JPH0989617A - Semiconductor heat-generating device and its manufacture - Google Patents

Semiconductor heat-generating device and its manufacture

Info

Publication number
JPH0989617A
JPH0989617A JP7239930A JP23993095A JPH0989617A JP H0989617 A JPH0989617 A JP H0989617A JP 7239930 A JP7239930 A JP 7239930A JP 23993095 A JP23993095 A JP 23993095A JP H0989617 A JPH0989617 A JP H0989617A
Authority
JP
Japan
Prior art keywords
heating element
silicon oxide
silicon
silicon substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7239930A
Other languages
Japanese (ja)
Inventor
Norihiro Konda
徳大 根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7239930A priority Critical patent/JPH0989617A/en
Publication of JPH0989617A publication Critical patent/JPH0989617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor heal-generating device by reducing heat which escapes an electrical heating element to a silicon substrate. SOLUTION: An electrical heating element 14 is provided only on a supporting film 13 for connecting silicon oxide heat-insulating layers 12 formed on a silicon substrate 11, the edge part of the electrical heating element 14 and an area on the silicon oxide heat-insulating layers 12 are connected by a metal leading wire 15, and at the same time a heat-insulating space 18 is provided on the reverse side of the supporting film 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発熱装置お
よびその製造方法に関し、特に熱式流量センサ、ガスセ
ンサ等に適した半導体発熱装置およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor heating device and a manufacturing method thereof, and more particularly to a semiconductor heating device suitable for a thermal type flow sensor, a gas sensor and the like and a manufacturing method thereof.

【0002】[0002]

【従来の技術】熱式流量センサなどに用いられる半導体
基板に発熱体を形成した半導体発熱装置は、図3に示す
ように、シリコン基板11上に電気絶縁層および支持層
として働く酸化シリコン(SiO2)12を成膜し、さ
らにこの酸化シリコン層上に成膜した多結晶シリコン層
をエッチングして発熱体14を形成した後、該発熱体1
4上を酸化シリコンや窒化シリコン等からなる保護膜1
6で覆い、電極パッドとなる部分をエッチングして設け
た透孔に金属リード線17を接続し、さらに、発熱体1
4の下方のシリコン基板11を熱絶縁の目的で異方性エ
ッチングにより除去して空間18を形成したものをガラ
ス基板20に貼り付けて半導体発熱装置10を構成して
いる。
2. Description of the Related Art As shown in FIG. 3, a semiconductor heating device in which a heating element is formed on a semiconductor substrate used for a thermal type flow sensor or the like has a silicon oxide (SiO 2) functioning as an electric insulating layer and a supporting layer on a silicon substrate 11, as shown in FIG. 2 ) 12 is formed into a film, and the polycrystalline silicon layer formed on the silicon oxide layer is etched to form a heating element 14, and then the heating element 1 is formed.
Protective film 1 made of silicon oxide or silicon nitride on 4
6, a metal lead wire 17 is connected to a through hole formed by etching a portion to be an electrode pad, and the heating element 1
The semiconductor heat generating device 10 is configured by attaching the silicon substrate 11 below 4 to the glass substrate 20 in which the space 18 is formed by removing the silicon substrate 11 by anisotropic etching for the purpose of thermal insulation.

