクリーン印刷法にて形成した。
ここで用いたシール材料は、実施例1、2同様、XN−
21である。
Using these two substrates, for both substrates,
As alignment films 15a and 15b, Optomer AL-345 is used.
6 (manufactured by Japan Synthetic Rubber Co., Ltd .; pretilt angle 4 °) was applied to the glass substrate 11 with the ITO common electrode, which was the spacer 16 used in Example 1 and had spherical particles (microparticles of 7.5 μm in diameter). A resist material (OFPR-) using Pearl SP, manufactured by Sekisui Fine Chemical Co., Ltd. in Example 2
5,000, manufactured by Tokyo Ohka Co., Ltd., at a weight ratio of 1: 5, and after expanding sales, printed on the entire surface of the substrate by a printing method so that the film thickness was 10 μm, and flat glass substrates were made to face each other and overlapped. When pressed, the substrate gap has a particle diameter of the spherical fine particles of 7.5 μ.
Firing was carried out at 60 ° C. for 30 minutes so as to obtain m. Then, the raw glass substrate was peeled off, and exposed and developed using a mask so as to form a pattern as shown in FIG. Then, a peripheral seal pattern having an opening with a width of 5 mm was formed around the effective display area by a screen printing method.
The sealing material used here is XN-as in Examples 1 and 2.
21.

【0073】しかる後、前記2枚の基板を電極面が対向
するようにして重ね合わせて、基板間隙が前記基板間隙
材の粒径と等しくなるよう加圧しながら180℃で2時
間焼成し、本実施例の液晶表示素子に用いる空セルを得
た。
After that, the two substrates are stacked so that the electrode surfaces face each other, and baked at 180 ° C. for 2 hours while pressurizing so that the substrate gap becomes equal to the particle size of the substrate gap material, An empty cell used for the liquid crystal display element of the example was obtained.

【0074】しかる後、前記空セルを用いて、実施例
1、2同様の材料、製法にて液晶表示素子を作製した。
Thereafter, a liquid crystal display element was manufactured by using the above empty cell and using the same material and manufacturing method as in Examples 1 and 2.

【0075】こうして得られた本実施例の液晶表示素子
に基板のTFT素子14aを介して全画素に1〜5Vの
電圧を印加し、実施例1、2同様、表示領域全面がベン
ト配列となるまでの時間を測定した。本実施例では素子
の駆動電圧5Vにおいて、表示領域全面がベント配列と
なるまでの時間は0.2秒と極めて早かった。
A voltage of 1 to 5 V is applied to all the pixels of the liquid crystal display element of this embodiment thus obtained through the TFT element 14a of the substrate, and like the first and second embodiments, the entire display area is in a bent arrangement. Was measured. In this example, when the device drive voltage was 5 V, the time required for the entire display region to be in the bent arrangement was 0.2 seconds, which was extremely fast.

【0076】また、印加電圧1.5Vでも、容易にベン
ト配列に転移しており、この印加電圧1.5Vの状態を
1時間保った状態にしたところ、スプレイ配列への転移
は発生しなかった。これらのことから、本実施例の液晶
表示素子は1.5〜5Vにて駆動できることが確認され
た。
Further, even with an applied voltage of 1.5 V, the transition to the bent array was easy, and when the state of the applied voltage of 1.5 V was kept for 1 hour, the transition to the spray array did not occur. . From these, it was confirmed that the liquid crystal display device of this example can be driven at 1.5 to 5V.

【0077】また、印加電圧1.5〜5Vにて本実施例
の液晶表示素子を駆動し、観察角度に対するコントラス
ト比の変化を測定したところ、正面でコントラスト比2
00:1、30°コーンの視角で、コントラスト比5
0:1以上の良好な視角依存性が得られた。
The liquid crystal display device of this example was driven with an applied voltage of 1.5 to 5 V, and the change in the contrast ratio with respect to the observation angle was measured.
00: 1, 30 ° cone viewing angle, contrast ratio 5
A good viewing angle dependency of 0: 1 or more was obtained.