【0003】このようにして得られた、半導体発熱装置
10は、発熱体14が空間18を形成していないシリコ
ン基板11上に設けた部分の金属リード線17との接続
部まで伸びていることから、以下のように発熱を有効に
利用することができないでいた。すなわち、 1.このような半導体発熱装置を流体の流量測定にしよ
うするときには、流量検知に寄与し難い部分であるシリ
コン基板11上の部分にも発熱体14が形成されている
ので、ここで無駄な発熱が生じ、消費電力が増大する。 2.熱伝導率の高い材質である発熱体14が、シリコン
基板11の上方まで伸びているので、発熱体14におい
て生じた熱の多くが無駄にシリコン基板11に流れてし
まい、消費電力が増大してしまう。 3.発熱体14とシリコン基板11との間に設けた酸化
シリコン層12の厚みを1μm程度にしか取っていない
ことから、発熱体14とシリコン基板11との間の熱絶
縁が十分に達成されず、多くの熱が無駄にシリコン基板
に逃げて消費電力が増大してしまう。 といった問題を有していた。
In the semiconductor heating device 10 thus obtained, the heating element 14 extends to the connection portion with the metal lead wire 17 provided on the silicon substrate 11 where the space 18 is not formed. Therefore, it was not possible to effectively utilize the heat generation as follows. That is, 1. When such a semiconductor heating device is used to measure the flow rate of a fluid, the heating element 14 is also formed in the portion on the silicon substrate 11 which is a portion that is difficult to contribute to the detection of the flow rate. , Power consumption increases. 2. Since the heating element 14 made of a material having a high thermal conductivity extends above the silicon substrate 11, most of the heat generated in the heating element 14 wastefully flows to the silicon substrate 11 and power consumption increases. I will end up. 3. Since the thickness of the silicon oxide layer 12 provided between the heating element 14 and the silicon substrate 11 is only about 1 μm, thermal insulation between the heating element 14 and the silicon substrate 11 is not sufficiently achieved, A lot of heat is wasted to the silicon substrate and power consumption increases. Had a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
問題を解決するもので、発熱体からシリコン基板に逃げ
る熱を少なくした半導体発熱装置を提供することを目的
とする。さらに本発明は、流速の検知に寄与する部分だ
けが発熱する半導体発熱装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to solve such a problem and to provide a semiconductor heating device in which the heat escaping from the heating element to the silicon substrate is reduced. A further object of the present invention is to provide a semiconductor heating device in which only the portion contributing to the detection of the flow velocity generates heat.

【0005】[0005]

【課題を解決するための手段】流速の検知に寄与するブ
リッジ構造の中心部だけに発熱体部分を設置するととも
に、抵抗が低いことから発熱せずかつ厚みが薄ことから
断面積が小さく熱を伝えにくい金属リード線をブリッジ
構造に設けた発熱体端部まで延ばした。このことによっ
て、流速の検知に寄与するブリッジ構造の中心部だけを
発熱させることができる。さらに、発熱体とシリコン基
板との間の酸化シリコン断熱層の厚みを1μm以上とし
た。これにより、発熱体とシリコン基板との間の熱絶縁
性を向上させることができ、発熱体からシリコン基板に
逃げる無駄な熱をさらに小さく抑えることができる。
[Means for Solving the Problems] A heating element is installed only in the central portion of the bridge structure that contributes to the detection of the flow velocity, and because the resistance is low, it does not generate heat and the thickness is thin, so the cross-sectional area is small and heat is generated. The hard-to-transmit metal lead wire was extended to the end of the heating element provided in the bridge structure. As a result, only the central portion of the bridge structure that contributes to the detection of the flow velocity can generate heat. Further, the thickness of the silicon oxide heat insulating layer between the heating element and the silicon substrate is set to 1 μm or more. As a result, the thermal insulation between the heating element and the silicon substrate can be improved, and the wasted heat escaping from the heating element to the silicon substrate can be further reduced.

【0006】[0006]

【発明の実施の形態】図1に本発明に係る半導体発熱装
置の構造の概要を断面図で示す。本発明に係る半導体発
熱装置10は、シリコン基板11と、この上に設けられ
た断熱層として働く酸化シリコン層12と、該酸化シリ
コン層間を橋絡して設けられ発熱体の支持体として働く
酸化シリコンブリッジ13と、該酸化シリコンブリッジ
上に設けられた発熱体14と、該発熱体14の端部と前
記酸化シリコン層12上にまで延びる金属引出線15
と、前記、ブリッジ部および酸化シリコン層12ならび
に金属引出線15上を被う酸化シリコンからなる保護膜
層16と、前記酸化シリコン層12上で金属引出線15
に接続された金属リード線17と、前記ブリッジ部およ
び酸化シリコン膜12の大部分の下部を異方性エッチン
グして設けた断熱空間18と、該断熱空間18の壁面に
設けた輻射熱反射膜19とからなる発熱体素子をガラス
基板20に貼り付けて構成される。
1 is a sectional view showing the outline of the structure of a semiconductor heat generating device according to the present invention. A semiconductor heat generating device 10 according to the present invention includes a silicon substrate 11, a silicon oxide layer 12 provided thereon as a heat insulating layer, and an oxide provided as a bridge between the silicon oxide layers to serve as a support for a heating element. The silicon bridge 13, the heating element 14 provided on the silicon oxide bridge, and the metal lead wire 15 extending to the end of the heating element 14 and the silicon oxide layer 12.
A protective film layer 16 made of silicon oxide covering the bridge portion and the silicon oxide layer 12 and the metal lead wire 15; and the metal lead wire 15 on the silicon oxide layer 12.
To the metal lead wire 17, a heat insulating space 18 provided by anisotropically etching the bridge portion and a lower portion of most of the silicon oxide film 12, and a radiation heat reflecting film 19 provided on a wall surface of the heat insulating space 18. The heat generating element composed of and is attached to the glass substrate 20.