【0078】[0078]

【発明の効果】本発明によれば、ディスプレーとして表
示を可能にする立上がり時間が著しく短縮され、液晶分
子のベント配列を維持する電圧を低くし、駆動電圧範囲
を拡大し、コントラスト比を向上できる大容量に適した
OCBモードの液晶表示素子を得ることができる。
According to the present invention, the rise time that enables display as a display is significantly shortened, the voltage for maintaining the bent arrangement of liquid crystal molecules is lowered, the driving voltage range is expanded, and the contrast ratio can be improved. It is possible to obtain an OCB mode liquid crystal display device suitable for a large capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成、作用を説明する断面図、FIG. 1 is a cross-sectional view illustrating the configuration and operation of the present invention,

【図2】本発明の作用を説明するもので、(a)はスプ
レイ配列を説明する略図、(b)は電極と間隙規制体に
よる液晶分子配向を説明する略図、
2A and 2B are diagrams for explaining the operation of the present invention, in which FIG. 2A is a schematic diagram illustrating a splay array, and FIG. 2B is a schematic diagram illustrating alignment of liquid crystal molecules by electrodes and a gap regulator.

【図3】(a)乃至(c)は間隙規制体の例を示す断面
略図、
3A to 3C are schematic sectional views showing an example of a gap control body;

【図4】(a)、(b)は間隙規制体の例を示す断面略
図、
4A and 4B are schematic sectional views showing an example of a gap control body,

【図5】本発明の一実施例を示すもので、(a)は断面
図、(b)、(c)は平面図、
FIG. 5 shows an embodiment of the present invention, in which (a) is a sectional view, (b) and (c) are plan views,

【図6】本発明の他の実施例を示す平面略図、FIG. 6 is a schematic plan view showing another embodiment of the present invention,

【図7】本発明の他の実施例を示すもので、(a)は断
面図、(b)、(c)は平面略図、
FIG. 7 shows another embodiment of the present invention, (a) is a sectional view, (b) and (c) are schematic plan views,

【図8】図7の実施例の間隙規制体の配置を示す平面略
図、
FIG. 8 is a schematic plan view showing the arrangement of the gap restricting body of the embodiment of FIG.

【図9】従来装置の作用を説明するもので、(a)、
(b)、(c)は略図、(d)は平面図。
FIG. 9 is a view for explaining the operation of the conventional device, (a),
(B), (c) is a schematic view, (d) is a plan view.

【符号の説明】[Explanation of symbols]

11…第1の基板 12…第2の基板 13…第1の電極 14…第2の電極 15a、15b…配向膜 16…間隙規制体 20…液晶層 11 ... 1st substrate 12 ... 2nd substrate 13 ... 1st electrode 14 ... 2nd electrode 15a, 15b ... Alignment film 16 ... Gap control body 20 ... Liquid crystal layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Hato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company Toshiba Yokohama office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに間隙を置いて配置された第1およ
び第2の電極と、これら電極間に配置され電極間の間隙
を規制する間隙規制体と、前記間隙に配置された液晶層
とを有し、前記液晶層は前記電極面上で液晶分子がプレ
チルト角を有するように、かつ両電極面上で前記各プレ
チルト角が逆方向で、かつ液晶分子のプレチルト方向が
平行になるように配列され、前記電極間の電圧が無印加
の状態でスプレイ配列をなし、電圧印加状態でベント配
列をなしている液晶表示素子において、前記間隙規制体
は前記液晶層に接する界面で液晶分子の一部を前記電極
面に垂直な方向に配向させてなる液晶表示素子。
1. A first electrode and a second electrode which are arranged with a gap therebetween, a gap regulator which is arranged between these electrodes and regulates a gap between the electrodes, and a liquid crystal layer which is arranged in the gap. The liquid crystal layer is arranged such that liquid crystal molecules have a pretilt angle on the electrode surfaces, and the pretilt angles are opposite directions on both electrode surfaces and the pretilt directions of the liquid crystal molecules are parallel to each other. In the liquid crystal display device in which a splay arrangement is formed when no voltage is applied between the electrodes and a vent arrangement is formed when a voltage is applied, the gap regulator is a part of liquid crystal molecules at an interface in contact with the liquid crystal layer. A liquid crystal display device in which the liquid crystal is oriented in a direction perpendicular to the electrode surface.
【請求項2】 間隙規制体が、間隙と等しい厚みに設定
されたパターン形成した膜からなることを特徴とする請
求項1に記載の液晶表示素子。
2. The liquid crystal display element according to claim 1, wherein the gap regulator is formed of a patterned film having a thickness equal to the gap.
【請求項3】 間隙と等しい厚みに設定したパターン形
成した膜に、間隙と等しい粒径に設定した微粒子を混入
したことを特徴とする請求項1または2に記載の液晶表
示素子。
3. The liquid crystal display device according to claim 1, wherein fine particles having a particle diameter equal to that of the gap are mixed in a patterned film having a thickness equal to that of the gap.
【請求項4】 電圧無印加状態において第1および第2
の電極間で液晶層の液晶分子をスプレイ配列させ、間隙
規制体周囲の領域をベント配列としてなる請求項1に記
載の液晶表示素子。
4. The first and second electrodes when no voltage is applied.
The liquid crystal display element according to claim 1, wherein the liquid crystal molecules of the liquid crystal layer are splay-arranged between the electrodes, and the region around the gap regulator is bent-arranged.
【請求項5】 第1および第2の電極の各面を一定方向
に配向処理し、これら面を間隙規制体を介して対面させ
て電極間に間隙を形成する工程と、 液晶組成物を液体状態に加熱して、前記間隙に充填する
工程と、 前記第1および第2の電極間に電圧を印加しながら前記
液体状態の液晶組成物を液晶状態になるまで冷却するこ
と工程とを具備することを特徴とする液晶表示素子の製
造方法。
5. A step of orienting each surface of the first and second electrodes in a certain direction to form a gap between the electrodes by facing these surfaces through a gap control member, and the liquid crystal composition is a liquid. Heating the liquid crystal to fill the gap and cooling the liquid crystal composition in the liquid state to a liquid crystal state while applying a voltage between the first and second electrodes. A method for manufacturing a liquid crystal display element, comprising:
JP24456095A 1995-09-22 1995-09-22 Liquid crystal display element and its production Pending JPH0990433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24456095A JPH0990433A (en) 1995-09-22 1995-09-22 Liquid crystal display element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24456095A JPH0990433A (en) 1995-09-22 1995-09-22 Liquid crystal display element and its production