【0007】この構成によれば、シリコン基板11上に
設けられた酸化シリコン層12は、熱伝導率が低いもの
でありしかも1μm以上と厚くすることができるので、
高性能な断熱膜として働き、発熱体14からシリコン基
板11側へ熱が逃げるのを阻止することができる。ま
た、発熱体14は、シリコン基板11上に設けられた酸
化シリコン熱絶縁層12間を橋絡する酸化シリコン支持
膜13上にのみ設けられるとともに、発熱体14の両端
部はそれぞれ電気抵抗が低い金属引出線15を介して酸
化シリコン断熱層12上に引き出されるので、該引出線
15での発熱を少なくすることができ、発熱体14での
み発熱させるようにすることができる。さらに、この引
出線15を金属膜によって形成するので、厚さを薄く成
膜して熱伝導を抑えることができ、発熱体14から酸化
シリコン断熱層12への熱伝導を極めて少なくすること
ができる。
According to this structure, the silicon oxide layer 12 provided on the silicon substrate 11 has a low thermal conductivity and can be as thick as 1 μm or more.
It works as a high-performance heat insulating film and can prevent heat from escaping from the heating element 14 to the silicon substrate 11 side. Further, the heating element 14 is provided only on the silicon oxide support film 13 bridging between the silicon oxide thermal insulating layers 12 provided on the silicon substrate 11, and both end portions of the heating element 14 have low electric resistance. Since it is drawn out onto the silicon oxide heat insulating layer 12 through the metal lead wire 15, heat generation in the lead wire 15 can be reduced, and only the heating element 14 can generate heat. Further, since the lead wire 15 is formed of a metal film, the thickness of the lead wire 15 can be reduced to suppress heat conduction, and heat conduction from the heating element 14 to the silicon oxide heat insulating layer 12 can be extremely reduced. .

【0008】さらに、酸化シリコン断熱層12は、LO
COS構造を用いて製造することができるので、酸化シ
リコン支持膜13肩の立上り部分を図示されたようにゆ
るやかな構造とすることができ、この上に成膜して得ら
れる金属引出線15に段切れを生じることがなくなり、
製造時の歩止まりが向上するとともに寿命の長い信頼性
の高い半導体発熱体が得られる。
Furthermore, the silicon oxide heat insulating layer 12 is
Since it can be manufactured by using the COS structure, the rising portion of the shoulder of the silicon oxide support film 13 can have a gradual structure as shown in the figure, and the metal leader line 15 obtained by forming a film on this can be formed. No breaks will occur,
It is possible to obtain a highly reliable semiconductor heating element having a long life and a high yield during manufacturing.

【0009】[0009]