Publications (1)

Publication Number Publication Date
JPH0990433A true JPH0990433A (en) 1997-04-04

Family

ID=17120536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24456095A Pending JPH0990433A (en) 1995-09-22 1995-09-22 Liquid crystal display element and its production

Country Status (1)

Country Link
JP (1) JPH0990433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053366A1 (en) * 1998-04-08 1999-10-21 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device and splay-bent transition time evaluating method
KR100426920B1 (en) * 1999-12-24 2004-04-13 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal display device
US6933916B2 (en) 2000-12-19 2005-08-23 Matsushita Electric Industrial Co., Ltd. Liquid crystal display and its driving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053366A1 (en) * 1998-04-08 1999-10-21 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device and splay-bent transition time evaluating method
KR100426920B1 (en) * 1999-12-24 2004-04-13 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal display device
US6933916B2 (en) 2000-12-19 2005-08-23 Matsushita Electric Industrial Co., Ltd. Liquid crystal display and its driving method

Similar Documents

Publication Publication Date Title
KR100320320B1 (en) Liquid crystal display device
US6417908B2 (en) Liquid crystal device having spacers and manufacturing method thereof
US6504592B1 (en) Liquid crystal display and method of manufacturing the same and method of driving the same
JPS6363020A (en) Preparation of liquid crystal electro-optic device
KR20010078377A (en) A liquid crystal display device
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JPH09197420A (en) Liquid crystal element
US6330048B1 (en) Liquid crystal display device
JPH11305256A (en) Active matrix type liquid crystal display device
JP2001264767A (en) Structure of multidomain wide viewing angle liquid crystal display
JPH08328045A (en) Liquid crystal display element
JPH0990433A (en) Liquid crystal display element and its production
KR100671101B1 (en) Dispersed cholesteric liquid crystal display with color filter
JP2003255347A (en) Liquid crystal display and production method thereof
JPH0990432A (en) Liquid crystal display element and its production
JP3395878B2 (en) Liquid crystal display
US20040125276A1 (en) Liquid crystal display
JP3328444B2 (en) Liquid crystal element and manufacturing method thereof
JP2000284290A (en) Liquid crystal display device
US6011603A (en) Double super twisted nematic liquid crystal display with improved pre-tilt angles
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JPH11153816A (en) Antiferroelectric liquid crystal panel
JPH0368924A (en) Liquid crystal display device
JP2000131700A (en) Liquid crystal display device
JP2860806B2 (en) LCD color display