【実施例】以下、図2を用いて、本発明に係る半導体発
熱装置の製造方法を説明する。まず、材料となるシリコ
ン(Si)板の両面を研磨して厚さ0.3mm程度のシ
リコン基板11を得る(図2A)。次いで、この基板1
1の両面に低圧化学蒸着法(LPCVD法)によって厚
さ0.05μm程度の窒化シリコン(Si34)膜30
を成膜した後、酸化シリコン断熱層12を形成する領域
の窒化シリコン膜30をRIE装置を用いてドライエッ
チングして除去して窓31を形成する(図2B)。この
とき、窓31は酸化シリコン断熱層12の大きさより小
径とする。次に、この窓31を酸素(O2)に1,00
0°Cの条件で曝して厚さ2μm程度の酸化シリコン
(SiO2)層12とする。形成された酸化シリコン層
は酸化によって体積が増して厚みが高くなるとともに、
窒化シリコン膜30の端部からその下側に廻り込んで周
辺部がゆるやかな曲線を描いて立ち上がる(図2C)。
次いで、上面の窒化シリコン膜30を除去した(図2
D)後、シリコン基板1および酸化シリコン断熱層12
上に常圧化学蒸着法(APCVD法)によって厚さ0.
4μm程度の酸化シリコン支持膜13を形成する(図2
E)。この酸化シリコン支持膜12の上にLPCVD法
によって厚さ1μm程度の多結晶シリコン膜(Poly
Si)14を成膜した後、パターニングしRIE装置
を用いてドライエッチングして発熱体となる部分を残す
(図2F)。この上に、金をスパッタリングによって
0.2μm程度成膜し、パターニングの後ウェットエッ
チング法によってエッチングして、金属引出線15を形
成する(図2G)。この上にAPCVD法によって0.
4μm程度の酸化シリコン(SiO2)膜16を成膜し
た後、金属リード線17を接続するコンタクト部分32
および次工程で用いるエッチングホール部分をB−HF
溶液によるウェットエッチング法によってエッチングし
て形成する(図2H)。この後表面からTMAH溶液を
用いてシリコン基板を異方性エッチングして熱絶縁空間
18を形成して(図2I)、半導体発熱素子を形成す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a semiconductor heating device according to the present invention will be described below with reference to FIG. First, both sides of a material silicon (Si) plate are polished to obtain a silicon substrate 11 having a thickness of about 0.3 mm (FIG. 2A). Then, this substrate 1
1. A silicon nitride (Si 3 N 4 ) film 30 having a thickness of about 0.05 μm is formed on both surfaces of No. 1 by low pressure chemical vapor deposition (LPCVD method).
After the film formation, the silicon nitride film 30 in the region where the silicon oxide heat insulating layer 12 is formed is dry-etched and removed by using the RIE apparatus to form the window 31 (FIG. 2B). At this time, the window 31 has a diameter smaller than that of the silicon oxide heat insulating layer 12. Next, this window 31 is exposed to oxygen (O 2 ) by 1.00
It is exposed under the condition of 0 ° C. to form a silicon oxide (SiO 2 ) layer 12 having a thickness of about 2 μm. The formed silicon oxide layer increases in volume and thickness due to oxidation, and at the same time,
The silicon nitride film 30 wraps around from the end portion to the lower side and rises in a gentle curve at the peripheral portion (FIG. 2C).
Then, the silicon nitride film 30 on the upper surface was removed (FIG. 2).
D) After that, the silicon substrate 1 and the silicon oxide heat insulating layer 12
A thickness of 0.
A silicon oxide support film 13 of about 4 μm is formed (FIG. 2).
E). A polycrystalline silicon film (Poly) having a thickness of about 1 μm is formed on the silicon oxide support film 12 by the LPCVD method.
After the Si) 14 is formed, patterning is performed and dry etching is performed using an RIE device to leave a portion to be a heating element (FIG. 2F). On this, a gold film is formed to a thickness of about 0.2 μm by sputtering, and after patterning, etching is performed by a wet etching method to form a metal leader line 15 (FIG. 2G). On top of this, AP.
After forming a silicon oxide (SiO 2 ) film 16 of about 4 μm, a contact portion 32 for connecting the metal lead wire 17
And the etching hole portion used in the next step is B-HF
It is formed by etching by a wet etching method using a solution (FIG. 2H). After this, the silicon substrate is anisotropically etched from the surface using a TMAH solution to form the heat insulating space 18 (FIG. 2I) to form a semiconductor heating element.

【0010】図2Hにおける酸化シリコン膜16にエッ
チングによって開口を形成するにあたり、エッチングホ
ールを形成しないでおき、シリコン基板11の裏面に形
成した窒化シリコン膜30と多結晶シリコン膜14をド
ライエッチングして発熱体の下方に開口33を形成し
(図2J)、TMAH溶液を用いて、シリコン基板11
を下方から異方性エッチングすることによって、熱絶縁
空間18を得る(図2K)こともできる。
When forming an opening in the silicon oxide film 16 in FIG. 2H by etching, the silicon nitride film 30 and the polycrystalline silicon film 14 formed on the back surface of the silicon substrate 11 are dry-etched without forming an etching hole. An opening 33 is formed below the heating element (FIG. 2J), and the silicon substrate 11 is formed by using the TMAH solution.
It is also possible to obtain the thermal insulation space 18 by anisotropically etching from below (FIG. 2K).

【0011】上記の実施例における金属膜は、金のほか
に、白金、アルミニウムとすることもできる。また、金
属膜のエッチング法として、ウェットエッチング法に代
えてドライエッチング法を採用することもできる。さら
に、異方性エッチング液として、TMAH溶液に代え
て、KOH溶液、TEA溶液、EDP溶液等を用いるこ
とができる。
The metal film in the above embodiments may be platinum or aluminum in addition to gold. Further, as the etching method for the metal film, a dry etching method can be adopted instead of the wet etching method. Further, as the anisotropic etching solution, a KOH solution, a TEA solution, an EDP solution or the like can be used instead of the TMAH solution.

【0012】[0012]

【発明の効果】以上のように、本発明によれば、酸化シ
リコン断熱層間を橋絡するブリッジ部分のみに発熱体を
設け、発熱体端部と金属リード線17が接続されるコン
タクトとの間を金属薄膜からなる引出線によって接続し
たので、発熱体で発生した熱は、シリコン基板に逃げる
ことなく、消費電力を小さく抑えることができる。
As described above, according to the present invention, the heating element is provided only in the bridge portion bridging the insulating layers of silicon oxide, and the end portion of the heating element and the contact to which the metal lead wire 17 is connected. Since they are connected by a lead wire made of a metal thin film, the heat generated by the heating element does not escape to the silicon substrate, and the power consumption can be suppressed to a low level.

【0013】このような発熱体を、熱式流速センサやガ
スセンサ等に用いることによって、低消費電力型のセン
サとすることができ、電池駆動とすることが可能とな
る。さらに、シリコン基板への熱の流入量を小さく抑え
ることができるので、発熱体部分を加熱した状態でもシ
リコン基板の温度を低く抑えることができ、発熱素子に
近接した位置に付属回路などを一体化製作することがで
きる。
By using such a heating element for a thermal type flow velocity sensor, a gas sensor or the like, a low power consumption type sensor can be obtained, and it becomes possible to drive the battery. Furthermore, since the amount of heat flowing into the silicon substrate can be suppressed to a low level, the temperature of the silicon substrate can be kept low even when the heating element is heated, and the attached circuit etc. can be integrated in the position close to the heating element. Can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体発熱装置の構造の概要を示
す断面図。
FIG. 1 is a sectional view showing an outline of the structure of a semiconductor heating device according to the present invention.

【図2】本発明に係る半導体発熱装置の製造方法を示す
工程図。
FIG. 2 is a process drawing showing a method for manufacturing a semiconductor heating device according to the present invention.

【図3】従来の半導体発熱装置の構造の概要を示す断面
図。
FIG. 3 is a cross-sectional view showing an outline of the structure of a conventional semiconductor heating device.

【符号の説明】[Explanation of symbols]

10 半導体発熱装置 11 シリコン基板 12 酸化シリコン断熱層 13 支持膜 14 発熱体 15 金属薄膜(金属引出線) 16 酸化シリコン保護膜 17 金属リード線 18 熱絶縁空間 19 輻射熱反射膜 20 ガラス基板 30 窒化シリコン膜 31 窓 32 コンタクト部 33 開口 10 Semiconductor Heating Device 11 Silicon Substrate 12 Silicon Oxide Thermal Insulation Layer 13 Supporting Film 14 Heating Element 15 Metal Thin Film (Metal Leader Wire) 16 Silicon Oxide Protective Film 17 Metal Lead Wire 18 Thermal Insulation Space 19 Radiant Heat Reflective Film 20 Glass Substrate 30 Silicon Nitride Film 31 window 32 contact part 33 opening

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に形成した酸化シリコン
断熱層間を橋絡する支持膜を有する半導体発熱装置にお
いて、支持膜上にのみ発熱体を設け、該発熱体の端部と
酸化シリコン断熱層の上の間を金属薄膜からなる引出線
で結び、支持膜の下面のシリコン基板に空間を設けたこ
とを特徴とする半導体発熱装置。
1. A semiconductor heating device having a support film bridging a silicon oxide heat insulating layer formed on a silicon substrate, wherein a heating element is provided only on the supporting film, and an end portion of the heating element and a silicon oxide heat insulating layer are provided. A semiconductor heat generating device characterized in that a space is provided in a silicon substrate on the lower surface of a supporting film by connecting a lead wire made of a metal thin film between the upper portions.
【請求項2】 酸化シリコン断熱層がシリコン基板の上
から空間の上に張り出して設けられている請求項1記載
の半導体発熱装置。
2. The semiconductor heat generating device according to claim 1, wherein the silicon oxide heat insulating layer is provided so as to overhang the space above the silicon substrate.
【請求項3】 酸化シリコン断熱層がLOCOS法で形
成された請求項1または請求項2記載の半導体発熱装
置。
3. The semiconductor heating device according to claim 1, wherein the silicon oxide heat insulating layer is formed by a LOCOS method.
【請求項4】 発熱体は、多結晶シリコンからなる請求
項1ないし請求項3のいずれか記載の半導体発熱装置。
4. The semiconductor heating device according to claim 1, wherein the heating element is made of polycrystalline silicon.
【請求項5】 シリコン基板上に酸化シリコン層をLO
COS法によって形成する工程と、前記シリコン基板お
よび前記酸化シリコン層上に支持膜を成膜する工程と、
前記酸化シリコン層間に形成された前記支持膜上に発熱
体を形成する工程と、前記発熱体の端部と前記酸化シリ
コン層の上との間に金属薄膜を成膜する工程と、支持膜
の下面のシリコン基板に空間を形成する工程からなるこ
とを特徴とする半導体発熱装置の製造方法。
5. A silicon oxide layer is formed on a silicon substrate by LO.
Forming by a COS method, forming a support film on the silicon substrate and the silicon oxide layer,
A step of forming a heating element on the support film formed between the silicon oxide layers; a step of forming a metal thin film between an end of the heating element and the silicon oxide layer; A method of manufacturing a semiconductor heating device, comprising the step of forming a space in a silicon substrate on the lower surface.
【請求項6】 発熱体が多結晶シリコンからなる請求項
5記載の半導体発熱装置の製造方法。
6. The method for manufacturing a semiconductor heating device according to claim 5, wherein the heating element is made of polycrystalline silicon.
JP7239930A 1995-09-19 1995-09-19 Semiconductor heat-generating device and its manufacture Pending JPH0989617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7239930A JPH0989617A (en) 1995-09-19 1995-09-19 Semiconductor heat-generating device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7239930A JPH0989617A (en) 1995-09-19 1995-09-19 Semiconductor heat-generating device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0989617A true JPH0989617A (en) 1997-04-04

Family

ID=17051953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7239930A Pending JPH0989617A (en) 1995-09-19 1995-09-19 Semiconductor heat-generating device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0989617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096504A1 (en) * 2008-01-31 2009-08-06 The Ritsumeikan Trust Micro vacuum gauge
DE19824401B4 (en) * 1998-05-30 2009-11-19 Robert Bosch Gmbh Process for the preparation of a sensor membrane substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19824401B4 (en) * 1998-05-30 2009-11-19 Robert Bosch Gmbh Process for the preparation of a sensor membrane substrate
WO2009096504A1 (en) * 2008-01-31 2009-08-06 The Ritsumeikan Trust Micro vacuum gauge

Similar Documents

Publication Publication Date Title
JP4873659B2 (en) Method for directly determining the boiling point of a fluid
EP0696725B1 (en) Thermal micro flow sensor and production method thereof
JP2645816B2 (en) Gas sensor and manufacturing method thereof
TW201226895A (en) Gas sensor and manufacture method thereof
JP3514666B2 (en) Thermal air flow sensor
JP2006024937A (en) Semiconductor heater and its manufacturing method
US11440793B2 (en) Hydrogen sensor on medium or low temperature solid micro heating platform
JP2007064865A (en) Gas sensor and method of manufacturing gas sensor
JP2011501126A (en) Semiconductor microanemometer apparatus and fabrication method
JP2004514153A (en) Flow sensor
JPH0989617A (en) Semiconductor heat-generating device and its manufacture
JP4253969B2 (en) Micro heater, manufacturing method thereof, and flow sensor
JPH1151893A (en) Contact combustion type gas sensor
JP3536516B2 (en) Method of forming floating structure
JP3598217B2 (en) Flow rate detecting element, flow rate sensor, and method of manufacturing flow rate detecting element
JP2003021547A (en) Thin film sensor and flow sensor and its manufacturing method
JP2003130702A (en) Sensor having a thin film structure part and manufacture thereof
JPH0256612B2 (en)
JP3724443B2 (en) Thin film gas sensor
KR100511268B1 (en) Method for manufacturing gas sensor
JP4074368B2 (en) Heat generation type thin film element sensor and manufacturing method thereof
JP2616183B2 (en) Flow sensor and manufacturing method thereof
JP2016151472A (en) Contact combustion type gas sensor
JP2001066182A (en) Infrared sensor and its manufacture
JP2001091486A (en) Thermal type sensor